JPH0734133A - Production of high-strength bainite steel rail having excellent surface damage resistance - Google Patents

Production of high-strength bainite steel rail having excellent surface damage resistance

Info

Publication number
JPH0734133A
JPH0734133A JP5181664A JP18166493A JPH0734133A JP H0734133 A JPH0734133 A JP H0734133A JP 5181664 A JP5181664 A JP 5181664A JP 18166493 A JP18166493 A JP 18166493A JP H0734133 A JPH0734133 A JP H0734133A
Authority
JP
Japan
Prior art keywords
rail
hardness
surface damage
head
damage resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5181664A
Other languages
Japanese (ja)
Other versions
JP3254051B2 (en
Inventor
Hideaki Kageyama
英明 影山
Masaharu Ueda
正治 上田
Kazuo Sugino
和男 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18166493A priority Critical patent/JP3254051B2/en
Priority to AU56304/94A priority patent/AU663023B2/en
Priority to AT94102721T priority patent/ATE212384T1/en
Priority to DE69433512T priority patent/DE69433512T2/en
Priority to AT01102992T priority patent/ATE258232T1/en
Priority to EP01102992A priority patent/EP1101828B1/en
Priority to DE69429685T priority patent/DE69429685T2/en
Priority to EP94102721A priority patent/EP0612852B1/en
Priority to US08/201,924 priority patent/US5382307A/en
Priority to KR1019940003310A priority patent/KR0131437B1/en
Priority to CA002116504A priority patent/CA2116504C/en
Priority to BR9400689A priority patent/BR9400689A/en
Priority to CN94101720A priority patent/CN1040660C/en
Priority to RU9494006015A priority patent/RU2086671C1/en
Publication of JPH0734133A publication Critical patent/JPH0734133A/en
Application granted granted Critical
Publication of JP3254051B2 publication Critical patent/JP3254051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To provide a process for production of the high-strength bainite steel rail imparted with the wear resistance of a GC part in addition to rolling fatigue damage resistance. CONSTITUTION:The top of the rail which consists of a steel contg. 0.15 to 0.45% C, 0.15 to 1.20% Si, 0.30 to 2.00% Mn and 0.50 to 3.00% Cr and at least one kind among Mo, Ni, Cu, Nb, V, Ti and B at need is cooled at 1 to 10 deg.C/sec from the temp of gamma region or above from the flanks thereof and the accelerated cooling is stopped between 500 and 350 deg.C; thereafter, the rail is cooled at 1 to 40 deg.C/min down to ordinary temp., by which the high-strength bainite steel rail having 300 to 400Hv hardness in the summit of the rail and >=400Hv hardness of the corner parts of the top and the excellent surface damage resistance is obtd. As a result, the surface damage resistance of the summit of the rail laid in a straight section of a heavy load railway and the corner parts at the top of a gentle curvilinear section is improved. The wear resistance of the corner parts of the top of the rail laid at the outer track of the rapidly curving section of the high-speed passage railway, etc., and the surface damage resistance of the rail top of the inner track are improved by the high-strength bainite structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、重荷重鉄道の直線区間
に敷設されたレール頭頂部ならびに緩曲線区間の頭部コ
ーナー部の耐表面損傷性の改善と、高速旅客鉄道などの
急曲線区間の外軌に敷設されるレールの頭部コーナー部
の耐摩耗性および内軌レール頭部表面の耐表面損傷性の
改善を目的とした高強度ベイナイト鋼レールに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of surface damage resistance of a rail top portion and a head corner portion of a gentle curve section laid in a straight section of a heavy-duty railway, and a sharp curve section of a high-speed passenger railway. The present invention relates to a high-strength bainite steel rail for the purpose of improving the wear resistance of the head corner portion of the rail laid on the outer gauge and the surface damage resistance of the inner rail head surface.

【0002】[0002]

【従来の技術】近年、鉄道輸送のエネルギー効率、輸送
効率が再認識され、その一環として従来以上に高速化指
向および重積載化傾向が強まってきている。重荷重鉄道
においては重積載化に伴う急曲線区間のレール摩耗に対
処するため積極的にレール材の高強度化・高硬度化を図
ってきた。その結果、パーライト組織の微細化により高
強度・高硬度化を達成し、曲線区間のレール摩耗を大幅
に改善するに至った。しかしながら一方ではより一層の
輸送効率の向上が計画され、これに伴って直線区間およ
び緩曲線区間のレール摩耗および表面損傷の増加が問題
となってきた。従来から重荷重鉄道においては、このよ
うな表面損傷に対処するため一定期間毎にレール表面を
グラインディング削正しており、保線に要する経費は益
々増大する傾向を示している。さらに保線の観点から、
高強度化したレールの靭性改善も安全性確保の観点から
重要課題となっており、敷設レールのより一層の省力
化、長寿命化が最大関心事となっている。
2. Description of the Related Art In recent years, the energy efficiency and transportation efficiency of railway transportation have been re-recognized, and as a part of this, the tendency toward higher speed and heavier loading has become stronger than ever. In heavy-duty railways, we have aggressively worked to increase the strength and hardness of rail materials in order to deal with rail wear in sharp curves that accompany heavy loading. As a result, we achieved high strength and high hardness by refining the pearlite structure, and significantly improved rail wear in curved sections. On the other hand, however, further improvement in transportation efficiency is planned, and along with this, increase in rail wear and surface damage in straight sections and gentle curve sections has become a problem. Conventionally, in heavy-duty railways, the rail surface is ground and rectified at regular intervals in order to deal with such surface damage, and the cost required for track maintenance tends to increase more and more. Furthermore, from the viewpoint of track maintenance,
Improving the toughness of high-strength rails is also an important issue from the viewpoint of ensuring safety, and further labor saving and longer life of laying rails are of utmost concern.

【0003】また、鉄道輸送の高速化は新幹線のみなら
ず、在来線についても具体的な計画が打ち出されてお
り、これに伴って直線区間の高速運転区間で発生するレ
ール頭表面の損傷がレール材質の重要な課題となってき
た。一方、従来から旅客鉄道の急曲線区間には、普通炭
素鋼パーライト組織レールを熱処理によって高強度化す
る高強度熱処理レールが使用されてきたが、重荷重鉄道
同様に外軌に敷設されたレール頭部コーナー部に局部的
な摩耗が生成し、摩耗のさほど激しくないレール頭表面
との境界部に剥離性損傷を発生させ騒音・振動の原因と
なり、さらに内軌レールにおいても表面に激しい剥離損
傷が発生する問題があった。
In addition, not only the Shinkansen but also the conventional lines have been proposed for speeding up railway transportation, and along with this, damage to the surface of the rail head that occurs during high-speed operation in straight sections has occurred. Rail material has become an important issue. On the other hand, conventionally, high-strength heat-treated rails, which heat-treat ordinary carbon steel pearlite structure rails by heat treatment, have been used in the sharply curved sections of passenger railways. Local wear is generated at the corners of the parts, causing peeling damage at the boundary with the rail head surface where the wear is not so severe, causing noise and vibration. There was a problem that occurred.

【0004】[0004]

【発明が解決しようとする課題】重荷重鉄道のより一層
の重積載化によって顕在化してきた直線区間および緩曲
線区間に敷設されたレールには、表面損傷が多発してお
り、これに伴って実施されているレール表面のグライン
ディングによる削正頻度も頻繁を極め、保線作業の軽減
のためには、表面損傷の生成原因であるころがり疲労層
の自己除去効果すなわち適正な摩耗促進が表面損傷の生
成を抑制し、グラインディング作業を軽減するポイント
となる。一方、比較的荷重の軽い高速旅客鉄道において
も、急曲線区間の外軌レールでは従来からパーライト組
織を微細化した高強度レールが敷設されたきたが、頭部
コーナー部の摩耗を抑制できたものの、その頭頂面側表
面に損傷が生成したり、内軌レールの頭部表面において
も摩耗が抑制されることによって剥離損傷が発生する問
題があった。
The rails laid in the straight section and the gently curved section, which have become apparent due to the heavy load of the heavy-duty railway, are frequently damaged by the surface. The frequency of rectification by the grinding of the rail surface that is being carried out is also extremely frequent, and in order to reduce the track maintenance work, the self-removal effect of the rolling fatigue layer that is the cause of the surface damage, that is, proper wear promotion is the cause of surface damage. It is a point to suppress the generation and reduce the grinding work. On the other hand, even for high-speed passenger railroads with relatively light loads, high-strength rails with a finer pearlite structure have been conventionally laid on the outer gauge rails in sharp curve sections, but wear of the head corners could be suppressed. However, there is a problem that peeling damage occurs due to damage being generated on the top surface side of the head and abrasion being suppressed also on the head surface of the inner rail.

【0005】最近開発された高強度でかつ摩耗しやすい
ベイナイト鋼レールは、図1に示すように従来のパーラ
イト鋼レールよりも硬さが高くても摩耗量が多くなる特
徴を有しており、レール頭部に特別な冷却制御を行うこ
となく圧延ままでベイナイト組織を生成させ、直線区間
での車輪の繰り返し接触で蓄積するレール頭部表面の疲
労ダメージ層を摩耗によって除去し、また曲線区間ある
いは高速蛇行運転区間では、車輪フランジがレールコー
ナー部に強く押しつけられるために生成する塑性変形、
塑性フロー起因の表面損傷を防止する高強度・高合金ベ
イナイト鋼レールが開示されている。このレールは、重
量%でC;0.15〜0.45%、Si;0.15〜
1.20%、Mn;0.30〜1.00%、Cr;2.
00〜4.00%、Mo;0.20〜0.60%、これ
に必要に応じてNb,V,Tiの一種または二種以上を
含有する鋼レールにおいて、圧延後の硬さがHv370
以上を有することを特徴としているが、重荷重鉄道の直
線区間に敷設し、レール頭頂部表面に生成する表面損傷
を防止するためにはほぼ適正な硬度を有しているもの
の、緩曲線もしくはこれに近い運転状況を伴う蛇行区間
では、レール頭部コーナー部の硬さが不足しているた
め、レール頭部コーナー部の表面損傷を完全に防止する
ことができない問題点があり、さらに内軌レールの表面
に生成する剥離性損傷も完全に抑制することができない
という問題点があった。
As shown in FIG. 1, the recently developed bainite steel rail having high strength and being easily worn has a feature that the wear amount is larger than that of the conventional pearlite steel rail even if the hardness is higher. The bainite structure is generated in the as-rolled state without special cooling control on the rail head, and the fatigue damage layer on the rail head surface accumulated by repeated contact of the wheels in the straight section is removed by abrasion. In the high-speed meandering operation section, the plastic deformation generated because the wheel flange is strongly pressed against the rail corner,
A high-strength, high-alloy bainite steel rail that prevents surface damage due to plastic flow is disclosed. This rail is C; 0.15-0.45% by weight%, Si; 0.15-
1.20%, Mn; 0.30 to 1.00%, Cr; 2.
In a steel rail containing 0 to 4.00%, Mo; 0.20 to 0.60%, and if necessary, one or more of Nb, V, and Ti, the hardness after rolling is Hv370.
Although it is characterized by having the above, it is laid in a straight section of a heavy-duty railway and has almost proper hardness to prevent surface damage generated on the rail top surface, but it has a gentle curve or this In a meandering section with a driving condition close to, the hardness of the rail head corner is insufficient, so there is a problem that surface damage at the rail head corner cannot be completely prevented. There is a problem in that the peeling damage generated on the surface of the is not completely suppressed.

【0006】一方、高速旅客鉄道の急曲線区間において
も、内軌レールの頭部表面に生成する損傷を完全に防止
するためには、その曲率に合わせて摩耗によって表面損
傷の芽を摘み取る必要があり、適正な硬度による摩耗制
御が要求される。そして、外軌レールにおいては、頭部
コーナー部は摩耗しにくく、レール頭頂面側表面は表面
損傷の完全な防止のために摩耗をある程度促進させてや
る必要がある。このような観点から、超高速旅客鉄道の
急曲線区間のレールとしては、外軌レール頭部コーナー
部は摩耗しにくく、その頭表面側コーナー部表面はある
程度摩耗を促進するために硬度を低めに制御する必要が
ある。
On the other hand, even in a sharp curve section of a high-speed passenger railway, in order to completely prevent the damage generated on the head surface of the inner rail, it is necessary to pick up the buds of the surface damage due to the wear according to the curvature. Yes, wear control with proper hardness is required. In the outer rail, the head corners are less likely to wear, and the rail top surface needs to be worn to some extent in order to completely prevent surface damage. From this point of view, as a rail for a sharp curve section of an ultra-high-speed passenger railway, the outer rail rail head corner portion is less likely to wear, and the head surface side corner portion surface has a lower hardness to promote wear to some extent. Need to control.

【0007】このような課題に対して、本発明レールは
適正な摩耗を確保することによって表面損傷の原因とな
る、ころがり疲労ダメージを摩耗により除去し、かつレ
ール頭部を高強度化することによって塑性変形によって
もたらされる表面損傷の発生抑制を果たそうとするもの
である。
In order to solve such problems, the rail of the present invention eliminates rolling fatigue damage, which causes surface damage by ensuring proper wear, and increases the strength of the rail head. It is intended to suppress the occurrence of surface damage caused by plastic deformation.

【0008】[0008]

【課題を解決するための手段】本発明は、直線区間に敷
設される重荷重鉄道用レールの頭頂部ならびに頭部コー
ナーの耐表面損傷性の改善と、高速旅客鉄道などの曲線
区間の外軌に敷設されるレールの頭部コーナー部の耐摩
耗性および内軌レール頭部表面の耐表面損傷性の改善を
目的とした高強度ベイナイト鋼レールの製造方法を提供
するもので、その要旨はC ;0.15〜0.45%、
Si;0.15〜1.20%、Mn;0.30〜
2.00%、 Cr;0.50〜3.00%、これに
必要に応じてMo;0.10〜0.60%、 Ni;
0.05〜4.00%、Cu;0.05〜0.50%、
Nb;0.01〜0.05%、V ;0.05〜
0.30%、 Ti;0.01〜0.05%、B ;
0.0005〜0.0050%の一種または二種以上を
含有し、残部が鉄および不可避的不純物からなる鋼で、
熱間圧延を終え、あるいは熱処理する目的で加熱された
オーステナイト域温度以上の熱を保有する高温度レール
を、レール頭部側面から1〜10℃/secで加速冷却し、
500〜350℃間で加速冷却を停止し、その後常温ま
でを1〜40℃/minで冷却し、該レール頭頂部の硬度が
ビッカース硬度Hv300〜400、頭部コーナー部の
硬度がビッカース硬度Hv400以上である耐表面損傷
性に優れた高強度ベイナイト鋼レールの製造方法であ
る。すなわち、本発明は、レール頭頂部の硬さを抑制す
ることにより摩耗を促進させ、レール頭頂面損傷を防止
すると共に、レール頭部コーナー部の硬さをHv400
以上にすることによって曲線区間およびこれに準ずる敷
設環境に敷設されたレール頭部コーナー部の摩耗を抑制
し、かつ表面損傷を防止したレールである。
SUMMARY OF THE INVENTION The present invention is directed to improving the surface damage resistance of the crown and head corners of a heavy-duty railway rail laid in a straight section and the outer gauge of a curved section such as a high-speed passenger railway. The present invention provides a method for producing a high-strength bainite steel rail for the purpose of improving the wear resistance of the head corners of the rail laid on the rail and the surface damage resistance of the inner rail head surface. 0.15 to 0.45%,
Si; 0.15 to 1.20%, Mn; 0.30
2.00%, Cr; 0.50 to 3.00%, and optionally Mo; 0.10 to 0.60%, Ni;
0.05 to 4.00%, Cu; 0.05 to 0.50%,
Nb: 0.01 to 0.05%, V: 0.05 to
0.30%, Ti; 0.01 to 0.05%, B;
Steel containing 0.0005 to 0.0050% of one kind or two or more kinds, and the balance being iron and unavoidable impurities,
A high temperature rail that holds heat above the austenite region temperature, which has been heated for the purpose of finishing hot rolling or heat treatment, is accelerated and cooled at 1 to 10 ° C / sec from the side of the rail head,
The accelerated cooling is stopped between 500 and 350 ° C., and then the temperature is cooled to room temperature at 1 to 40 ° C./min. The rail top hardness is Vickers hardness Hv300 to 400, and the head corner hardness is Vickers hardness Hv400 or more. Is a method of manufacturing a high-strength bainite steel rail having excellent surface damage resistance. That is, the present invention promotes wear by suppressing the hardness of the rail top portion, prevents the rail top surface from being damaged, and reduces the hardness of the rail head corner portion to Hv400.
By the above, a rail is provided which suppresses wear of the rail head corner portion laid in a curved section and a laying environment equivalent to this, and prevents surface damage.

【0009】本発明が上記のようにそれぞれの化学成分
に限定した理由を以下に説明する。Cは一定の硬さを確
保し、ベイナイト組織を安定的に生成させるための重要
な元素であり、0.15%未満の少い含有量ではレール
鋼の硬さを確保することが難しくなるばかりか、塑性変
形に対して抵抗性の低いフェライト組織が混入してしま
い、また0.45%を超えるとレール頭頂面の耐摩耗性
をかえって向上させ、ころがり疲労損傷ダメージ蓄積に
有害なパーライト組織が生成してしまうため、0.15
〜0.45%に限定した。Siはベイナイト組織中の素
地に固溶することによって強度を上昇させる元素であ
り、0.15%未満ではその効果が期待できず、また
1.20%を超えるとベイナイト組織中に島状のマルテ
ンサイト組織が生成し、靭性を劣化させるため0.15
〜1.20%に限定した。
The reason why the present invention is limited to each chemical component as described above will be explained below. C is an important element for securing a certain hardness and stably generating a bainite structure, and if the content is less than 0.15%, it becomes difficult to secure the hardness of the rail steel. Or, a ferrite structure with low resistance to plastic deformation is mixed, and if it exceeds 0.45%, the wear resistance of the rail crown surface is rather improved, and a pearlite structure harmful to the accumulation of rolling fatigue damage damage is formed. 0.15 because it will be generated
Limited to ~ 0.45%. Si is an element that increases the strength by forming a solid solution in the base material in the bainite structure, and if less than 0.15%, its effect cannot be expected, and if it exceeds 1.20%, island-like martensite is contained in the bainite structure. 0.15 because site structure is generated and deteriorates toughness
Limited to ~ 1.20%.

【0010】MnはC同様に安価にレール硬度を増加さ
せる元素であり、0.3%未満ではそれらの効果が少な
く、また2.00%を超えるとC同様にレール頭頂面の
ころがり疲労損傷ダメージの蓄積に有害なパーライト組
織が生成してしまうため、0.30〜2.00%に限定
した。Crはベイナイト組織中の炭化物を微細に分散さ
せ強度を確保するために重要な元素であるが、0.5%
未満ではその効果が期待できず、3.00%を超えると
かえって微細な炭化物が耐摩耗性を向上させることにな
り、疲労ダメージの除去に有害となるばかりか、焼入性
が向上してしまい、熱処理が施されるレール頭部コーナ
ー部にマルテンサイト組織が生成してしまうため0.5
0〜2.00%に限定した。
Similar to C, Mn is an element that inexpensively increases the rail hardness. If it is less than 0.3%, these effects are small, and if it exceeds 2.00%, the rolling fatigue damage damage of the rail top surface is similar to C. Therefore, a pearlite structure that is harmful to the accumulation of Pd is generated, so the content is limited to 0.30 to 2.00%. Cr is an important element for finely dispersing the carbide in the bainite structure and ensuring strength, but 0.5%
If it is less than 3.0%, the effect cannot be expected, and if it exceeds 3.00%, the fine carbide rather improves the wear resistance, which is not only harmful to the removal of fatigue damage but also improves the hardenability. , Because a martensite structure is generated in the rail head corner where heat treatment is applied, 0.5
It was limited to 0 to 2.00%.

【0011】さらに、本発明は上記のような成分組成に
Mo,Ni,Cu,Nb,V,Ti,Bなどの一種また
は二種以上を必要に応じて添加する。Moはベイナイト
組織の安定的な生成に重要な元素であり、化学成分の組
み合わせあるいは、熱処理条件に応じてベイナイト組織
の安定化のために用いる。その添加量の範囲は、0.1
0〜0.60%で0.10%未満ではその効果が期待で
きず、また、0.60%を超えるとベイナイト変態速度
が極端に低下してしまい、ベイナイト組織中にマルテン
サイト組織が生成してしまうため0.10〜0.60%
に限定した。NiおよびCuもベイナイト組織を安定的
に生成させる元素であり、Ni,Cuともに固溶体硬化
によってベイナイト組織素地の硬さ向上に有効であり、
Cuは0.05%未満ではその効果は少なく、0.50
%を超えると赤熱脆性を生じさせるため0.05〜0.
50%に限定した。NiはCuの赤熱脆性を緩和させる
元素として公知であるが0.05%未満ではその効果お
よび固溶体硬化は期待できず、また4.00%を超える
とオーステナイトの安定化によってベイナイト変態速度
を低下させマルテンサイト組織を生成させるため0.0
5〜4.00%に限定した。
Further, in the present invention, one or more kinds of Mo, Ni, Cu, Nb, V, Ti, B and the like are added to the above-mentioned composition of components, if necessary. Mo is an important element for stable formation of the bainite structure, and is used for stabilizing the bainite structure depending on the combination of chemical components or heat treatment conditions. The range of addition amount is 0.1
If it is 0 to 0.60% and less than 0.10%, the effect cannot be expected, and if it exceeds 0.60%, the bainite transformation rate is extremely decreased, and a martensite structure is formed in the bainite structure. 0.10 to 0.60%
Limited to. Ni and Cu are also elements that stably generate a bainite structure, and both Ni and Cu are effective in improving the hardness of the bainite structure base by solid solution hardening.
If Cu is less than 0.05%, its effect is small, and 0.50.
%, The red hot brittleness is generated, so 0.05 to 0.
Limited to 50%. Ni is known as an element that relaxes the red hot embrittlement of Cu, but if it is less than 0.05%, its effect and solid solution hardening cannot be expected, and if it exceeds 4.00%, the bainite transformation rate is lowered due to the stabilization of austenite. 0.0 to generate martensitic structure
It was limited to 5 to 4.00%.

【0012】さらにNb,Tiなどのオーステナイト結
晶粒微細化元素を添加することによってベイナイト組織
を微細化し、レール鋼の靭性および延性を改善すること
ができる。Nbは、オーステナイト再結晶抑制元素とし
て知られており、レール圧延時の制御圧延と組み合わせ
ることによりベイナイト組織を一層微細化することがで
きる。しかし、この作用が期待できる添加下限量は0.
01%以上であり、また0.05%を超えると粗大なN
bの炭窒化物が生成してかえって脆化をもたらすため、
0.01〜0.05%に限定した。Tiはレール圧延時
の加熱時オーステナイト粒を細粒化させる元素として知
られており、このとき有効な下限添加量は0.01%で
あり、0.05%を超えるとTi炭窒化物が粗大化し、
レール頭部内部から生成する疲労き裂の起点となるため
有害である。そこでTiの添加範囲を0.01〜0.0
5%に限定した。VはV(C,N)の析出によってベイ
ナイト組織材を強化する作用を有し、この析出硬化は金
属組織の塑性フローによるレール頭部コーナー部表面に
生成する損傷の防止に効果的であり、この析出硬化は耐
摩耗性向上に寄与しないため、摩耗を促進させてころが
り疲労層の除去を意図したレール頭頂面損傷の生成防止
に好都合な元素である。この効果の期待できる下限添加
量は0.05%であり、0.30%を超えるとV(C,
N)の粗大化によってかえって脆化を生じさせるため、
0.05〜0.30%に限定した。Bはオーステナイト
粒界から生成するフェライトの生成を抑制する効果があ
り、ベイナイト組織を安定的に生成させるためには有効
な元素であり、0.0005%未満ではその効果が弱
く、0.0050%を超えて添加するとBの粗大な化合
物が生成しレール材質を劣化させるため0.0005〜
0.0050%に限定した。
Further, by adding an austenite grain refiner such as Nb or Ti, the bainite structure can be refined and the toughness and ductility of the rail steel can be improved. Nb is known as an austenite recrystallization suppressing element, and by combining with controlled rolling during rail rolling, the bainite structure can be further refined. However, the lower limit of addition at which this effect can be expected is 0.
If it is 01% or more, and if it exceeds 0.05%, coarse N
Since the carbonitride of b is generated and rather causes embrittlement,
It was limited to 0.01 to 0.05%. Ti is known as an element for making austenite grains fine during heating during rail rolling, and the effective lower limit addition amount at this time is 0.01%, and if it exceeds 0.05%, Ti carbonitrides become coarse. Turned into
It is harmful because it becomes the starting point of fatigue cracks generated from inside the rail head. Therefore, the addition range of Ti is 0.01 to 0.0
Limited to 5%. V has the action of strengthening the bainite structure material by the precipitation of V (C, N), and this precipitation hardening is effective in preventing the damage generated on the rail head corner surface due to the plastic flow of the metal structure, Since this precipitation hardening does not contribute to the improvement of wear resistance, it is an element which is convenient for promoting wear and preventing the generation of rail crown surface damage intended to remove the rolling fatigue layer. The lower limit of addition of this effect is 0.05%, and if it exceeds 0.30%, V (C,
Since the coarsening of N) causes rather embrittlement,
It was limited to 0.05 to 0.30%. B has an effect of suppressing the generation of ferrite generated from austenite grain boundaries, and is an effective element for stably generating a bainite structure. If it is less than 0.0005%, the effect is weak, and 0.0050%. If added in excess of 0.005, a coarse compound of B is produced and the rail material is deteriorated, so 0.0005-
It was limited to 0.0050%.

【0013】本発明は上記のような成分組成を有するベ
イナイト鋼レールを、熱間圧延を終え、あるいは熱処理
する目的で加熱されたオーステナイト域温度以上の熱を
保有する高温度から、レール頭部側面に対局した一対の
ノズルにより1〜10℃/secの冷却速度で加速冷却し、
500〜300℃間で冷却を停止した後、その後常温ま
でを1〜40℃/minで冷却し、該レール頭頂部の硬度が
ビッカース硬度Hv300〜400、頭部コーナー部の
硬度がビッカース硬度Hv400以上である耐表面損傷
性に優れた高強度ベイナイト鋼レールを製造する。すな
わち、重荷重鉄道の直線区間で生成するレール頭頂面損
傷を硬度を抑制することによって摩耗を促進させて防止
するとともに、緩和曲線区間などで生ずるレール頭部コ
ーナー表面を高硬度化することによって摩耗を抑制し、
また高速旅客鉄道における急曲線区間においては外軌レ
ール頭部コーナー部の摩耗を抑制し、内軌レール頭頂面
の表面損傷の生成を防止するレールを製造することがで
きる。
According to the present invention, the bainite steel rail having the above-described composition is subjected to hot rolling or heat treatment for the purpose of heat treatment, and from the high temperature which retains heat above the austenite region temperature, the rail head side surface Accelerated cooling at a cooling rate of 1-10 ° C / sec with a pair of nozzles
After cooling is stopped at 500 to 300 ° C., the temperature is cooled to room temperature at 1 to 40 ° C./min, the hardness of the rail top is Vickers hardness Hv300 to 400, and the hardness of the head corner is Vickers hardness Hv400 or more. The high-strength bainite steel rail with excellent surface damage resistance is manufactured. That is, the rail top surface damage generated in the straight section of a heavy-duty railway is promoted and prevented by suppressing the hardness, and the rail head corner surface generated in the relaxation curve section is hardened by increasing the hardness. Suppresses
Further, it is possible to manufacture a rail that suppresses the wear of the outer rail rail head corner portion in the sharp curve section of the high-speed passenger railway and prevents the generation of surface damage on the inner rail top portion.

【0014】このとき、高温度レール側面を加速冷却す
る冷却速度を1〜10℃/secに限定した理由は、1℃/s
ec未満の遅い冷却速度ではレール頭部コーナー部を目的
とするHv400以上の高硬度とすることができず、ま
た10℃/secを超える速い冷却速度ではレール頭部コー
ナー部表面に過冷却により局部的にマルテンサイト組織
が生成してしまうため1〜10℃/secに限定した。
At this time, the reason for limiting the cooling rate for accelerating cooling the side surface of the high temperature rail to 1 to 10 ° C./sec is 1 ° C./s.
If the cooling rate is slower than ec, it is not possible to make the hardness higher than the target Hv400 at the rail head corner, and if the cooling rate is higher than 10 ° C / sec, the surface of the rail head corner may be overcooled to cause local hardness. Since a martensite structure is generated, it is limited to 1 to 10 ° C / sec.

【0015】ここでレール頭部コーナー部の硬度をHv
400以上に限定した理由は、重荷重鉄道の緩曲線区間
では、車輪がレール頭部コーナー部に押し付けられるた
め生成するレール頭部コーナー部表面損傷をパーライト
組織鋼よりも同一硬度で摩耗が大きいベイナイト組織に
よって防止するためにはHv400以上の硬度が必要で
あり、摩耗速度も問題となるほど大きくない。また比較
的荷重の軽い旅客鉄道で急曲線区間に敷設されたとき、
外軌レール頭部コーナー部に十分な耐摩耗性を発揮させ
るためにはHv400以上の硬さが必要となる。なお、
レール頭頂部の硬度をHv300〜400に限定した理
由は、Hv300未満では硬度不足のため曲線区間の内
軌レール頭頂面に表面損傷が生成するばかりか、波状摩
耗が生成して高速鉄道の速度向上に重要な支障をきた
し、重荷重鉄道の直線区間においても波状摩耗の生成が
懸念される。また、レール頭頂部がHv400を超える
と重荷重鉄道のレール頭頂面損傷の防止を意図したころ
がり疲労層の摩耗による除去が果たされず、早期にレー
ル頭頂面損傷が生成してしまうため、レール頭頂部硬度
範囲をHv300〜400に限定した。
Here, the hardness of the rail head corner is Hv
The reason for limiting to 400 or more is that in the gentle curve section of the heavy-duty railway, the rail head corner surface damage generated because the wheel is pressed against the rail head corner portion, bainite with the same hardness and greater wear than the pearlite steel. A hardness of Hv 400 or more is required to prevent the structure, and the wear rate is not so large as to cause a problem. Also, when laid on a sharp curve section on a passenger railway with a relatively light load,
A hardness of Hv 400 or higher is required to exert sufficient wear resistance on the outer rail rail corner portion. In addition,
The reason why the hardness of the rail crown is limited to Hv300 to 400 is that if the hardness is less than Hv300, the hardness is insufficient, so that not only surface damage is generated on the crown surface of the inner rail in the curved section, but also wavy wear is generated to improve the speed of the high-speed railway. There is concern that the generation of corrugated wear may occur even in a straight section of a heavy-duty railway. If the rail crown exceeds Hv400, the rolling crown fatigue layer is not removed due to wear to prevent damage to the rail crown surface of heavy-duty railways, and rail crown surface damage is generated early. The hardness range was limited to Hv 300-400.

【0016】また、加速冷却後の冷却停止温度を500
〜350℃に限定した理由は、500℃を超える高い温
度で冷却を停止すると、その後のレール頭部内部からの
復熱を受けてレール頭部表面のベイナイト変態温度が上
昇してしまい、レール頭頂部およびコーナー部の硬度を
確保することができなくなる。さらに冷却停止温度が3
50℃未満の低い温度になると、過冷却によりレール頭
部コーナー部表面にマルテンサイト組織が生成するばか
りか、内部にもマルテンサイト組織が生成してしまいレ
ール頭部の靭性を低下させるため冷却停止温度を500
〜350℃の範囲に限定した。
The cooling stop temperature after accelerated cooling is set to 500
The reason for limiting the temperature to ~ 350 ° C is that if cooling is stopped at a high temperature exceeding 500 ° C, the bainite transformation temperature on the rail head surface will rise due to subsequent heat recovery from inside the rail head, and It becomes impossible to secure the hardness of the top portion and the corner portion. Furthermore, the cooling stop temperature is 3
When the temperature is lower than 50 ° C, not only the martensite structure is generated on the rail head corner surface due to overcooling but also the martensite structure is generated inside the rail head, which reduces the toughness of the rail head and stops cooling. Temperature 500
The range was limited to 350 ° C.

【0017】以上のような熱処理をレール頭部に施すこ
とにより、重荷重鉄道における直線区間に敷設されたレ
ールの頭頂面損傷を防止し、緩曲線区間のレール頭部コ
ーナー部の摩耗を抑制するとともに、適度な摩耗の促進
によりコーナー部表面の損傷発生を防止することができ
る。また新幹線のような高速鉄道の急曲線区間において
問題となる外軌レール頭部コーナー部の摩耗抑制と内軌
レール頭表面の損傷防止を同時に達成する長寿命レール
を提供することができる。
By subjecting the rail head to the heat treatment as described above, damage to the top surface of the rail laid in a straight section in a heavy-duty railway is prevented, and wear of the rail head corner section in a gently curved section is suppressed. At the same time, it is possible to prevent the occurrence of damage on the surface of the corner portion by promoting appropriate wear. In addition, it is possible to provide a long-life rail that simultaneously achieves abrasion control of the outer rail rail head corner portion and damage prevention of the inner rail head surface, which are problems in a sharp curve section of a high-speed railway such as the Shinkansen.

【0018】[0018]

【実施例】次に本発明の実施例について説明する。表1
には、本発明鋼の代表的な化学成分と熱処理条件を示
す。図2は、JIS60キロレールの頭部横断面表面位
置の呼称部位を表示したもので、1はレール頭頂部、2
は頭部コーナー部である。図3は本発明の一実施態様例
のレール頭部横断面内の硬度分布を示す。頭頂部の硬度
に対して、頭部コーナー部の硬度が高くなっている。本
発明レールは頭頂部の硬度がビッカース硬度Hv300
〜400、頭頂部の硬度がHv400以上になってい
る。また、図4はレール頭部の各種表面損傷を評価する
ための実験評価試験機(特許登録番号1183162)
の概略図を示したもので、表2には本発明ベイナイト鋼
レールと比較鋼として従来鋼のパーライト組織レール
と、比較鋼ベイナイト鋼レールについて所定の熱処理を
施し、図4に示す曲げ加工レール3の頭部に接して車輪
4が回転走行する実験室評価試験において曲線区間に相
当する車輪接触条件下で表面損傷発生寿命を求めた試験
結果について示す。表3は、同様に直線区間に相当する
車輪の接触条件を与えた試験結果を示した。実験室評価
試験は、所定の熱処理を施したレールを頭部を内側にし
て6mに曲げ加工し、実際の新幹線で使用されている車
輪を用いて行った。試験条件は、レールと車輪の接触条
件を曲線区間の接触条件の再現として車輪に横圧を負荷
し、レール頭部コーナー部に車輪フランジを押し付けて
レール頭部コーナー部表面に生成する損傷の評価試験
を、また直線区間再現としてレール頭頂面と車輪中央を
接触させ、頭頂面損傷発生特性の評価を行った。なお、
損傷発生寿命の表示は、実際に鉄道で行われている列車
の累積通過トン数で表示した。
EXAMPLES Next, examples of the present invention will be described. Table 1
Shows typical chemical components and heat treatment conditions of the steel of the present invention. Fig. 2 shows the designated parts of the surface position of the cross section of the head of the JIS 60 kilorail, where 1 is the top of the rail and 2 is the top of the rail.
Is the head corner. FIG. 3 shows the hardness distribution in the cross section of the rail head according to the embodiment of the present invention. The hardness of the head corner is higher than the hardness of the crown. The rail of the present invention has a Vickers hardness of Hv300 at the crown.
~ 400, the hardness of the crown is Hv400 or more. FIG. 4 is an experimental evaluation tester (patent registration number 1183162) for evaluating various surface damages on the rail head.
Table 2 shows a schematic view of the invention. In Table 2, the conventional rails of pearlite structure and the comparative steel bainite steel rails of the present invention and the comparative steel bainite steel rails are subjected to predetermined heat treatment, and the bending rails 3 shown in FIG. In the laboratory evaluation test in which the wheel 4 rotates while contacting the head of the above, the test results of obtaining the surface damage occurrence life under the wheel contact condition corresponding to the curved section will be shown. Table 3 shows the test results in which the contact conditions of the wheels corresponding to the straight line section were similarly given. The laboratory evaluation test was carried out by using a wheel used in an actual Shinkansen by bending a rail that had been subjected to a predetermined heat treatment to 6 m with the head inside. The test condition is that the contact condition between the rail and the wheel is reproduced as a contact condition in a curved section, lateral pressure is applied to the wheel, and the wheel flange is pressed against the corner of the rail head to evaluate the damage generated on the surface of the corner of the rail head. In the test, the rail top surface and the wheel center were brought into contact with each other to reproduce the straight section, and the top surface damage occurrence characteristics were evaluated. In addition,
The damage occurrence life is displayed as the cumulative tonnage of trains actually being used on the railway.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明によれば、上記実施例からもわか
るようにレール頭部コーナー部の硬さをHv400以上
にすることによって、コーナー部表面の損傷発生寿命を
比較鋼と比べ大幅に改善でき、さらにレール頭頂面の硬
さをHv300〜400に制御することによってレール
頭頂面の表面損傷の発生を抑制できる。
According to the present invention, as can be seen from the above examples, the hardness of the rail head corner portion is set to Hv 400 or more, whereby the damage occurrence life of the corner portion surface is significantly improved as compared with the comparative steel. Further, by controlling the hardness of the rail top surface to Hv 300 to 400, the occurrence of surface damage on the rail top surface can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】西原式摩耗試験機における摩耗量と、レール材
組織および硬さの関係を示した図。
FIG. 1 is a diagram showing a relationship between a wear amount, a rail material structure and hardness in a Nishihara-type wear tester.

【図2】レール頭部横断面表面位置の呼称部位を表示し
た図。
FIG. 2 is a view showing nominal portions of a rail head cross-sectional surface position.

【図3】本発明の実施例の頭部横断面硬度分布を示した
図。
FIG. 3 is a diagram showing a cross-sectional hardness distribution of the head of an example of the present invention.

【図4】実レールの曲げ加工レールの表面損傷評価試験
機の概略図である。
FIG. 4 is a schematic view of a surface damage evaluation test machine for a bent rail of an actual rail.

【符号の説明】[Explanation of symbols]

1 レール頭頂部 2 レール頭部コーナー部 3 曲げ加工レール 4 車輪 1 Rail top 2 Rail head corner 3 Bending rail 4 Wheel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C ;0.15〜0.45% Si;0.15〜1.20% Mn;0.30〜2.00% Cr;0.50〜3.00% を含有し、残部が鉄および不可避的不純物からなる鋼
で、熱間圧延を終え、あるいは熱処理する目的で加熱さ
れたオーステナイト域温度以上の熱を保有する高温度レ
ールを、レール頭部側面から1〜10℃/secで冷却し、
500〜350℃間で加速冷却を停止し、その後常温ま
でを1〜40℃/minで冷却し、該レール頭頂部の硬度が
ビッカース硬度Hv300〜400、頭部コーナー部の
硬度がビッカース硬度Hv400以上であることを特徴
とする耐表面損傷性に優れた高強度ベイナイト鋼レール
の製造方法。
1. By weight% C: 0.15 to 0.45% Si; 0.15 to 1.20% Mn; 0.30 to 2.00% Cr; 0.50 to 3.00% However, the balance is steel consisting of iron and unavoidable impurities, and a high temperature rail that retains heat above the austenite region temperature, which is heated for the purpose of finishing hot rolling or heat treatment, is installed from 1 to 10 from the side of the rail head. Cool at ℃ / sec,
The accelerated cooling is stopped between 500 and 350 ° C., and then the temperature is cooled to room temperature at 1 to 40 ° C./min. The rail top hardness is Vickers hardness Hv300 to 400, and the head corner hardness is Vickers hardness Hv400 or more. A method for producing a high-strength bainite steel rail having excellent surface damage resistance, which is characterized by:
【請求項2】 重量%で C ;0.15〜0.45% Si;0.15〜1.20% Mn;0.30〜2.00% Cr;0.50〜3.00% を含有し、さらに Mo;0.10〜0.60% Ni;0.05〜4.00% Cu;0.05〜0.50% Nb;0.01〜0.05% V ;0.05〜0.30% Ti;0.01〜0.05% B ;0.0005〜0.0050% の一種または二種以上を含有し、残部が鉄および不可避
的不純物からなる鋼で、熱間圧延を終え、あるいは熱処
理する目的で加熱されたオーステナイト域温度以上の熱
を保有する高温度レールを、レール頭部側面から1〜1
0℃/secで冷却し、500〜350℃間で加速冷却を停
止し、その後常温までを1〜40℃/minで冷却し、該レ
ール頭頂部の硬度がビッカース硬度Hv300〜40
0、頭部コーナー部の硬度がビッカース硬度Hv400
以上であることを特徴とする耐表面損傷性に優れた高強
度ベイナイト鋼レールの製造方法。
2. C-0.15 to 0.45% Si; 0.15 to 1.20% Mn; 0.30 to 2.00% Cr; 0.50 to 3.00% by weight Mo; 0.10 to 0.60% Ni; 0.05 to 4.00% Cu; 0.05 to 0.50% Nb; 0.01 to 0.05% V; 0.05 to 0 30% Ti; 0.01 to 0.05% B; 0.0005 to 0.0050%, one or more, and the balance being iron and inevitable impurities. , Or a high temperature rail that retains heat above the temperature of the austenite region heated for the purpose of heat treatment
Cooling at 0 ° C./sec, stopping accelerated cooling at 500 to 350 ° C., and then cooling to room temperature at 1 to 40 ° C./min, the hardness of the rail top is Vickers hardness Hv 300 to 40
0, Vickers hardness of the head corner is Hv400
A method for producing a high-strength bainite steel rail having excellent surface damage resistance, which is characterized by the above.
JP18166493A 1993-02-26 1993-07-22 Method for manufacturing high-strength bainite steel rail with excellent surface damage resistance Expired - Lifetime JP3254051B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP18166493A JP3254051B2 (en) 1993-07-22 1993-07-22 Method for manufacturing high-strength bainite steel rail with excellent surface damage resistance
AU56304/94A AU663023B2 (en) 1993-02-26 1994-02-22 Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatigue resistance
DE69433512T DE69433512T2 (en) 1993-02-26 1994-02-23 High-strength bainitic steel rails with improved resistance to fatigue damage due to rolling contact
AT01102992T ATE258232T1 (en) 1993-02-26 1994-02-23 HIGH-STRENGTH BAINITIC STEEL RAILS WITH IMPROVED RESISTANCE TO FATIGUE DAMAGE DUE TO ROLLING CONTACT
EP01102992A EP1101828B1 (en) 1993-02-26 1994-02-23 High-strength bainitic steel rails with excellent rolling-contact fatigue resistance
DE69429685T DE69429685T2 (en) 1993-02-26 1994-02-23 Process for producing high-strength bainitic steel rails with improved resistance to fatigue damage due to rolling contact
EP94102721A EP0612852B1 (en) 1993-02-26 1994-02-23 Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatique resistance
AT94102721T ATE212384T1 (en) 1993-02-26 1994-02-23 METHOD FOR PRODUCING HIGH STRENGTH BAINITIC STEEL RAILS WITH IMPROVED RESISTANCE TO FATIGUE DAMAGE DUE TO ROLLING CONTACT
US08/201,924 US5382307A (en) 1993-02-26 1994-02-24 Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatigue resistance
KR1019940003310A KR0131437B1 (en) 1993-02-26 1994-02-24 Process for manufacturing high-strength bainitic steel rails with excellent rolling contact fatigue resistance
CA002116504A CA2116504C (en) 1993-02-26 1994-02-25 Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatigue resistance
BR9400689A BR9400689A (en) 1993-02-26 1994-02-25 Process for the production of high-strength bainitic steel rails and high-strength bainitic steel rail
CN94101720A CN1040660C (en) 1993-02-26 1994-02-25 Manufacture of bainite steel rail with high strength and good performence of anti-rolling-endurance-failure
RU9494006015A RU2086671C1 (en) 1993-02-26 1994-02-25 Method of manufacturing high-strength rail (versions) and high- strength rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18166493A JP3254051B2 (en) 1993-07-22 1993-07-22 Method for manufacturing high-strength bainite steel rail with excellent surface damage resistance

Publications (2)

Publication Number Publication Date
JPH0734133A true JPH0734133A (en) 1995-02-03
JP3254051B2 JP3254051B2 (en) 2002-02-04

Family

ID=16104714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18166493A Expired - Lifetime JP3254051B2 (en) 1993-02-26 1993-07-22 Method for manufacturing high-strength bainite steel rail with excellent surface damage resistance

Country Status (1)

Country Link
JP (1) JP3254051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676772A (en) * 1995-09-04 1997-10-14 Nkk Corporation High-strength, bainitic steel rail having excellent damage-resistance
WO1999036583A1 (en) * 1998-01-14 1999-07-22 Nippon Steel Corporation Bainite type rail excellent in surface fatigue damage resistance and wear resistance
WO2012164579A1 (en) * 2011-05-30 2012-12-06 Tata Steel Limited Bainitic steel of high strength and high elongation and method to manufacture said bainitic steel
JP2016156067A (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Bainitic steel rail
CN113385846A (en) * 2021-06-15 2021-09-14 中国铁道科学研究院集团有限公司金属及化学研究所 Welding production method of bainite steel rail

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676772A (en) * 1995-09-04 1997-10-14 Nkk Corporation High-strength, bainitic steel rail having excellent damage-resistance
WO1999036583A1 (en) * 1998-01-14 1999-07-22 Nippon Steel Corporation Bainite type rail excellent in surface fatigue damage resistance and wear resistance
US6254696B1 (en) 1998-01-14 2001-07-03 Nippon Steel Corporation Bainitic type rail excellent in surface fatigue damage resistance and wear resistance
WO2012164579A1 (en) * 2011-05-30 2012-12-06 Tata Steel Limited Bainitic steel of high strength and high elongation and method to manufacture said bainitic steel
KR20140014234A (en) * 2011-05-30 2014-02-05 타타 스틸 리미티드 Bainitic steel of high strength and high elongation and method to manufacture said bainitic steel
US11345983B2 (en) 2011-05-30 2022-05-31 Tata Steel Limited Bainitic steel of high strength and high elongation and method to manufacture said bainitic steel
JP2016156067A (en) * 2015-02-25 2016-09-01 新日鐵住金株式会社 Bainitic steel rail
CN113385846A (en) * 2021-06-15 2021-09-14 中国铁道科学研究院集团有限公司金属及化学研究所 Welding production method of bainite steel rail

Also Published As

Publication number Publication date
JP3254051B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
US5382307A (en) Process for manufacturing high-strength bainitic steel rails with excellent rolling-contact fatigue resistance
KR100202251B1 (en) Pearite rail of high abrasion ressitance and method of manufacturing the same
JP3513427B2 (en) Pearlitic rail excellent in wear resistance and internal fatigue damage resistance, and method of manufacturing the same
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
JP3287496B2 (en) Manufacturing method of bainite steel rail with excellent surface damage resistance
JPH11152520A (en) Production of high strength bainite rail excellent in surface damage resistance and wear resistance
JP4736790B2 (en) High-strength pearlite rail and manufacturing method thereof
JPH10195601A (en) Pearlitic steel rail excellent in wear resistance and internal fatigue fracture resistance and manufacture therefor
JPH0734133A (en) Production of high-strength bainite steel rail having excellent surface damage resistance
JPH08246101A (en) Pearlitic rail excellent in wear resistance and damage resistance and its production
JP3631712B2 (en) Heat-treated pearlitic rail with excellent surface damage resistance and toughness, and its manufacturing method
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
JP3063543B2 (en) High-strength rail excellent in compatibility with wheels and method of manufacturing the same
JPH09111352A (en) Production of pearlitic rail excellent in wear resistance
EP3821040A1 (en) Track part made of a hypereutectoid steel
JP2002363698A (en) Rail having excellent rolling fatigue damage resistance and wear resistance, and production method therefor
JP2002069585A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacturing method
JP3169741B2 (en) Manufacturing method of bainite steel rail with excellent surface damage resistance
JP3522613B2 (en) Bainitic rails with excellent rolling fatigue damage resistance, internal fatigue damage resistance, and welded joint characteristics, and manufacturing methods thereof
JP2620369B2 (en) Rails with excellent rolling fatigue resistance
JP2000226636A (en) Pearlitic rail excellent in wear resistance and inside fatigue damage resistance and its production
JPH06248347A (en) Production of high strength rail having bainitic structure and excellent in surface damaging resistance
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JP2000226637A (en) Pearlitic rail excellent in wear resistance and inside fatigue damage resistance and its production
JP2002363697A (en) Rail having excellent rolling fatigue damage resistance and fracture resistance, and production method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

EXPY Cancellation because of completion of term