JPH07337080A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH07337080A
JPH07337080A JP6128522A JP12852294A JPH07337080A JP H07337080 A JPH07337080 A JP H07337080A JP 6128522 A JP6128522 A JP 6128522A JP 12852294 A JP12852294 A JP 12852294A JP H07337080 A JPH07337080 A JP H07337080A
Authority
JP
Japan
Prior art keywords
fan motor
fan
magnetic pole
rotation
position detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6128522A
Other languages
Japanese (ja)
Inventor
Masakazu Ishikawa
雅一 石川
Toru Kitayama
亨 北山
Toru Inoue
井上  徹
Michihisa Arakawa
道久 荒川
Satoshi Ono
智 小野
Hideki Terauchi
英樹 寺内
Toyomitsu Wakui
豊光 和久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6128522A priority Critical patent/JPH07337080A/en
Publication of JPH07337080A publication Critical patent/JPH07337080A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To prevent step-out and reverse rotation due to fluctuation torque being applied to a fan motor at the time of starting caused by disturbance, e.g. wind, by detecting rotation of the fan motor, along with the rotational direction thereof, prior to start thereof and starting the fan motor in a corresponding mode. CONSTITUTION:When a fan motor 4 is rotated by wind flowing thereto after receiving a start command externally, a counter electromotive force is generated therefrom and fed through a filter circuit 9 to a position detection circuit 12 which delivers a rotor pole position detection signal. The rotor pole position detection signal is detected for a predetermined time at an r.p.m. setting circuit 11. A decision is then made whether the fan motor is rotating substantially and if it is rotating, a decision is made whether the fan motor is rotating forward or not before the fan motor is started correspondingly. This constitution prevents step-out and reverse rotation of the motor 4 due to fluctuation of torque being applied thereto at the time of starting caused by disturbance, e.g. wind, thus starting the fan motor 4 stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,空気調和機に係り、特
に室外機、あるいは、室内機に備えられたファンを駆動
するモータの制御に係り、モータの無通電時に風の影響
でモータが正回転・逆回転している状態又は停止してい
る状態の夫々に適宜対応した起動を可能としたブラシレ
スモータの起動制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to the control of a motor for driving a fan provided in an outdoor unit or an indoor unit. The present invention relates to start-up control of a brushless motor, which enables start-up corresponding to each of a normal rotation / reverse rotation state or a stopped state.

【0002】[0002]

【従来の技術】従来から空気調和機の室外機、あるい
は、室内機に搭載するファンモ−タとしては誘導電動機
が一般に使用されていた。また、ブラシレスモータを使
用しているファンモ−タも使用されているがホ−ル素子
によってロ−タ位置を検出するものである。
2. Description of the Related Art Conventionally, an induction motor has been generally used as a fan motor mounted on an outdoor unit or an indoor unit of an air conditioner. A fan motor using a brushless motor is also used, but the rotor position is detected by a hall element.

【0003】またセンサレスのブラシレスモ−タは特公
昭55−26793号記載のように以下のように実施さ
れていた。ブラシレスモ−タは種々の起動方法が知られ
ており、これら種々の起動方法の共通点はいずれもロ−
タの磁極の位置を検出して、この信号を用いてステ−タ
巻線の電流を適宜切り換えて回転トルクを発生させるブ
ラシレス運転を行なうものである。
A sensorless brushless motor has been implemented as described in Japanese Patent Publication No. 55-26793. Brushless motors are known to have various starting methods, and the common points of these various starting methods are all
The position of the magnetic pole of the rotor is detected, and the brushless operation of generating a rotational torque by appropriately switching the current of the stator winding by using this signal is performed.

【0004】ロ−タ磁極の位置検出の手段としては2つ
の方法があり第一の方法は、ホ−ル素子あるいは発振コ
イル等を用いるもので、これらの方式はロ−タが停止し
ていてもロ−タ磁極位置が検出できるものであるから、
部品点数は多いが容易にモ−タを起動させることができ
る。
There are two methods for detecting the position of the rotor magnetic pole. The first method uses a hall element or an oscillating coil. In these methods, the rotor is stopped. Also, since the rotor magnetic pole position can be detected,
Although the number of parts is large, the motor can be started easily.

【0005】第二の方法はロ−タ磁極がステ−タ巻線に
誘起する電圧でロ−タ磁極位置を検出して、このロ−タ
磁極位置に応じてステ−タ巻線の電流を適宜切り換えて
起動するもので、この方式はロ−タが停止している時は
ステ−タ巻線に誘起電圧が発生しないので、ロ−タ磁極
位置を検出することができない。従って、モ−タを起動
させることができず、モ−タを起動させる何らかの手段
が必要である。何らかの手段でモ−タが起動しある所定
の速度まで加速されれば、その後はステ−タ巻線の誘起
電圧でロ−タ磁極の位置を検出して、このロ−タ磁極位
置に応じてステ−タ巻線の電流を適宜切り換える運転
(ブラシレス運転)は続行される。
The second method is to detect the rotor magnetic pole position by the voltage induced by the rotor magnetic pole in the stator winding, and to determine the current in the stator winding according to the rotor magnetic pole position. The system is switched appropriately and started up. In this system, no induced voltage is generated in the stator winding when the rotor is stopped, so that the rotor magnetic pole position cannot be detected. Therefore, the motor cannot be activated, and some means for activating the motor is required. If the motor is started by some means and accelerated to a certain speed, then the position of the rotor magnetic pole is detected by the induced voltage in the stator winding, and the position of the rotor magnetic pole is detected according to this rotor magnetic pole position. The operation of appropriately switching the current of the stator winding (brushless operation) is continued.

【0006】以下に示す駆動方法は第二の方法に属する
もので、駆動方法理解のため一般的なブラシレスモ−タ
の駆動回路の例を図11に示す。
The following drive method belongs to the second method, and an example of a drive circuit of a general brushless motor is shown in FIG. 11 for understanding the drive method.

【0007】図11において、WA、WB、WCはY結線
3相ステ−タ巻線であり、巻線の他端は各々パワ−トラ
ンジスタTA、TB、TCのコレクタの接続される。これ
らステ−タ巻線WA、WB、WCとパワ−トランジスタT
A、TB、TCとの接続点には、各組2個ずつのタイオ−
ドDが接続点から流入する電流を阻止する方向に接続さ
れており、このダイオ−ドDの他端は他相に接続されて
いるダイオ−ドの他端に結合されて各々2個のダイオ−
ドで成る3組のダイオ−ドペアが作られている。そし
て、各ダイオ−ドペアは各々直列抵抗R1、R2、R3を
通して、ステ−タ巻線の中性点に接続されている。A、
B、Cは前記抵抗R1、R2、R3に流れる電圧を入力す
るシュミット回路である。
In FIG. 11, WA, WB, and WC are Y-connection three-phase stator windings, and the other ends of the windings are connected to the collectors of power transistors TA, TB, and TC, respectively. These stator windings WA, WB, WC and power transistor T
At each connection point with A, TB, TC, two pairs of each
The diode D is connected in a direction to block the current flowing from the connection point, and the other end of this diode D is connected to the other end of the diode connected to the other phase to form two diodes each. −
Three pairs of diodes are made. Each diode pair is connected to the neutral point of the stator winding through series resistors R1, R2 and R3. A,
B and C are Schmitt circuits for inputting the voltage flowing through the resistors R1, R2 and R3.

【0008】シュミト回路A、B、Cの出力は、そのシ
ュミト回路A、B、Cの入力に接続されているダイオ−
ドペアがつながれていない相のパワ−トランジスタT
A、TB、TCをドライブするように接続されている。
The outputs of the Schmitt circuits A, B and C are connected to the inputs of the Schmitt circuits A, B and C.
The power transistor T of the phase in which the pair is not connected.
Connected to drive A, TB, TC.

【0009】いま何らかの手段によってロ−タ磁石が回
転すると、ステ−タ巻線WA、WB、WCには誘起電圧E
A、EB、ECが発生する。この誘起電圧波形を図12に
示す。誘起電圧の極性は、図11のステ−タ巻線WAに
示した極性、すなわち電源から流入する電流を妨げる方
向の誘起電圧を+であると規定する。誘起電圧が+の時
電流が流入するとトルクが発生する。
When the rotor magnet is rotated by some means, the induced voltage E is applied to the stator windings WA, WB and WC.
A, EB and EC occur. This induced voltage waveform is shown in FIG. The polarity of the induced voltage defines the polarity shown in the stator winding WA in FIG. 11, that is, the induced voltage in the direction of hindering the current flowing from the power source to be +. When the induced voltage is + and a current flows in, torque is generated.

【0010】図11の抵抗R1の両端に表れる電圧は、
ステ−タ巻線WB、WCの誘起電圧EB、ECが共に−であ
るときのみ零となることは理解されよう。誘起電圧E
B、ECのいずれか或いは双方が+であれば、その電圧は
ダイオ−ドの順方向であるから抵抗R1の両端に図示極
性の電圧が発生する。
The voltage appearing across the resistor R1 in FIG.
It will be understood that it is zero only when the induced voltages EB and EC of the stator windings WB and WC are both negative. Induced voltage E
If either or both of B and EC are positive, the voltage is in the forward direction of the diode, so that the voltage of the polarity shown is generated across the resistor R1.

【0011】抵抗R1の両端に図示極性の電圧が表れて
いるときはシュミト回路AのトランジスタT1は、O
N、トランジスタT2はOFFである。抵抗R1の両端の
電圧が零となったときのみトランジスタT1がOFF、
トランジスタT2がONとなる。トランジスタT2がON
すると、パワ−トランジスタTA、のベ−ス電流が流れ
るので、パワ−トランジスタTAはONしてA相は通電
する。
When a voltage of the indicated polarity appears across the resistor R1, the transistor T1 of the Schmitt circuit A turns on.
N, the transistor T2 is OFF. The transistor T1 is turned off only when the voltage across the resistor R1 becomes zero,
The transistor T2 is turned on. Transistor T2 is ON
Then, the base current of the power transistor TA flows, so that the power transistor TA is turned on and the phase A is energized.

【0012】すなわちA相のステ−タ巻線WAが通電す
るのは誘起電圧EB、ECが共に−である図12の時間t
1 から時間t2 の間、すなわち電気角で60°の間であ
る。この間、誘起電圧EAは+であるので通電によって
トルクが発生する。
That is, the A-phase stator winding WA is energized when the induced voltages EB and EC are both negative at time t in FIG.
Between 1 and time t 2 , ie between 60 electrical degrees. During this time, since the induced voltage EA is +, torque is generated by energization.

【0013】同様にステ−タ巻線WBは時間t3 から時
間t4 の間通電し、ステ−タ巻線WCは時間t5 から時
間t6 の間通電しトルクを発生して回転を続ける。
Similarly, the stator winding WB is energized from time t 3 to time t 4 , and the stator winding WC is energized from time t 5 to time t 6 to generate torque and continue rotation. .

【0014】図11の回路では、各相の通電期間は電気
角60°であるが、通電期間を更にひろげるべく改良し
た回路を図13に示す。図13では、電源電圧を分圧す
る抵抗R4、R5によって、シュミット回路A、B、Cに
バイアス電圧V1がかけられている。
In the circuit of FIG. 11, the energization period of each phase is an electrical angle of 60 °, but FIG. 13 shows a circuit improved so as to further expand the energization period. In FIG. 13, a bias voltage V1 is applied to the Schmitt circuits A, B, and C by resistors R4 and R5 that divide the power supply voltage.

【0015】図13においては、抵抗R1の両端に電圧
が表れても、その電圧がV1より小さければ、トランジ
スタT1のベ−ス電位はエミッタ電位より低くなるの
で、トランジスタT1はOFFし、したがってトランジ
スタT2はONしパワ−トランジスタTAはONする。こ
のバイアス電圧の働きで、各相の導通幅は図11の場合
にくらべ増加する。図14に示すように、A相のステ−
タ巻線WAが導通するのは、誘起電圧EB、ECが共にバ
イアス電圧V1より低い時間、すなわち時間t1 から時
間t2 の間である。同時に、B相のステ−タ巻線WBが
導通するのは時間t3から時間t4 の間、C相のステ−
タ巻線WCが導通するのは時間t5 から時間t6 の間で
ある。
In FIG. 13, even if a voltage appears across the resistor R1, if the voltage is smaller than V1, the base potential of the transistor T1 becomes lower than the emitter potential, so that the transistor T1 is turned off and therefore the transistor T1 is turned off. T2 is turned on and the power transistor TA is turned on. Due to the action of this bias voltage, the conduction width of each phase is increased as compared with the case of FIG. As shown in FIG. 14, the A phase
Else winding WA is conducting, the induced voltage EB, EC is less time than the bias voltage V1 together, that is, between the time t 1 of time t 2. At the same time, the B-phase stator winding WB conducts during the time t 3 to the time t 4 and the C-phase stator winding WB conducts.
The turn-on winding WC conducts between time t 5 and time t 6 .

【0016】導通角はバイアスの加減によって、最大1
20°を越えない範囲で自由に変えられる。図15はモ
−タ起動装置を含む回路である。回路の原理的な構成は
図13と同じである。異なる点は、主電源E1が高圧電
源である場合を想定して、パワ−トランジスタTA、T
B、TC以外のトランジスタは低圧仕様のものが使用でき
るように、シュミット回路A、B、Cとパワ−トランジ
スタTA、TB、TCの結合にフォトカプラPを使用し且
つ、主電源E1とは別の低圧電源E2、E3でパワ−トラ
ンジスタTA、TB、TC以外の回路を給電している。も
ちろん主電源E1が低圧のときは、図13のように主電
源のみで全回路を給電してもよい。シュミット回路A、
B、Cの入力端子にスイッチSA、SBが入っている。
The conduction angle is 1 at maximum depending on the amount of bias.
It can be freely changed within the range of 20 °. FIG. 15 shows a circuit including a motor starting device. The basic configuration of the circuit is the same as in FIG. The difference is that, assuming that the main power supply E1 is a high-voltage power supply, the power transistors TA, T
The transistors other than B and TC use a photo coupler P for coupling the Schmitt circuits A, B and C and the power transistors TA, TB and TC so that transistors of low voltage specifications can be used, and separate from the main power source E1. The low-voltage power supplies E2 and E3 supply power to circuits other than the power transistors TA, TB and TC. Of course, when the main power source E1 is at a low voltage, all the circuits may be powered only by the main power source as shown in FIG. Schmidt circuit A,
Switches SA and SB are included in the input terminals of B and C.

【0017】この回路でモ−タを起動するには、起動準
備が必要である。起動準備が必要な理由は、ロ−タ磁極
をまず所定の位置に位置させるためである。起動準備
は、スイッチSBのみをON→スイッチSAのみをONす
ることで達成される。まず、シュミット回路Bのトラン
ジスタT1はOFF、トランジスタT2はONとなり、上
記回路動作説明の部分で説明したように、パワ−トラン
ジスタTBはONし、B相ステ−タ巻線WBは通電する。
なお、パワ−トランジスタTBがONすると、ステ−タ
巻線WBの両端には電源電圧が表れるので、ダイオ−ド
ロジック回路の働きでシュミット回路A、Bの出力は零
となり、ステ−タ巻線WA、WCは通電されない。
In order to activate the motor with this circuit, it is necessary to prepare for activation. The reason for the preparation for starting is that the rotor magnetic pole is first placed in a predetermined position. The preparation for starting is achieved by turning on only the switch SB and turning on only the switch SA. First, the transistor T1 of the Schmitt circuit B is turned off, the transistor T2 is turned on, the power transistor TB is turned on, and the B-phase stator winding WB is energized, as described in the explanation of the circuit operation.
When the power transistor TB is turned on, the power supply voltage appears at both ends of the stator winding WB, so that the outputs of the Schmitt circuits A and B become zero due to the function of the diode logic circuit, and the starter winding WA. , WC is not energized.

【0018】ロ−タ磁極は、当初任意の位置にあるが、
ステ−タ巻線WBが通電して図16に示すようにステ−
タ巻線WBの施こされた極がN極となると、ロ−タS極
はステ−タ巻線WBの施こされた極に吸引され、図16
の位置に静止する。ただし、当初のロ−タ磁極が図17
の位置にあったとすると、不安定な状態ではあるが、ロ
−タ磁極は動かない。次に、スイッチSBをOFFして
スイッチSAをONすると、ロ−タのS極は図16ある
いは図17のいずれの位置からもステ−タ巻線WAの施
こされた極に吸引されて、図18の位置に移動し停止す
る。以上でロ−タ磁極は所定の位置に位置したことにな
り、起動準備は完了する。
The rotor magnetic pole is initially located at an arbitrary position,
As the stator winding WB is energized, as shown in FIG.
When the pole provided with the stator winding WB becomes the N pole, the S pole of the rotor is attracted to the pole provided with the stator winding WB, and FIG.
Stand still. However, the initial rotor magnetic pole is shown in FIG.
If it is in the position, the rotor magnetic pole does not move although it is in an unstable state. Next, when the switch SB is turned off and the switch SA is turned on, the south pole of the rotor is attracted to the pole provided with the stator winding WA from either position of FIG. 16 or FIG. It moves to the position of FIG. 18 and stops. With the above, the rotor magnetic pole is located at the predetermined position, and the start preparation is completed.

【0019】起動は、スイッチSAをOFF→スイッチ
SBを短時間ONすることにより行われる。ただし、モ
−タの所定回転方向は、A相→B相→C相の順である。
スイッチSBをONすると、ロ−タは図19の矢印の方
向に回転することになる、すなわち所定の方向に回転す
る。この時、ロ−タのS極がステ−タ巻線WBの施こさ
れた極を通り過ぎる以前にスイッチSBをOFFする。
なぜなら、ロ−タのS極がステ−タ巻線WBの施こされ
た極を通り過ぎてもこのステ−タ巻線WBに通電してい
ると、ロータの回転に対してブレ−キとなるからであ
る。
The activation is performed by turning off the switch SA and turning on the switch SB for a short time. However, the predetermined rotation direction of the motor is in the order of A phase → B phase → C phase.
When the switch SB is turned on, the rotor rotates in the direction of the arrow in FIG. 19, that is, it rotates in the predetermined direction. At this time, the switch SB is turned off before the south pole of the rotor passes through the pole of the stator winding WB.
This is because even if the S pole of the rotor passes through the pole on which the stator winding WB is applied, if the stator winding WB is energized, it will cause a brake to the rotation of the rotor. Because.

【0020】次に、ロ−タが所定回転方向に回転したこ
とにより、ステ−タ巻線WA、WB、WCには誘起電圧が
発生し、駆動回路はこの誘起電圧でロ−タ磁極の位置を
検出して、このロ−タ磁極位置に応じてステ−タ巻線の
電流を適宜切り換えるブラシレス運転に入る。
Next, as the rotor rotates in the predetermined rotation direction, an induced voltage is generated in the stator windings WA, WB, WC, and the drive circuit uses this induced voltage to position the rotor magnetic pole. Is detected, and the brushless operation is started in which the current of the stator winding is appropriately switched according to the rotor magnetic pole position.

【0021】以上のとおり、ケ−ス内にロ−タの位置を
検出するホール素子(センサー)を不要としたモ−タを
ファンモ−タに適用した例は見受けられない。しかし、
従来のセンサレスブラシレスモ−タは、その起動時に、
ステ−タのいくつかの相に電流を流してロ−タの磁極位
置を合わせてから、同期運転を行って回転力を与え、そ
の後、所定の大きさの逆起電力を生じる回転数まで加速
して、逆起電力によりロータ磁極の位置を検出し、この
磁極位置に応じてステ−タ巻線の電流を適宜切り換える
ブラシレス運転を行なう。
As described above, there is no example in which the motor without the hall element (sensor) for detecting the position of the rotor in the case is applied to the fan motor. But,
The conventional sensorless brushless motor is
After supplying electric current to some phases of the stator to match the magnetic pole position of the rotor, synchronous operation is performed to give a rotational force, and then the rotational speed is accelerated to a rotational speed that produces a back electromotive force of a predetermined magnitude. Then, the position of the rotor magnetic pole is detected by the back electromotive force, and brushless operation is performed in which the current of the stator winding is appropriately switched according to the magnetic pole position.

【0022】[0022]

【発明が解決しようとする課題】上記従来技術のモータ
を、空気調和機の室外ファンモ−タとして使用した例は
ないが、空気調和機の室外ファンモ−タとして使用した
場合は、モータに通電されていない時にファンに対して
風が吹きつけ、ファンモ−タが運転時の回転方向と逆方
向に回転している場合は勿論のこと、運転時の回転方向
と同じ方向に回転している場合でも、ロ−タの位置決め
を行いファンの回転を止めてから起動を行う必要があ
る。しかしながら、上記従来技術のモータは、起動時
に、ステ−タのいくつかの相に電流を流してロ−タの磁
極位置を合わせるものであり、ロ−タの磁極位置を合わ
せる際にはステータ巻線によって発生する磁界が固定さ
れているため、モータに通電されていない時にファンモ
ータが回転している場合はロ−タの磁極位置を合わせよ
うとしても、ロータ磁極との位置関係によって、吸引力
と反撥力が交互に作用することになり、ファンモ−タの
回転を止めることができない場合がある。風力によって
回転しているファンモ−タを止めることができない場合
は、起動をすることができないばかりか、起動できたと
しても同期運転時に脱調して運転できなくなったり、逆
回転してしまう現象が発生する恐れがある。
Although there is no example in which the above-mentioned conventional motor is used as an outdoor fan motor of an air conditioner, when it is used as an outdoor fan motor of an air conditioner, the motor is energized. Not only when the wind blows against the fan when it is not running and the fan motor is rotating in the opposite direction to the rotating direction during operation, even when rotating in the same direction as the rotating direction during operation. , It is necessary to position the rotor and stop the rotation of the fan before starting. However, the motor of the prior art described above, when starting, applies current to some phases of the stator to match the magnetic pole position of the rotor, and when aligning the magnetic pole position of the rotor, the stator winding is used. Since the magnetic field generated by the lines is fixed, if the fan motor is rotating when the motor is not energized, the magnetic attraction of the rotor will be affected by the positional relationship with the rotor magnetic pole even if the rotor magnetic pole position is adjusted. In some cases, the fan motor cannot be stopped because the repulsive force and the repulsive force act alternately. If the fan motor that is rotating due to wind power cannot be stopped, not only will it not be possible to start it, but even if it can be started, there is a phenomenon that it will not be able to operate due to step out during synchronous operation, or it will rotate in reverse. It may occur.

【0023】[0023]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、圧縮機と、熱交換器と、この熱交換器に
送風するファンと、このファンを駆動するブラシレスフ
ァンモ−タを備えた空気調和機において、ブラシレスフ
ァンモ−タ内のロ−タ磁極の回転によりステ−タ巻線に
誘起する巻線電圧を用いてロ−タ磁極位置を検出する位
置検出回路と、この位置検出回路が検出したロ−タ磁極
位置に応じて上記ステ−タ巻線に通流させる電流を導通
遮断する複数のスイッチング素子とを備え、前記ブラシ
レスファンモ−タのステ−タ巻線に導通開始させる起動
の前に、ファンの回転の有無及び回転している場合の回
転方向を検出し、ファンの回転方向の正回転、逆回転、
若しくは、停止の3つの状態を判定し、これに対応した
モ−ドで起動を行うようにする起動モ−ド選択手段を備
えた空気調和機とする。
To solve the above problems, the present invention provides a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan. In the provided air conditioner, a position detection circuit for detecting the rotor magnetic pole position by using the winding voltage induced in the stator winding by the rotation of the rotor magnetic pole in the brushless fan motor, and this position detection circuit. A plurality of switching elements for conducting and interrupting the current flowing through the stator winding according to the rotor magnetic pole position detected by the circuit are provided, and conduction is started for the stator winding of the brushless fan motor. Before starting, it detects the presence or absence of rotation of the fan and the rotation direction when it is rotating, and rotates the fan forward or backward,
Alternatively, the air conditioner is equipped with a starting mode selecting means for judging three states of stop and starting in a mode corresponding thereto.

【0024】[0024]

【作用】ことによって、空気調和機用ファンモ−タを起
動する際に、ファンに対して風が吹き、その風力によっ
てファンモ−タが回転している状態若しくは停止してい
る状態を、ファンモ−タから発生する逆起電力を検出し
て、実質的に回転しているか否かを判定し、回転してい
る場合はその回転方向を判定して、これに対応した起動
を行なうものである。
As a result, when the fan motor for an air conditioner is started, wind blows on the fan, and the fan motor is rotated by the wind force or stopped. The back electromotive force generated from is detected to determine whether or not it is substantially rotating, and if it is rotating, the rotation direction is determined and the corresponding activation is performed.

【0025】[0025]

【実施例】以下、本発明の一実施例を図2により説明す
る。図2は回路ブロック図であり、商用交流電源を整流
平滑し出力する整流回路1と、周辺回路に電源を供給す
る内部電源回路13と、ファンモ−タ4が回転すること
によって発生する逆起電力を、フィルタ−回路9を通し
てロ−タ磁極位置検出信号として出力する位置検出回路
12と、ロ−タ磁極位置検出信号より実回転数を認識し
外部回路から入力される指令の回転数と比較し電流を制
限することにより回転数を制御する回転数設定回路11
と、回転数設定回路からデュ−ティ−指令回路10を通
して出力されるチョッパ基準信号と三角波発生回路6よ
り出力される三角波信号との比較を行いチョッパ信号出
力するチョッパ回路5と、回転数設定回路11から出力
するドライブ信号とチョッパ信号によりパワ−素子(ス
イッチング素子)3を駆動させるドライブ回路2と、パ
ワ−素子3の保護回路として電流制限回路7と過電流保
護回路8からなるファンモ−タ駆動制御回路において、
外部回路からファンモータの起動指令入力後、ファンに
対して吹く風によりファンモータが回転すると、モータ
から逆起電力が発生してフィルタ−回路9を通り位置検
出回路12に入力され、ロータ磁極位置検出信号が出力
される。このロータ磁極位置検出信号を、回転数設定回
路11において所定時間検出し、例えば、0.4秒間検
出し、図1に示す処理を行う。この図1の処理を図3か
ら図10を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 2 is a circuit block diagram. The counter electromotive force generated by rotating the rectifier circuit 1 for rectifying and smoothing the commercial AC power source and outputting it, the internal power source circuit 13 for supplying power to the peripheral circuits, and the fan motor 4. Is detected through the filter circuit 9 as a rotor magnetic pole position detection signal, and the actual rotational speed is recognized from the rotor magnetic pole position detection signal and compared with the rotational speed of the command input from the external circuit. Rotation speed setting circuit 11 for controlling the rotation speed by limiting the current
And a chopper circuit 5 for comparing the chopper reference signal output from the rotation speed setting circuit through the duty command circuit 10 with the triangular wave signal output from the triangular wave generating circuit 6 and outputting a chopper signal, and a rotation speed setting circuit A fan motor drive including a drive circuit 2 for driving a power element (switching element) 3 by a drive signal and a chopper signal output from 11, and a current limiting circuit 7 and an overcurrent protection circuit 8 as a protection circuit for the power element 3. In the control circuit,
After the fan motor start command is input from the external circuit, when the fan motor is rotated by the wind blown to the fan, a counter electromotive force is generated from the motor and is input to the position detection circuit 12 through the filter circuit 9 to determine the rotor magnetic pole position. The detection signal is output. The rotor magnetic pole position detection signal is detected by the rotation speed setting circuit 11 for a predetermined time, for example, 0.4 seconds, and the processing shown in FIG. 1 is performed. The process of FIG. 1 will be described with reference to FIGS. 3 to 10.

【0026】図3は位置検出回路図、図4は位置検出回
路12のA、D、E、F部の波形を示す図、図5はパワ
−素子(スイッチング素子)3の上ア−ム(Q1、Q2、
Q3)、下ア−ム(Q4、Q5、Q6)と、位置検出回路1
2出力部(VA、VB、VC)の駆動タイミングを示す図
である。
FIG. 3 is a position detection circuit diagram, FIG. 4 is a diagram showing waveforms of A, D, E, and F parts of the position detection circuit 12, and FIG. 5 is an upper arm of the power element (switching element) 3 ( Q1, Q2,
Q3), lower arm (Q4, Q5, Q6) and position detection circuit 1
It is a figure which shows the drive timing of 2 output parts (VA, VB, VC).

【0027】図4に示すF部電圧のような180°幅の
電気角のロータ磁極位置検出信号を1相分として、他の
相についても同様に作成した3相分のロータ磁極位置検
出信号と、あらかじめ回転数設定回路11に設定してあ
るファンモータ運転時の回転方向(正回転)のロータ磁
極位置信号パターン(図示せず)との照合を行い、また
図5に示すロータ位置検出信号(VA、VB、VC)の
G部のような信号の立上りと立下がりの電気角60°幅
の信号が、所定時間(0.4秒間)に何回検出されるか
をカウントし、この回数によりロータの回転数を判定す
る。ロ−タの回転数が94min~1 以上であり、正回転時
のロータ磁極位置検出信号のパターンと一致した場合、
図7に示す正回転時の起動処理を行う。
The rotor magnetic pole position detection signal having an electrical angle of 180 ° width such as the voltage of the F portion shown in FIG. 4 is set as one phase, and the rotor magnetic pole position detection signals for the other three phases are similarly created. , A rotor magnetic pole position signal pattern (not shown) in the rotation direction (normal rotation) during fan motor operation which is set in the rotation speed setting circuit 11 in advance, and the rotor position detection signal (shown in FIG. 5) VA, VB, VC) A signal such as a G portion of a signal such as a rising edge and a falling edge having an electrical angle of 60 ° is counted how many times it is detected within a predetermined time (0.4 seconds). Determine the rotation speed of the rotor. If the rotor speed is 94 min to 1 or more and it matches the rotor magnetic pole position detection signal pattern during normal rotation,
The starting process at the time of forward rotation shown in FIG. 7 is performed.

【0028】上記加速処理とは、上記同期始動時に予め
定められた回転数でファンモータを回転している状態か
ら、前記位置検出回路の出力によるロータ磁極位置に応
じてドライブ信号を出力し、パワー素子をON/OFF
すると共に、電流を徐々に大きくしてロータの回転数を
所定の回転数まで加速する制御である。また、速度制御
とは、目標とする回転数を維持する制御であり、風が吹
き付けた場合、若しくは、熱交換器を通過する通風抵抗
が変化した場合などの外乱が加わった場合に、上記磁極
位置検出信号によって回転数を判定し、目標の回転数に
なるように電流若しくは電圧を増減制御する。
The acceleration processing is to output a drive signal according to the rotor magnetic pole position based on the output of the position detection circuit from the state where the fan motor is rotating at a predetermined rotation number at the time of the synchronous start. ON / OFF the element
At the same time, the current is gradually increased to accelerate the rotation speed of the rotor to a predetermined rotation speed. Further, the speed control is a control for maintaining a target number of revolutions, and when the disturbance is applied such as when the wind is blown or when the ventilation resistance passing through the heat exchanger is changed, The number of revolutions is determined by the position detection signal, and the current or voltage is controlled to increase or decrease so as to reach the target number of revolutions.

【0029】正回転であると回転数設定回路11が判断
したときの処理は、通常の起動方法である位置決め及び
低周波の同期運転を行わずブラシレス運転を行ない、起
動処理を終了し、継続して負荷の大きさに応じて回転数
を制御するブラシレス運転を行う。ブラシレス運転への
切換え時、パワ−素子(スイッチング素子)3をオンさ
せてモータ巻線に電流を通電すると、図3に示すA部の
モータ巻線の端子電圧が急上昇し、逆起電力によりロー
タ磁極位置を検出している位置検出回路12のD部電
圧、E部電圧が位置検出回路12に使用しているコンパ
レータの電源12Vに達するため、E部電圧とD部電圧
の比較ができなくなり、位置検出回路12から出力され
るロータ位置検出信号が乱れる。この乱れたロータ位置
検出信号に対して、モータ巻線に電流の通電を行うと、
ロータ位置に対して回転方向と逆向きにトルクのはたら
く回転磁界を発生させたり、回転方向にトルクのはたら
く回転磁界を発生するため、ロータの回転が安定せず回
転磁界に対してロータの位置が脱調し、回転が停止す
る。
When the rotation speed setting circuit 11 determines that the rotation is normal, the brushless operation is performed without performing the positioning and the low frequency synchronous operation, which are the usual start methods, and the start processing is terminated and continued. Brushless operation is performed by controlling the rotation speed according to the load. When switching to the brushless operation, when the power element (switching element) 3 is turned on and a current is supplied to the motor winding, the terminal voltage of the motor winding in the portion A shown in FIG. Since the D section voltage and the E section voltage of the position detection circuit 12 that detects the magnetic pole position reach the power supply 12V of the comparator used in the position detection circuit 12, the E section voltage and the D section voltage cannot be compared, The rotor position detection signal output from the position detection circuit 12 is disturbed. When a current is applied to the motor winding in response to this disturbed rotor position detection signal,
Since a rotating magnetic field that acts on the rotor in the direction opposite to the rotation direction is generated with respect to the rotor position, or a rotating magnetic field that acts on the torque is generated in the rotating direction, the rotation of the rotor is not stable and the position of the rotor relative to the rotating magnetic field is Step out, rotation stops.

【0030】このため、正回転であると回転数設定回路
11が判断したとき、ロータの磁極位置検出信号により
回転数設定回路11からドライブ回路2を駆動させるド
ライブ信号の出力を行う。また、回転数設定回路11よ
り出力されるデジタル信号をデューティ指令回路にてア
ナログ信号に変換したチョッパ基準信号の初期値を、三
角波発生回路より出力される三角波信号よりも低い電圧
として、チョッパ回路5より出力されるチョッパ信号を
停止させた状態から転流するにしたがってチョッパ基準
信号を上昇させて、チョッパ信号のデューティを制御
し、このチョッパ信号によりドライブ回路2及びパワー
素子(スイッチング素子)3を駆動してモータに通電す
る電流を制限する。これにより、正回転のブラシレス運
転への切換え時は、パワー素子(スイッチング素子)3の
上ア−ム(Q1、Q2、Q3)を駆動させ、下ア−ム(Q
4、Q5、Q6)はチョッパ信号が出力されないため停止
状態となり、モータ巻線には電圧が印加され、電流は位
置検出回路12及びパワー素子(スイッチング素子)3の
ベース電流のみが流れる。
Therefore, when the rotation speed setting circuit 11 determines that the rotation is normal, the rotation speed setting circuit 11 outputs a drive signal for driving the drive circuit 2 in accordance with the rotor magnetic pole position detection signal. In addition, the chopper circuit 5 uses the initial value of the chopper reference signal obtained by converting the digital signal output from the rotation speed setting circuit 11 into an analog signal by the duty command circuit as a voltage lower than the triangular wave signal output from the triangular wave generation circuit. The chopper reference signal is increased as the commutation of the chopper signal output from the stopped state is commutated, the duty of the chopper signal is controlled, and the drive circuit 2 and the power element (switching element) 3 are driven by this chopper signal. To limit the current that flows to the motor. As a result, at the time of switching to the normal rotation brushless operation, the upper arms (Q1, Q2, Q3) of the power element (switching element) 3 are driven and the lower arm (Q
4, Q5, Q6) are stopped because the chopper signal is not output, a voltage is applied to the motor winding, and only the base current of the position detection circuit 12 and the power element (switching element) 3 flows as a current.

【0031】また、この下ア−ム(Q4、Q5、Q6)の
停止状態を位置検出回路12の図4に示すD部,E部電
圧が安定する時間保持し、位置検出回路12D部とE部
電圧の比較ができるようになった時点からチョッパ信号
を出力し、パワー素子(スイッチング素子)3の下アーム
(Q4、Q5、Q6)を駆動してモータ巻線に電流を通電
させる。これにより、正回転時のブラシレス運転への切
換えが安定に行われ、モータをスムーズに指令の回転数
まで加速することができる。
The stop state of the lower arms (Q4, Q5, Q6) is held for a period of time during which the voltage of the D and E portions of the position detection circuit 12 shown in FIG. A chopper signal is output from the time when the partial voltages can be compared, and the lower arm (Q4, Q5, Q6) of the power element (switching element) 3 is driven to supply a current to the motor winding. As a result, the switching to the brushless operation at the time of forward rotation is stably performed, and the motor can be smoothly accelerated to the commanded rotation speed.

【0032】次に、逆回転時について図1を用いて、正
回転時と同様に説明する。正回転時のロータ磁極位置検
出信号パターンと、位置検出回路12より回転数設定回
路11に入力されたロータ磁極位置検出信号とが一致し
ない場合、または、回転数が94min~1 未満のときにフ
ァンモータ運転時の回転方向と逆回転方向のロータ磁極
位置検出信号パターンとの照合を行い、60°幅の信号
よりロータの回転数が43min~1 以上であるか否かの判
断を行う。この回転数が43min~1 以上であり、逆回転
方向のロータ磁極位置検出信号パターンと一致した場合
に、図6に示す逆回転時の起動処理(ブレ−キ、ロ−タ
停止、同期始動の順)を行う。
Next, the reverse rotation will be described with reference to FIG. 1 in the same manner as the normal rotation. When the rotor magnetic pole position detection signal pattern during normal rotation does not match the rotor magnetic pole position detection signal input from the position detection circuit 12 to the rotation speed setting circuit 11, or when the rotation speed is 94 min to less than 1 The rotor magnetic pole position detection signal pattern in the rotation direction during motor operation and the reverse rotation direction is collated, and it is determined from the 60 ° width signal whether or not the number of rotations of the rotor is 43 min to 1 or more. When the number of revolutions is 43 min to 1 or more and coincides with the rotor magnetic pole position detection signal pattern in the reverse rotation direction, the starting process at the time of reverse rotation shown in FIG. 6 (break, rotor stop, synchronous start Order).

【0033】図9に、同期始動時のロ−タ磁極位置と回
転磁界の位相を示し、図10にブレ−キ時のロ−タ磁極
位置と回転磁界の位相を示す。
FIG. 9 shows the rotor magnetic pole position and the phase of the rotating magnetic field at the synchronous start, and FIG. 10 shows the rotor magnetic pole position and the phase of the rotating magnetic field at the time of breaking.

【0034】上記図6に示されるように逆転であると回
転数設定回路11が判断したときの処理を以下に詳述す
る。このとき、回転数設定回路11は同時にロ−タ磁極
位置検出信号によりロータの回転数を判定する。この判
定した回転数に応じて、あらかじめ回転数設定回路11
内部に設定してある減速レートの同期運転パターン(ブ
レ−キパタ−ン)を使用し、同期運転(ブレ−キ動作)
を行う。この同期運転は、回転数の磁極位置に同期する
ように、図6に示す傾斜したインバ−タ電流をモ−タに
印加し、継続して電流を最も大きく、若しくは適宜大き
な電流を印加することにより、減速レートの同期運転を
行うようにする。
The processing when the rotation speed setting circuit 11 determines that the rotation is the reverse rotation as shown in FIG. 6 will be described in detail below. At this time, the rotation speed setting circuit 11 simultaneously determines the rotation speed of the rotor based on the rotor magnetic pole position detection signal. In accordance with the determined rotation speed, the rotation speed setting circuit 11 is preset.
Synchronous operation (break operation) using the synchronous operation pattern (break pattern) of the deceleration rate set internally
I do. In this synchronous operation, the sloping inverter current shown in FIG. 6 is applied to the motor so as to be synchronized with the magnetic pole position of the rotation speed, and the maximum current or a suitably large current is continuously applied. Thus, the synchronous operation of the deceleration rate is performed.

【0035】この減速を始めるとき、図9に示すロータ
磁極の中心と、ステ−タの回転磁界の中心との位相がず
れていても、図10に示すようにロータの磁界にステ−
タの回転磁界と同期しようとする力(同期化力)が作用
し、ロータ磁極の中心と回転磁界の中心が除々に一致す
るように作用し、図9に示す負荷トルクに応じて図9に
示す内部相差角θをほぼ一定に保ちながらロータの回転
を減速させる。この時のモータ巻線電流は、実施例で
は、最大の電流を流し、最大のトルクを発生させている
が、適宜の大きな電流を流せばよいことはことは云うま
でもない。この動作により、起動前に逆転していたファ
ンモ−タの回転を停止させ、正回転方向の同期始動、こ
の始動後、ブラシレス運転に切り換えてモ−タ起動処理
を終了させ、継続して負荷に応じた回転数にするブラシ
レス運転を行う。
When this deceleration is started, even if the center of the rotor magnetic pole shown in FIG. 9 and the center of the rotating magnetic field of the stator are out of phase, as shown in FIG.
A force (synchronizing force) that tries to synchronize with the rotating magnetic field of the rotor acts so that the center of the rotor magnetic pole and the center of the rotating magnetic field gradually coincide with each other. The rotation of the rotor is decelerated while keeping the internal phase difference angle θ shown substantially constant. As for the motor winding current at this time, the maximum current is supplied to generate the maximum torque in the embodiment, but it goes without saying that an appropriate large current may be supplied. By this operation, the rotation of the fan motor, which had been rotating in reverse before starting, was stopped, the motor was started synchronously in the forward rotation direction, and after this start, the brushless operation was switched to end the motor starting process, and the load was continued. Brushless operation is performed at the appropriate rotation speed.

【0036】次に、停止時について図1により説明す
る。逆回転時のロータ磁極位置検出信号のパターンと、
回転数設定回路11に位置検出回路12より入力された
ロータ磁極位置検出信号が一致しない時、また回転数が
43min~1 未満のとき図8に示すモータ巻線2相に電流
を流し、ロータ磁極の中心と回転磁界の中心とを位置決
めしてから、次に同期始動させた後、ブラシレス運転に
切り換えて起動処理を終了し、その後負荷に応じたブラ
シレス運転を行う。
Next, the stoppage will be described with reference to FIG. The pattern of the rotor magnetic pole position detection signal during reverse rotation,
When the rotor magnetic pole position detection signals input from the position detection circuit 12 to the rotation speed setting circuit 11 do not match, or when the rotation speed is 43 min to less than 1 , current is applied to the two phases of the motor winding shown in FIG. After the center of the magnetic field and the center of the rotating magnetic field are positioned and then synchronously started, the brushless operation is switched to end the start-up process, and then the brushless operation according to the load is performed.

【0037】実施例によれば、位置検出回路の出力信号
によって、ファンモ−タの回転方向、または、回転周期
を検出する手段を備えたので、ファンモ−タの起動前の
ファンモ−タの回転情報を得ることが可能である。これ
によって、ファンモ−タの起動前に、通常運転時の回転
方向と反対方向に回転(逆転)しているときには前記ス
イッチング素子をON/OFFし、ファンモ−タを減
速、停止し、その後、通常運転時の回転方向に回転する
ようにスイッチング素子を適宜導通遮断して起動する起
動手段を設けたので、空気調和機のファンの風の吹き出
し方向に対して反対方向に風が吹いた場合でも、ファン
を起動できる効果がある。
According to the embodiment, since the means for detecting the rotation direction or the rotation cycle of the fan motor is provided by the output signal of the position detection circuit, the rotation information of the fan motor before the start of the fan motor is provided. It is possible to obtain As a result, before starting the fan motor, when the fan motor is rotating (reversely rotating) in the direction opposite to the rotating direction during normal operation, the switching element is turned ON / OFF, the fan motor is decelerated and stopped, and then the normal operation is performed. Since the starting means for starting and shutting off the switching element to turn on and off so as to rotate in the rotation direction during operation is provided, even when the wind blows in the direction opposite to the blowing direction of the wind of the fan of the air conditioner, It has the effect of starting the fan.

【0038】また、通常運転時の回転方向と同一方向に
回転しているときには、ファンモ−タを停止することな
く前記位置検出回路の出力信号に応じて順次回転方向に
前記スイッチング素子を適宜導通遮断し、ファンモ−タ
を起動する起動手段を設けたので、空気調和機のファン
の風の吹き出し方向に対して同一方向に風が吹いた場合
でも、ファンを起動できる効果がある。ファンモ−タの
運転中(起動後)に、モ−タに対する負荷が変動してロ
−タが脱調し、ファンモ−タの回転が停止したならば、
再起動動作を行う手段を設けたので、突風が吹いた場合
でも、ファンを起動できる効果がある。
When the motor is rotating in the same direction as the rotating direction during normal operation, the switching elements are appropriately turned off in the rotating direction in accordance with the output signal of the position detection circuit without stopping the fan motor. Since the starting means for starting the fan motor is provided, there is an effect that the fan can be started even when the air blows in the same direction as the air blowing direction of the fan of the air conditioner. If the load on the motor fluctuates, the rotor goes out of step, and the fan motor stops rotating while the fan motor is running (after starting),
Since the means for performing the restart operation is provided, there is an effect that the fan can be started even if a gust of wind blows.

【0039】ファンモ−タの起動前にファンの回転状態
を検出し、適切な起動方式を用いることにより、センサ
−を不要とした位置検出回路12によるブラシレス直流
電動機を空気調和機用ファンモ−タとして使用でき、フ
ァンモ−タの起動を安定に行うことができる。また、こ
のブラシレスファンモ−タ制御回路を使用することによ
り、空気調和機の駆動部品を直流電流、又は直流電圧で
駆動することができ、空気調和機の効率を向上させるこ
とが可能となる。さらに、本実施例のホール素子或いは
発信コイル等を有する位置検出手段を用いることなく、
上記風の影響を考慮したブラシレスファンモータを、空
気調和機に採用することが可能となる。これによって、
直流モータを用いた冷媒圧縮機と組み合わせて、装置全
体を直流電力で安定して運転制御できる空気調和機を提
供することもできる。
By detecting the rotation state of the fan before starting the fan motor and using an appropriate starting method, the brushless DC motor by the position detection circuit 12 that does not require a sensor is used as an air conditioner fan motor. It can be used and the fan motor can be stably started. Further, by using this brushless fan motor control circuit, the driving parts of the air conditioner can be driven with a direct current or a direct voltage, and the efficiency of the air conditioner can be improved. Further, without using the position detecting means having the Hall element or the transmitting coil of this embodiment,
The brushless fan motor in consideration of the influence of the wind can be adopted in the air conditioner. by this,
By combining with a refrigerant compressor using a DC motor, it is possible to provide an air conditioner that can stably control the operation of the entire device with DC power.

【0040】また、空気調和機の運転上、熱交換器の熱
交換に必要十分な風が吹いている場合に、風の風量を利
用して、ファンモータへの通電を行なわないようにする
ことにより、ファンモ−タ及び、空気調和機全体の運転
効率を向上させることが可能となる。尚、上記実施例
は、空気調和機の室外機に採用した場合で説明したが、
室内機にも採用すれば、室外機と室内機を直流電力で制
御できることになり、制御回路が簡略化できると共に安
定して運転制御できる空気調和機を提供できると共にフ
ァンモータの供用による量産効果で原価低減ができる。
Further, in the operation of the air conditioner, when the necessary and sufficient wind is blowing for the heat exchange of the heat exchanger, the air volume of the wind is used to prevent the fan motor from being energized. As a result, it becomes possible to improve the operation efficiency of the fan motor and the entire air conditioner. In addition, the above embodiment has been described in the case of being adopted as the outdoor unit of the air conditioner,
If it is also used in the indoor unit, it will be possible to control the outdoor unit and the indoor unit with DC power, which can simplify the control circuit and provide an air conditioner with stable operation control. Cost can be reduced.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、モ
−タケ−ス内に永久磁石を有するロ−タとステ−タが備
えられたブラシレスモ−タを用いたファンを具えた空気
調和機において、風等の外乱によって起動時のモ−タに
加わるトルクの変動による脱調、及び逆回転が防止で
き、ファンモ−タの起動を安定に行うことができる。
As described above, according to the present invention, air having a fan using a brushless motor provided with a rotor having a permanent magnet in the motor case and a stator is provided. In the harmony machine, it is possible to prevent step-out and reverse rotation due to fluctuations in the torque applied to the motor at startup due to disturbances such as wind, and to stably start up the fan motor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す制御ブロック図FIG. 1 is a control block diagram showing an embodiment of the present invention.

【図2】本発明の一実施例を示す回路ブロック図FIG. 2 is a circuit block diagram showing an embodiment of the present invention.

【図3】本発明の一実施例を示す位置検出回路図FIG. 3 is a position detection circuit diagram showing an embodiment of the present invention.

【図4】本発明の一実施例の位置検出回路の各部波形図FIG. 4 is a waveform chart of each part of the position detection circuit according to the embodiment of the present invention.

【図5】本発明の一実施例を示すパワ−素子の駆動タイ
ミング図
FIG. 5 is a drive timing chart of a power element showing an embodiment of the present invention.

【図6】本発明の一実施例を示す逆回転時の起動パター
ン図
FIG. 6 is a start pattern diagram during reverse rotation showing an embodiment of the present invention.

【図7】本発明の一実施例を示す正回転時の起動パター
ン図
FIG. 7 is a start pattern diagram at the time of forward rotation showing an embodiment of the present invention.

【図8】本発明の一実施例を示す通常時(回転停止時)
起動パターン図
FIG. 8 is a view showing an embodiment of the present invention in normal time (when rotation is stopped).
Startup pattern diagram

【図9】本発明の一実施例の同期運転時の位相を示す図FIG. 9 is a diagram showing phases during synchronous operation according to an embodiment of the present invention.

【図10】本発明の一実施例の同期運転時の同期化力を
示す図
FIG. 10 is a diagram showing a synchronization force at the time of synchronous operation according to an embodiment of the present invention.

【図11】従来技術の無整流子モ−タの駆動回路の基本
的な例を示す回路図
FIG. 11 is a circuit diagram showing a basic example of a drive circuit for a conventional commutatorless motor.

【図12】従来技術のステ−タ巻線に誘起される電圧波
形図
FIG. 12 is a voltage waveform diagram induced in a prior art stator winding.

【図13】図11を改良した例を示す回路図FIG. 13 is a circuit diagram showing an example in which FIG. 11 is improved.

【図14】図13に示すステ−タ巻線に誘起される電圧
波形
14 is a voltage waveform induced in the stator winding shown in FIG.

【図15】従来技術の無整流子モ−タの駆動回路の一例
を示す回路図
FIG. 15 is a circuit diagram showing an example of a drive circuit for a conventional commutatorless motor.

【図16】従来技術のステ−タ巻線とロ−タの位置関係
FIG. 16 is a positional relationship diagram of a prior art stator winding and a rotor.

【図17】従来技術のステ−タ巻線とロ−タの位置関係
FIG. 17 is a positional relationship diagram of a prior art stator winding and a rotor.

【図18】従来技術のステ−タ巻線とロ−タの位置関係
FIG. 18 is a positional relationship diagram of a prior art stator winding and a rotor.

【図19】従来技術のステ−タ巻線とロ−タの位置関係
FIG. 19 is a positional relationship diagram of a prior art stator winding and a rotor.

【符号の説明】[Explanation of symbols]

1…整流回路,2…ドライブ回路,3…パワ−素子(ス
イッチング素子),4…ファンモ−タ,5…チョッパ回
路,6…三角波発生回路,7…電流制限回路,8…過電
流保護回路,9…フィルタ回路,10…デュ−ティ指令
回路,11…回転数設定回路,12…位置検出回路,1
3…内部電源,
1 ... Rectifier circuit, 2 ... Drive circuit, 3 ... Power element (switching element), 4 ... Fan motor, 5 ... Chopper circuit, 6 ... Triangular wave generation circuit, 7 ... Current limiting circuit, 8 ... Overcurrent protection circuit, 9 ... Filter circuit, 10 ... Duty command circuit, 11 ... Rotation speed setting circuit, 12 ... Position detection circuit, 1
3 ... Internal power supply,

フロントページの続き (72)発明者 荒川 道久 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所リビング機器事業部内 (72)発明者 小野 智 栃木県下都賀郡大平町大字富田709番地の 2株式会社日立栃木エレクトロニクス内 (72)発明者 寺内 英樹 栃木県下都賀郡大平町大字富田709番地の 2株式会社日立栃木エレクトロニクス内 (72)発明者 和久井 豊光 栃木県下都賀郡大平町大字富田709番地の 2株式会社日立栃木エレクトロニクス内Front page continued (72) Inventor Michihisa Arakawa 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Living Equipment Division, Hitachi Ltd. (72) Inventor Satoshi Ono 2 709, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside Hitachi Tochigi Electronics Co., Ltd. (72) Inventor Hideki Terauchi, 709, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture 2 At Hitachi Tochigi Electronics Co., Ltd. (72) Toyomitsu Wakui, At 709, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Hitachi Tochigi Electronics Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、熱交換器と、この熱交換器に送
風するファンと、このファンを駆動するブラシレスファ
ンモ−タを備えた空気調和機において、ブラシレスファ
ンモ−タ内のロ−タ磁極の回転によりステ−タ巻線に誘
起する巻線電圧を用いてロ−タ磁極位置を検出する位置
検出回路と、この位置検出回路が検出したロ−タ磁極位
置に応じて上記ステ−タ巻線に通流させる電流を導通遮
断する複数のスイッチング素子とを備え、前記ブラシレ
スファンモ−タのステ−タ巻線に導通開始させる起動の
前に、ファンの回転の有無及び回転している場合の回転
方向を検出し、ファンの回転方向の正回転、逆回転、若
しくは、停止の3つの状態を判定し、これに対応したモ
−ドで起動を行うようにする起動モ−ド選択手段を備え
たことを特徴とする空気調和機。
1. An air conditioner comprising a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan, and a rotor in the brushless fan motor. A position detection circuit for detecting the rotor magnetic pole position by using the winding voltage induced in the stator winding by the rotation of the magnetic pole, and the stator according to the rotor magnetic pole position detected by this position detection circuit. A plurality of switching elements for conducting and interrupting a current flowing through the winding, and before or after the start of conducting to the stator winding of the brushless fan motor, whether the fan is rotating or not The start mode selecting means for detecting the rotation direction of the fan, determining the three states of the fan rotation direction, which are the normal rotation, the reverse rotation, and the stop, and performing the start in the mode corresponding to these. Characterized by having Air conditioner.
【請求項2】圧縮機と熱交換器と、この熱交換器に送風
するファンと、このファンを駆動するブラシレスファン
モ−タを備えた空気調和機において、ブラシレスファン
モ−タ内のロ−タ磁極の回転によりステ−タ巻線に誘起
する巻線電圧を用いてロ−タ磁極位置を検出する位置検
出回路と、この位置検出回路が検出したロ−タ磁極位置
に応じて上記ステ−タ巻線に通流させる電流を導通遮断
する複数のスイッチング素子とを備え、前記ブラシレス
ファンモ−タのステ−タ巻線に導通開始させる起動の前
に、通常運転時の回転方向と反対方向に回転していると
きに前記スイッチング素子をON/OFFし、ファンモ
−タを減速、停止し、その後、通常運転時の回転方向に
回転するようにスイッチング素子を適宜導通遮断して起
動する起動手段を設けたことを特徴とするファンモ−タ
を備えた空気調和機。
2. A rotor magnetic pole in a brushless fan motor in an air conditioner comprising a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan. Position detection circuit for detecting the rotor magnetic pole position by using the winding voltage induced in the stator winding by the rotation of the stator winding, and the stator winding according to the rotor magnetic pole position detected by this position detection circuit. A plurality of switching elements for conducting and interrupting a current flowing through the wire, and rotating in a direction opposite to a rotating direction during normal operation before starting to start conducting the stator winding of the brushless fan motor. During this period, the switching element is turned ON / OFF to decelerate and stop the fan motor, and thereafter, the switching element is appropriately turned off and activated so as to rotate in the rotation direction during normal operation. Fanmo wherein the digit - air conditioner having the data.
【請求項3】圧縮機と熱交換器と、この熱交換器に送風
するファンと、このファンを駆動するブラシレスファン
モ−タを備えた空気調和機において、ブラシレスファン
モ−タ内のロ−タ磁極の回転によりステ−タ巻線に誘起
する巻線電圧を用いてロ−タ磁極位置を検出する位置検
出回路と、この位置検出回路が検出したロ−タ磁極位置
に応じて上記ステ−タ巻線に通流させる電流を導通遮断
する複数のスイッチング素子とを備え、前記ブラシレス
ファンモ−タのステ−タ巻線に導通開始させる起動の前
に、通常運転時の回転方向と同一方向に回転していると
きにファンモ−タを停止することなく前記位置検出回路
の出力信号に応じて順次回転方向に前記スイッチング素
子を適時導通遮断しファンモ−タを起動する起動手段を
設けたことを特徴とするファンモ−タを備えた空気調和
機。
3. A rotor magnetic pole in a brushless fan motor in an air conditioner comprising a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan. Position detection circuit for detecting the rotor magnetic pole position by using the winding voltage induced in the stator winding by the rotation of the stator winding, and the stator winding according to the rotor magnetic pole position detected by this position detection circuit. The brushless fan motor is rotated in the same direction as the rotation direction during normal operation before starting to start conduction in the stator winding of the brushless fan motor. In the meantime, without stopping the fan motor, a starting means for starting the fan motor by turning on and off the switching elements in a timely manner in accordance with an output signal of the position detection circuit is provided. To Fanmo - air conditioner having the data.
【請求項4】圧縮機と熱交換器と、この熱交換器に送風
するファンと、このファンを駆動するブラシレスファン
モ−タを備えた空気調和機において、ブラシレスファン
モ−タ内のロ−タ磁極の回転によりステ−タ巻線に誘起
する巻線電圧を用いてロ−タ磁極位置を検出する位置検
出回路と、この位置検出回路が検出したロ−タ磁極位置
に応じて上記ステ−タ巻線に通流させる電流を導通遮断
する複数のスイッチング素子とを備え、前記ブラシレス
ファンモ−タのステ−タ巻線に導通開始させる起動の前
に、通常運転時の回転方向と反対方向に回転していると
きに前記スイッチング素子をON/OFFし、ファンモ
−タを減速、停止し、その後、通常運転時の回転方向に
回転するようにスイッチング素子を適時導通遮断して起
動する起動手段と、通常運転時の回転方向と同一方向に
回転しているときにファンモ−タを停止することなく前
記位置検出回路の出力信号に応じて順次回転方向に前記
スイッチング素子を適時導通遮断しファンモ−タを起動
する起動手段を設けたことを特徴とするファンモ−タを
備えた空気調和機。
4. An air conditioner comprising a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan, and a rotor magnetic pole in the brushless fan motor. Position detection circuit for detecting the rotor magnetic pole position by using the winding voltage induced in the stator winding by the rotation of the stator winding, and the stator winding according to the rotor magnetic pole position detected by this position detection circuit. A plurality of switching elements for conducting and interrupting a current flowing through the wire, and rotating in a direction opposite to a rotating direction during normal operation before starting to start conducting the stator winding of the brushless fan motor. And a switching means for decelerating and stopping the fan motor while turning on and off the switching element, and thereafter, starting and shutting off the switching element at a proper time so as to rotate in the rotation direction during normal operation. When the fan motor is rotating in the same direction as the rotation direction during normal operation, the fan motor is turned on and off sequentially in accordance with the output signal of the position detection circuit, without interrupting the fan motor. An air conditioner equipped with a fan motor, characterized in that a starting means for starting is provided.
【請求項5】ファンモ−タの起動前のファンモ−タの回
転情報として、前記位置検出回路の出力信号によって、
ファンモ−タの回転方向、または、回転周期を検出する
手段を備えたことを特徴とする請求項2、若しくは、請
求項3のファンモ−タを備えた空気調和機。
5. The rotation signal of the fan motor before the fan motor is started is output by the output signal of the position detection circuit,
An air conditioner equipped with the fan motor according to claim 2 or 3, further comprising means for detecting a rotation direction or a rotation cycle of the fan motor.
【請求項6】請求項2、請求項3、若しくは、請求項4
のファンモ−タが起動した後、モ−タに対する負荷の変
動によりロ−タが脱調し、ファンモ−タの回転が停止し
たならば、再起動動作を行う手段を備えたことを特徴と
するファンモ−タを備えた空気調和機。
6. Claim 2, Claim 3, or Claim 4.
After the fan motor is started, if the rotor goes out of step due to a change in the load on the motor and the rotation of the fan motor is stopped, a means for restarting the fan motor is provided. An air conditioner equipped with a fan motor.
【請求項7】圧縮機と熱交換器と、この熱交換器に送風
するファンと、このファンを駆動するブラシレスファン
モ−タを備えた空気調和機において、前記空気調和機の
駆動部品を直流電流、又は直流電圧で駆動する構成を特
徴とする請求項1の空気調和機。
7. An air conditioner comprising a compressor, a heat exchanger, a fan for blowing air to the heat exchanger, and a brushless fan motor for driving the fan, wherein a driving component of the air conditioner is a direct current. The air conditioner according to claim 1, wherein the air conditioner is driven by a DC voltage.
JP6128522A 1994-06-10 1994-06-10 Air-conditioner Pending JPH07337080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6128522A JPH07337080A (en) 1994-06-10 1994-06-10 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128522A JPH07337080A (en) 1994-06-10 1994-06-10 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH07337080A true JPH07337080A (en) 1995-12-22

Family

ID=14986831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128522A Pending JPH07337080A (en) 1994-06-10 1994-06-10 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH07337080A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989352A (en) * 1995-09-28 1997-04-04 Toshiba Corp Driver for outdoor blower
JP2001309685A (en) * 2000-04-25 2001-11-02 Mitsuba Corp Method and device for driving and controlling brushless motor
JP2001327187A (en) * 2000-05-17 2001-11-22 Fujitsu General Ltd Method for controlling brushless motor
JP2005171843A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Fan control device
JP2006262591A (en) * 2005-03-16 2006-09-28 Honda Motor Co Ltd Control device for brushless dc motor
JP2007318921A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Semiconductor device for driving motor, and motor, motor driving device, and air-conditioner comprising it,
JP2008092784A (en) * 2006-07-28 2008-04-17 Mitsuba Corp Drive unit for brushless motor, and method for starting the brushless motor and method for detecting stopping position of rotor of the brushless motor
WO2008133240A1 (en) * 2007-04-25 2008-11-06 Daikin Industries, Ltd. Fan control system
US7733042B2 (en) 2006-07-04 2010-06-08 Denso Corporation Rotor position detection circuit and motor driving device
WO2011019451A3 (en) * 2009-08-10 2011-05-05 Emerson Electric Co. Compressor and condenser assemblies for hvac systems
JP2012100533A (en) * 2012-02-20 2012-05-24 Daikin Ind Ltd Motor drive controller
JP2012125147A (en) * 2012-02-20 2012-06-28 Daikin Ind Ltd Motor drive control device
CN102739131A (en) * 2011-04-05 2012-10-17 大金工业株式会社 Motor driving device and heat pump device using the motor driving device
JP2013081370A (en) * 2006-07-28 2013-05-02 Mitsuba Corp Drive unit for brushless fan motor and start method
JP2013245922A (en) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2014064371A (en) * 2012-09-20 2014-04-10 Denso Corp Brushless motor control system
JP2015033151A (en) * 2013-07-31 2015-02-16 パナソニック株式会社 Brushless dc motor driver and ventilation blower mounted therewith
JP2015061471A (en) * 2013-09-20 2015-03-30 ミネベア株式会社 Motor drive control device and method of controlling motor drive control device
JP2015126592A (en) * 2013-12-26 2015-07-06 カルソニックカンセイ株式会社 Electric compressor
WO2015141124A1 (en) * 2014-03-18 2015-09-24 ダイキン工業株式会社 Power conversion device
WO2015159376A1 (en) * 2014-04-16 2015-10-22 株式会社日立産機システム Power conversion device and power conversion method
US20160282005A1 (en) * 2015-03-23 2016-09-29 Lg Electronics Inc. Outdoor fan motor driving device and air conditioner including an outdoor fan motor driving device
US9503000B2 (en) 2013-08-07 2016-11-22 Rohm Co., Ltd. Driving device of multi-phase motor, driving method, cooling device, and electronic apparatus
US9543866B2 (en) 2014-11-28 2017-01-10 Minebea Co., Ltd. Motor drive controller and method for detecting rotation state
JP2017028959A (en) * 2015-07-28 2017-02-02 ヤンマー株式会社 Fan drive circuit and engine generator
CN107327414A (en) * 2017-08-30 2017-11-07 北京晶海科技有限公司 A kind of adjusting method of air-conditioning draught fan
JP2018186694A (en) * 2017-04-27 2018-11-22 エルエス産電株式会社Lsis Co., Ltd. Method for controlling high-voltage inverter and system comprising the same
JP2021016235A (en) * 2019-07-11 2021-02-12 株式会社東芝 Motor control system
CN113789634A (en) * 2021-10-11 2021-12-14 海信(山东)冰箱有限公司 Motor control method and device and washing machine
CN113945147A (en) * 2020-07-15 2022-01-18 广东美的环境电器制造有限公司 Detection circuit and detection method thereof, fan and readable storage medium
CN115566938A (en) * 2022-11-24 2023-01-03 中山大洋电机股份有限公司 Novel rotor pre-positioning method in high-speed upwind rotation state before starting of fan

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989352A (en) * 1995-09-28 1997-04-04 Toshiba Corp Driver for outdoor blower
JP2001309685A (en) * 2000-04-25 2001-11-02 Mitsuba Corp Method and device for driving and controlling brushless motor
JP2001327187A (en) * 2000-05-17 2001-11-22 Fujitsu General Ltd Method for controlling brushless motor
JP4506914B2 (en) * 2000-05-17 2010-07-21 株式会社富士通ゼネラル Control method of brushless motor
JP2005171843A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Fan control device
JP2006262591A (en) * 2005-03-16 2006-09-28 Honda Motor Co Ltd Control device for brushless dc motor
JP4684691B2 (en) * 2005-03-16 2011-05-18 本田技研工業株式会社 Brushless DC motor control device
JP2007318921A (en) * 2006-05-26 2007-12-06 Hitachi Ltd Semiconductor device for driving motor, and motor, motor driving device, and air-conditioner comprising it,
US7733042B2 (en) 2006-07-04 2010-06-08 Denso Corporation Rotor position detection circuit and motor driving device
DE102007030748B4 (en) * 2006-07-04 2010-07-29 DENSO CORPORATION, Kariya-shi Rotor position detection circuit and Motoransteuervorrichtung
JP2008092784A (en) * 2006-07-28 2008-04-17 Mitsuba Corp Drive unit for brushless motor, and method for starting the brushless motor and method for detecting stopping position of rotor of the brushless motor
JP2013081370A (en) * 2006-07-28 2013-05-02 Mitsuba Corp Drive unit for brushless fan motor and start method
JP2014113057A (en) * 2006-07-28 2014-06-19 Mitsuba Corp Controlling device for brushless motor and starting method
JP2014033616A (en) * 2006-07-28 2014-02-20 Mitsuba Corp Drive unit for brushless motor, and method for starting brushless motor
WO2008133240A1 (en) * 2007-04-25 2008-11-06 Daikin Industries, Ltd. Fan control system
US8348625B2 (en) 2007-04-25 2013-01-08 Daikin Industries, Ltd. Multiple fan speed control system for preventing overload at start-up
US8855474B2 (en) 2009-08-10 2014-10-07 Emerson Electric Co. Inhibiting compressor backspin via a condenser motor
US8400090B2 (en) 2009-08-10 2013-03-19 Emerson Electric Co. HVAC condenser assemblies having controllable input voltages
CN102483255A (en) * 2009-08-10 2012-05-30 艾默生电气公司 Compressor and condenser assemblies for hvac systems
WO2011019451A3 (en) * 2009-08-10 2011-05-05 Emerson Electric Co. Compressor and condenser assemblies for hvac systems
CN102483255B (en) * 2009-08-10 2014-12-24 艾默生电气公司 Compressor and condenser assemblies for hvac systems
CN104566850B (en) * 2009-08-10 2017-08-08 艾默生电气公司 For heat, divulge information and/or air-conditioning system sub-assembly and method
CN104566850A (en) * 2009-08-10 2015-04-29 艾默生电气公司 Assemblies and methof for HVAC systems
CN102739131A (en) * 2011-04-05 2012-10-17 大金工业株式会社 Motor driving device and heat pump device using the motor driving device
JP2012100533A (en) * 2012-02-20 2012-05-24 Daikin Ind Ltd Motor drive controller
JP2012125147A (en) * 2012-02-20 2012-06-28 Daikin Ind Ltd Motor drive control device
JP2013245922A (en) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2014064371A (en) * 2012-09-20 2014-04-10 Denso Corp Brushless motor control system
US9130495B2 (en) 2012-09-20 2015-09-08 Denso Corporation Control system for brushless motor
JP2015033151A (en) * 2013-07-31 2015-02-16 パナソニック株式会社 Brushless dc motor driver and ventilation blower mounted therewith
US9503000B2 (en) 2013-08-07 2016-11-22 Rohm Co., Ltd. Driving device of multi-phase motor, driving method, cooling device, and electronic apparatus
JP2015061471A (en) * 2013-09-20 2015-03-30 ミネベア株式会社 Motor drive control device and method of controlling motor drive control device
JP2015126592A (en) * 2013-12-26 2015-07-06 カルソニックカンセイ株式会社 Electric compressor
US9692332B2 (en) 2014-03-18 2017-06-27 Daikin Industries, Ltd. Power conversion device
JP2015177724A (en) * 2014-03-18 2015-10-05 ダイキン工業株式会社 Power conversion device
KR20160111037A (en) 2014-03-18 2016-09-23 다이킨 고교 가부시키가이샤 Power conversion device
CN106063115A (en) * 2014-03-18 2016-10-26 大金工业株式会社 Power conversion device
WO2015141124A1 (en) * 2014-03-18 2015-09-24 ダイキン工業株式会社 Power conversion device
CN106063119A (en) * 2014-04-16 2016-10-26 株式会社日立产机系统 Power conversion device and power conversion method
JPWO2015159376A1 (en) * 2014-04-16 2017-04-13 株式会社日立産機システム Power conversion device and power conversion method
WO2015159376A1 (en) * 2014-04-16 2015-10-22 株式会社日立産機システム Power conversion device and power conversion method
EP3133732A4 (en) * 2014-04-16 2017-12-27 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device and power conversion method
US9543866B2 (en) 2014-11-28 2017-01-10 Minebea Co., Ltd. Motor drive controller and method for detecting rotation state
US20160282005A1 (en) * 2015-03-23 2016-09-29 Lg Electronics Inc. Outdoor fan motor driving device and air conditioner including an outdoor fan motor driving device
US10215426B2 (en) * 2015-03-23 2019-02-26 Lg Electronics Inc. Outdoor fan motor driving device and air conditioner including an outdoor fan motor driving device
JP2017028959A (en) * 2015-07-28 2017-02-02 ヤンマー株式会社 Fan drive circuit and engine generator
US10425016B2 (en) 2017-04-27 2019-09-24 Lsis Co., Ltd. Method for controlling medium-voltage inverter and system comprising the same
JP2018186694A (en) * 2017-04-27 2018-11-22 エルエス産電株式会社Lsis Co., Ltd. Method for controlling high-voltage inverter and system comprising the same
CN107327414A (en) * 2017-08-30 2017-11-07 北京晶海科技有限公司 A kind of adjusting method of air-conditioning draught fan
JP2021016235A (en) * 2019-07-11 2021-02-12 株式会社東芝 Motor control system
CN113945147A (en) * 2020-07-15 2022-01-18 广东美的环境电器制造有限公司 Detection circuit and detection method thereof, fan and readable storage medium
CN113945147B (en) * 2020-07-15 2023-12-12 广东美的环境电器制造有限公司 Detection circuit, detection method thereof, fan and readable storage medium
CN113789634A (en) * 2021-10-11 2021-12-14 海信(山东)冰箱有限公司 Motor control method and device and washing machine
CN115566938A (en) * 2022-11-24 2023-01-03 中山大洋电机股份有限公司 Novel rotor pre-positioning method in high-speed upwind rotation state before starting of fan
CN115566938B (en) * 2022-11-24 2023-03-24 中山大洋电机股份有限公司 Novel rotor pre-positioning method in high-speed upwind rotation state before starting of fan

Similar Documents

Publication Publication Date Title
JPH07337080A (en) Air-conditioner
JP3832257B2 (en) Synchronous motor start control method and control device
KR100329077B1 (en) Driving apparatus of brushless motor for outdoor fan of airconditioner
JP3297159B2 (en) DC brushless motor driving apparatus and pass / fail identification method
JP2000125584A5 (en)
JPH09219990A (en) Control drive device for sensor-less dc brushless motor
US7242175B2 (en) Determining rotation of a freewheeling motor
JPH10201286A (en) Motor driving device
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
JP4147399B2 (en) DC brushless motor parallel drive method
JP4798624B2 (en) Blower and electric device equipped with the same
US8901867B2 (en) Electrical machine, method of controlling an electrical machine, and system including an electrical machine
JP3124474U (en) Brushless DC motor controller
JPH1028395A (en) Position detector for dc brushless motor
JP2001204192A (en) Control unit of brushless motor and self-priming pump using the same
US20050135794A1 (en) Method and system for negative torque reduction in a brushless DC motor
JP3244853B2 (en) DC brushless motor drive controller
JP4531180B2 (en) Synchronous motor and method for starting synchronous motor
JPH0888994A (en) Air conditioner
US6429614B1 (en) Method and device for controlling an electronically commutated polyphase D.C. motor
JP2012130091A (en) Fan controller, fan control method and refrigeration cycle system
JPH10191682A (en) Drive control device for blower
JP3531563B2 (en) Brushless motor control device, brushless motor control method, and compressor
JPH07308092A (en) Synchronous starting device for d.c. motor
JPH05219785A (en) Driving device for brushless motor