JPH0734108A - Operating method for blast furnace - Google Patents

Operating method for blast furnace

Info

Publication number
JPH0734108A
JPH0734108A JP19783793A JP19783793A JPH0734108A JP H0734108 A JPH0734108 A JP H0734108A JP 19783793 A JP19783793 A JP 19783793A JP 19783793 A JP19783793 A JP 19783793A JP H0734108 A JPH0734108 A JP H0734108A
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
tuyere
pipe
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19783793A
Other languages
Japanese (ja)
Inventor
Takayuki Umezaki
孝之 梅崎
Akinobu Ogawa
明伸 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19783793A priority Critical patent/JPH0734108A/en
Publication of JPH0734108A publication Critical patent/JPH0734108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the failure of tuyeres, Keuhlkastes, etc., in blast furnace operation for blowing pulverized coal from the tuyeres. CONSTITUTION:A nozzle for blowing the pulverized coal into a blow pipe successively connected to the blast tuyere of the blast furnace is formed of double pipes to enclose the pulverized coal injected from the inside pipe of the double pipes by steam injected from the outside pipe and to blow the pulverized coal into the furnace, by which the combustion rate of the pulverized coal is regulated and the combustion peak point of the pulverized coal is moved to a furnace core side and, therefore, the thermal influence exerted on the part near the tuyere is lessened and the failure of the tuyeres, Keuhlkastes, etc., is prevented even in the high pulverized coal ratio operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉へ微粉炭を吹込
む高炉操業方法において、微粉炭の燃焼ピークポイント
を炉芯側へ移動させることによって送風羽口、キリカス
等の破損を防止し操業の安定化をはかる高炉操業方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace in which pulverized coal is blown into a blast furnace, by moving the combustion peak point of the pulverized coal to the core side of the blast furnace to prevent damage to the blast tuyere, dust, etc. The present invention relates to a method for operating a blast furnace to stabilize the

【0002】[0002]

【従来の技術】近年、高炉技術の発展により羽口から高
炉内へ補助燃料として重油が吹込まれるようになり、さ
らにその後のエネルギー事情を反映して、経済的観点か
ら重油に代えて安価な微粉炭を高炉に吹込む方法が実用
化されている。
2. Description of the Related Art In recent years, due to the development of blast furnace technology, heavy oil has been blown from the tuyere into the blast furnace as an auxiliary fuel, and further reflecting the energy situation thereafter, it is economical and economical to replace heavy oil. A method of blowing pulverized coal into a blast furnace has been put into practical use.

【0003】微粉炭を送風羽口から炉内へ吹込む方法と
しては、図3に示すごとく、高炉1の送風羽口2に連接
された熱風吹込用ブローパイプ3の壁を貫通して微粉炭
吹込用ノズル4を該ブローパイプ内に突出させ、ブロー
パイプ3内を流れる熱風と共に羽口2から炉内へ吹込む
方法が一般的である。
As a method of blowing pulverized coal into the furnace from the blast tuyere, as shown in FIG. 3, the pulverized coal is passed through the wall of the hot-air blowing blow pipe 3 connected to the blast tuyere 2 of the blast furnace 1. In general, the blowing nozzle 4 is projected into the blow pipe and blown into the furnace from the tuyere 2 together with the hot air flowing in the blow pipe 3.

【0004】この微粉炭吹込み方法における微粉炭吹込
用ノズルとしては、一般に単管が用いられていたが、単
管の場合はブローパイプ3内へ突出する当該ノズルが、
ブローパイプ内を通る高温の熱風によって加熱されると
ともに、ノズルから噴出する微粉炭の燃焼による熱や炉
内からの輻射熱を受けて溶損の進行が著しくなるため、
最近では二重管で構成した冷却構造の微粉炭吹込ノズル
が採用されている。
A single pipe was generally used as the pulverized coal injection nozzle in this pulverized coal injection method, but in the case of a single pipe, the nozzle protruding into the blow pipe 3 is
While being heated by the high-temperature hot air that passes through the blow pipe, the progress of erosion becomes remarkable due to the heat of combustion of pulverized coal ejected from the nozzle and the radiant heat from the furnace,
Recently, a pulverized coal injection nozzle with a double-tube cooling structure has been adopted.

【0005】二重管構造の微粉炭吹込ノズルは、図4に
示すごとく、内管4−1から微粉炭を、外管4−2から
酸素、空気、窒素、炭酸ガス等の冷却媒体を噴射させる
構造となったものが知られている(特開昭58−171
508号公報、特開昭62−142706号公報等参
照)。このような二重管構造の吹込ノズルの場合は、外
管を通る冷却媒体の冷却効果によって該ノズルの溶損の
進行が抑制され、単管に比べ寿命が延びるという利点が
ある。
As shown in FIG. 4, the pulverized coal blowing nozzle having a double pipe structure injects pulverized coal from an inner pipe 4-1 and a cooling medium such as oxygen, air, nitrogen and carbon dioxide gas from an outer pipe 4-2. It is known that the structure is made to be (JP-A-58-171).
508, JP-A-62-142706, etc.). In the case of such a double-tube blowing nozzle, there is an advantage that the progress of melting loss of the nozzle is suppressed by the cooling effect of the cooling medium passing through the outer tube, and the life is extended as compared with the single tube.

【0006】[0006]

【発明が解決しようとする課題】しかるに、高微粉炭比
操業の高炉の場合、微粉炭吹込ノズルが単管、二重管の
いずれであっても、ブローパイプに吹込まれた微粉炭が
燃焼することにより、羽口およびレースウェイ(羽口前
燃焼帯)根部でのガスボリュームが増大する結果、送風
圧力の増大を招き、レースウェイ深度が低下するととも
にレースウェイ根部が肥大化する。さらに、微粉炭の燃
焼はコークスと比較して被表面積が大きいために燃焼速
度が速く、かつブローパイプ内から燃焼するために燃焼
のピークポイントが炉壁寄りになる。したがって、高微
粉炭比操業の高炉においては、多量の微粉炭燃焼による
羽口2、キリカス5部への熱負担が増大し、破損等の問
題を生じている。
However, in the case of a blast furnace operating at a high pulverized coal ratio, the pulverized coal blown into the blow pipe burns regardless of whether the pulverized coal injection nozzle is a single pipe or a double pipe. As a result, the gas volume at the tuyere and the root of the raceway (combustion zone in front of the tuyere) increases, resulting in an increase in blast pressure, which reduces the raceway depth and enlarges the raceway root. Furthermore, the combustion of pulverized coal has a large surface area compared to coke, so the combustion speed is high, and the combustion peak point is closer to the furnace wall because it is burned from inside the blow pipe. Therefore, in a blast furnace with a high pulverized coal ratio operation, a large amount of pulverized coal combustion causes an increase in heat load on the tuyere 2 and the chiricus 5 portion, causing problems such as damage.

【0007】この発明は、このような問題点に鑑みなさ
れたものであり、高炉内で多量の微粉炭の燃焼を可能と
するとともに、羽口、キリカス部の保護をはかる高炉操
業方法を提案しようとするものである。
The present invention has been made in view of the above problems, and proposes a blast furnace operating method capable of burning a large amount of pulverized coal in the blast furnace and protecting the tuyere and the chiricus portion. It is what

【0008】[0008]

【課題を解決するための手段】この発明は、二重管構造
のノズルを用いて微粉炭を吹込む高炉操業方法におい
て、微粉炭吹込ノズルの内管より微粉炭を、外管より水
蒸気を噴射させることにより、微粉炭の燃焼ピークポイ
ントを炉芯側へ移動させることを要旨とするものであ
る。
The present invention, in a blast furnace operating method for blowing pulverized coal using a double tube structure nozzle, injects pulverized coal from an inner tube of a pulverized coal injection nozzle and steam from an outer tube. The purpose of this is to move the combustion peak point of pulverized coal to the core side.

【0009】[0009]

【作用】二重管構造の微粉炭吹込ノズルにおいて、内管
より微粉炭を噴射し、外管より水蒸気を噴射した場合、
内管より噴射する微粉炭は外管より噴射する水蒸気によ
り囲繞されながら炉内へ吹込まれる。その結果、水蒸気
により微粉炭の燃焼速度が抑制されることになり、微粉
炭の燃焼ピークポイントが炉芯方向に移行する。この燃
焼ピークポイントの移行により、レースウェイ(羽口前
燃焼帯)根部の肥大が抑制されるとともにレースウェイ
深度が増大し、羽口近傍への熱負荷が低減する結果、羽
口、キリカス等の破損が防止される。
[Function] In the pulverized coal injection nozzle having a double pipe structure, when pulverized coal is injected from the inner pipe and steam is injected from the outer pipe,
The pulverized coal injected from the inner pipe is blown into the furnace while being surrounded by the steam injected from the outer pipe. As a result, the combustion speed of the pulverized coal is suppressed by the steam, and the combustion peak point of the pulverized coal shifts toward the furnace core. This shift of the combustion peak point suppresses the enlargement of the root part of the raceway (combustion zone in front of the tuyere), increases the raceway depth, and reduces the heat load in the vicinity of the tuyere. Damage is prevented.

【0010】この発明において、二重管ノズルの外管よ
り吹込む流体を水蒸気に限定したのは、水蒸気以外の酸
素、空気等の冷却媒体では、ノズル自体の冷却効果は得
られても、当該ノズルより吹込まれる微粉炭の燃焼速度
を抑制することができないため微粉炭の燃焼ピークポイ
ントを炉芯側に移動させることができないのに対し、水
蒸気の場合は微粉炭の燃焼速度抑制効果とノズル冷却効
果を同時に得ることができるためである。
In the present invention, the fluid blown from the outer tube of the double-tube nozzle is limited to water vapor, even if the cooling effect of the nozzle itself is obtained with a cooling medium other than water vapor, such as oxygen or air. Since the combustion peak point of pulverized coal cannot be moved to the core side because the combustion speed of pulverized coal blown from the nozzle cannot be suppressed, in the case of steam, the combustion velocity suppression effect of pulverized coal and nozzle This is because the cooling effect can be obtained at the same time.

【0011】[0011]

【実施例】図1はこの発明方法を実施するための装置構
成例を示す概略図で、6は微粉炭ホッパー、7は水蒸気
供給系、8は流量計、9は流量調節弁、10は遮断弁、
11は高炉計器室、Cは微粉炭、Sは水蒸気である。
FIG. 1 is a schematic view showing an example of the construction of an apparatus for carrying out the method of the present invention. 6 is a pulverized coal hopper, 7 is a steam supply system, 8 is a flow meter, 9 is a flow control valve, and 10 is shut off. valve,
11 is a blast furnace instrument room, C is pulverized coal, and S is steam.

【0012】すなわち、微粉炭ホッパー6に貯えられた
微粉炭Cは、キャリアガスにて気体輸送され、ブローパ
イプ3の側面を貫通して傾斜設置された二重管構造の微
粉炭吹込ノズル4からブローパイプ3内に噴出し炉内に
吹込まれる。一方、水蒸気はSは、水蒸気供給系7より
流量計8、流量調節弁9および遮断弁10を介して微粉
炭吹込ノズル4の外管に導入され、ノズル先端より噴出
すると同時に該ノズルの内管より噴射する微粉炭Cを囲
繞しながら炉内に吹込まれる。なお、流量計8、流量調
節弁9および遮断弁10は高炉計器室11にて操作さ
れ、微粉炭吹込量に対する水蒸気の流量を所定値に制御
して微粉炭吹込ノズル4に供給されるようになってい
る。
That is, the pulverized coal C stored in the pulverized coal hopper 6 is gas-transported by the carrier gas, and passes through the side surface of the blow pipe 3 from the pulverized coal injection nozzle 4 of the double pipe structure which is installed obliquely. It is blown into the blow pipe 3 and blown into the furnace. On the other hand, S is introduced into the outer tube of the pulverized coal blowing nozzle 4 from the steam supply system 7 through the flow meter 8, the flow rate control valve 9 and the shutoff valve 10, and S is ejected from the nozzle tip and at the same time the inner tube of the nozzle is injected. It is blown into the furnace while surrounding the pulverized coal C to be sprayed. The flow meter 8, the flow rate control valve 9 and the shutoff valve 10 are operated in the blast furnace instrument chamber 11 so that the flow rate of steam with respect to the pulverized coal injection amount is controlled to a predetermined value and supplied to the pulverized coal injection nozzle 4. Has become.

【0013】上記のごとく、二重管構造の微粉炭吹込ノ
ズル4から吹込まれる微粉炭Cは、ブローパイプ3内に
噴出すると同時に水蒸気Sにより囲繞されながら炉内へ
吹込まれるので、水蒸気Sにより微粉炭の燃焼速度が抑
制され微粉炭の燃焼ピークポイントが炉芯側に移動す
る。この燃焼ピークポイントの炉芯側への移動によりレ
ースウェイ深度が増大し、羽口2近傍への熱負荷が低減
され、羽口2およびキリカス5等の羽口付近設備の破損
が防止される。
As described above, since the pulverized coal C blown from the pulverized coal blowing nozzle 4 having the double pipe structure is jetted into the blow pipe 3 and at the same time it is blown into the furnace while being surrounded by the steam S, the steam S As a result, the combustion speed of the pulverized coal is suppressed and the combustion peak point of the pulverized coal moves to the core side. The movement of this combustion peak point toward the core side increases the raceway depth, reduces the heat load in the vicinity of the tuyere 2, and prevents damage to the tuyere 2 and the equipment near the tuyere 5 and the like.

【0014】実施例1 炉内容積1850mの高炉にこの発明方法を適用し、
表1に示す操業条件で微粉炭(灰分11.7%)を水蒸
気と共に吹込んだ場合の羽口破損状況と微粉炭比の推移
を、冷却媒体にNを用いた従来法と比較して図2に示
す。図2の結果より明らかなごとく、冷却媒体にN
用いた従来法では特に高微粉炭比操業時に羽口の破損が
多く発生し、キリカスも損傷されたのに対し、本発明法
では高微粉炭比操業においても羽口、キリカスの破損を
完全に防止することができた。
Example 1 The method of the present invention was applied to a blast furnace having an internal volume of 1850 m 3 .
Comparison of the tuyere damage situation and changes in the pulverized coal ratio when pulverized coal (ash content 11.7%) was blown together with steam under the operating conditions shown in Table 1 compared with the conventional method using N 2 as a cooling medium. As shown in FIG. As is clear from the results of FIG. 2, in the conventional method using N 2 as the cooling medium, the tuyere was often damaged at the time of operation with a high pulverized coal ratio, and the chip was also damaged. Even in the pulverized coal ratio operation, it was possible to completely prevent damage to the tuyere and the dust.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上説明したごとく、この発明によれ
ば、微粉炭の燃焼ピークポイントを炉芯側へ移動させる
ことができるので、微粉炭吹込みによる羽口、キリカス
等羽口近傍の設備に対する熱影響が大幅に軽減され、羽
口、キリカスの破損を防止できる結果、高炉の安定操業
に多大な効果を奏するものである。
As described above, according to the present invention, since the combustion peak point of pulverized coal can be moved to the core side, it is possible to inject the pulverized coal into the tuyere, the dust and the like near the tuyere. The effect of heat is greatly reduced, and the tuyere and the cuts can be prevented from being damaged, resulting in a great effect on the stable operation of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施するための装置構成例を示
す概略図である。
FIG. 1 is a schematic diagram showing an example of a device configuration for carrying out the method of the present invention.

【図2】この発明の実施例1における高炉羽口の破損状
況と微粉炭比の推移を従来法と比較して示す図である。
FIG. 2 is a diagram showing the state of damage to the tuyere of the blast furnace and the change in the pulverized coal ratio in Example 1 of the present invention in comparison with the conventional method.

【図3】従来の微粉炭吹込方法を示す概略図である。FIG. 3 is a schematic view showing a conventional pulverized coal blowing method.

【図4】二重管構造の微粉炭吹込用ノズルの一例を一部
破断して示す拡大側面図である。
FIG. 4 is an enlarged side view showing an example of a pulverized coal blowing nozzle having a double pipe structure with a part thereof cut away.

【符号の説明】 1 高炉 2 送風羽口 3 ブローパイプ 4 微粉炭吹込用ノズル 4−1 内管 4−2 外管 5 キリカス 6 微粉炭ホッパー 7 水蒸気供給系 8 流量計 9 流量調節弁 10 遮断弁 11 高炉計器室 C 微粉炭 S 水蒸気である。[Explanation of symbols] 1 Blast furnace 2 Blast tuyere 3 Blow pipe 4 Pulverized coal injection nozzle 4-1 Inner pipe 4-2 Outer pipe 5 Kirikasu 6 Pulverized coal hopper 7 Steam supply system 8 Flowmeter 9 Flow control valve 10 Shutoff valve 11 Blast furnace instrument room C Pulverized coal S S Steam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送風羽口より熱風と共に微粉炭を吹込む
高炉操業方法において、ブローパイプ内に微粉炭を吹込
むノズルを二重管とし、内管より微粉炭を、外管より水
蒸気を噴射させることにより、微粉炭の燃焼ピークポイ
ントを炉芯側へ移動させることを特徴とする高炉操業方
法。
1. A blast furnace operating method in which pulverized coal is blown together with hot air from a blowing tuyere, a double pipe is used as a nozzle for blowing pulverized coal into a blow pipe, and pulverized coal is injected from an inner pipe and steam is ejected from an outer pipe. The blast furnace operating method is characterized in that the combustion peak point of pulverized coal is moved to the core side by doing so.
JP19783793A 1993-07-15 1993-07-15 Operating method for blast furnace Pending JPH0734108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19783793A JPH0734108A (en) 1993-07-15 1993-07-15 Operating method for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19783793A JPH0734108A (en) 1993-07-15 1993-07-15 Operating method for blast furnace

Publications (1)

Publication Number Publication Date
JPH0734108A true JPH0734108A (en) 1995-02-03

Family

ID=16381171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19783793A Pending JPH0734108A (en) 1993-07-15 1993-07-15 Operating method for blast furnace

Country Status (1)

Country Link
JP (1) JPH0734108A (en)

Similar Documents

Publication Publication Date Title
EP0631090B1 (en) Controlled flame fuel jet combustion
JP5204756B2 (en) Fuel lance used in gas turbine equipment and method for operating the fuel lance
CN102305415B (en) Plasma oil-free ignition system in oxygen-enriched environments
JP2011075175A (en) Oxygen burning boiler plant
JP4992235B2 (en) Method and apparatus for injecting reducing material into blast furnace
JPH0734108A (en) Operating method for blast furnace
JP4292926B2 (en) Tubular flame burner
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
US20100288474A1 (en) Method and system for sealing an annulus
JPH0215105A (en) Method for blowing fine powdered coal in blast furnace
WO2022270027A1 (en) Gaseous reducing material blowing method and blast furnace tuyere
JP5044317B2 (en) Combustion chamber and combustion method for waste gasification and melting equipment
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JP2963422B2 (en) Pulverized coal burner for blast furnace operation
JPH01139915A (en) Control method of slurry burner
JPH09143520A (en) Method for injecting pulverized fine coal into blast furnace
JP6504129B2 (en) Blast furnace operation method
JPH09256012A (en) Method for blowing pulverized fine coal into blast furnace and pipe for blowing pulverized fine coal
KR200270460Y1 (en) An Oxygen Enhanced Burner of Multi-stage
JP2004093118A (en) Tubular flame burner
JP2004091922A (en) Steel heating furnace
JP3059311B2 (en) Air-cooled fluidized bed combustion device
JP3255683B2 (en) Combustion control device
JPH11209807A (en) Method for injecting pulverized fine coal from tuyere in blast furnace and injecting lance
JPH1053804A (en) Burner for blowing pulverized fine coal into blast furnace