JPH07335442A - Filter - Google Patents

Filter

Info

Publication number
JPH07335442A
JPH07335442A JP15143994A JP15143994A JPH07335442A JP H07335442 A JPH07335442 A JP H07335442A JP 15143994 A JP15143994 A JP 15143994A JP 15143994 A JP15143994 A JP 15143994A JP H07335442 A JPH07335442 A JP H07335442A
Authority
JP
Japan
Prior art keywords
magnetic
line
film
filter
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15143994A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Masakatsu Senda
正勝 千田
Toshinori Mori
敏則 森
Yutaka Ichinose
裕 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15143994A priority Critical patent/JPH07335442A/en
Publication of JPH07335442A publication Critical patent/JPH07335442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To reduce common mode noise made on a line by using a filter structure wherein a magnetic film is provided through the intermediary of insulating layers around a coaxial line. CONSTITUTION:Within the filter, a magnetic film is provided as if encircling around a coaxial line through the intermediary of insulating layers. Besides, the easy magnetizing axles of magnetic anisotropy in this magnetic film are made even in the coaxial direction and the thickness of this filter as a soft magnetic thin film is to be within the range of 1-10 times of the surface film thickness which is represented by a formula of delta=sq. rt. {2rhom/(2pif.mur.mu0)} assuming the electrical resistivity of the magnetic film as rhom, the noise frequency as f, the complex relative magnetic permeability of real time component as mur, the vacuum magnetic permeability as mu0. Furthermore, this magnetic film is a multilayer structure comprising the magnetic films and the insulating layers alternately laminated, otherwise, polyimide sheets formed of permalloy thin films wound around the coaxial line in numerous times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は機器間の信号や電力を伝
える線路に重畳するコモンモードノイズを低減するため
の小型化,高性能化にしたフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a miniaturized and high performance filter for reducing common mode noise superimposed on a line for transmitting signals and electric power between devices.

【0002】[0002]

【従来の技術】コモンモードノイズは線路において所望
の高周波信号あるいは交流電流以外に、スイッチの開閉
や近くを流れるパルス信号が電磁誘導現象で線路対に発
生する同位相の電圧として発生するノイズである。この
ノイズを低減するために、従来は線路を軟磁性材料で作
製したリングに貫通させる方法が採用されていた。即
ち、線路に加わる信号電流は互いに逆向きなため発生す
る磁場は磁性体リング位置ではほぼ打ち消し合ってお
り、同相のノイズ電流(コモンモードノイズ電流)が発
生する磁界のみが磁性体リングを磁化するように作用す
るものである。磁性体が磁化される際に生じる損失でノ
イズ電流を消費し、結果としてノイズの伝搬を阻止する
ものである。ここで、磁性体の磁化過程において生じる
損失の原因としては、強磁性共鳴や渦電流損失がある。
2. Description of the Related Art Common mode noise is noise generated as a voltage of the same phase generated in a line pair due to an electromagnetic induction phenomenon in addition to a desired high frequency signal or an alternating current in a line, and a pulse signal flowing around or near a switch. . In order to reduce this noise, a method of penetrating a line through a ring made of a soft magnetic material has been conventionally used. That is, since the signal currents applied to the lines are in opposite directions to each other, the magnetic fields generated are almost canceled at the magnetic ring position, and only the magnetic field generated by the in-phase noise current (common mode noise current) magnetizes the magnetic ring. It works like this. A noise current is consumed by the loss generated when the magnetic body is magnetized, and as a result, the propagation of noise is blocked. Here, there are ferromagnetic resonance and eddy current loss as causes of the loss that occurs in the magnetization process of the magnetic body.

【0003】図7は従来のフィルタを示すもので、従来
用いられているケーブルとして平行2芯線5を使い、そ
の上に磁性膜を巻いた構造のフィルタを示す。図8には
図7に示した平行2芯線5の軸を結んだ線上の磁場分布
を示す。図から明らかなようにケーブルに流れる電流か
ら発生する磁場は磁性体4の位置で完全に打ち消し合わ
ず、幾分かは残る。この磁場の強さHrは以下の式で表
される。 Hr=I/2πr1 −I/2πr2 (1) I:線路に流れる電流 r1 :芯線1の中心から磁性体4までの距離 r2 :芯線2の中心から磁性体4までの距離 線路に流れる電流Iが増加すると磁性体に加わる磁場H
rも比例的に増加し、Hrが磁性体4の異方性磁場Hk
以上の強度となった場合には磁性体4は飽和してしま
う。Hr≧Hkとなる臨界電流Icは(1)式から以下
のように算出される。 Ic=2πHk(R2 −R1 )/R1 2 (2) この様な状態では磁性体はコモンモードノイズ電流によ
る磁場で磁化しないので、ノイズフィルタとして働かな
い。換言すれば、従来の平行2芯線を磁性体リング等に
通した形状では、電源ライン等のように大きな電流が流
れる場合には、磁性体リングの飽和磁場以上の磁界が発
生し、磁化が飽和するために上記のノイズ抑制効果が得
られない等の欠点があった。
FIG. 7 shows a conventional filter, which has a structure in which a parallel two-core wire 5 is used as a conventionally used cable and a magnetic film is wound on it. FIG. 8 shows a magnetic field distribution on a line connecting the axes of the parallel twin core wires 5 shown in FIG. As is clear from the figure, the magnetic fields generated from the currents flowing through the cable do not completely cancel each other at the position of the magnetic body 4, and some remain. The strength Hr of this magnetic field is expressed by the following equation. Hr = I / 2πr 1 −I / 2πr 2 (1) I: current flowing in line r 1 : distance from center of core 1 to magnetic body 4 r 2 : distance from center of core 2 to magnetic body 4 in line When the flowing current I increases, the magnetic field H applied to the magnetic substance
r also increases proportionally, and Hr is the anisotropic magnetic field Hk of the magnetic body 4.
When the strength is above, the magnetic body 4 is saturated. The critical current Ic with Hr ≧ Hk is calculated from the equation (1) as follows. Ic = 2πHk (R 2 −R 1 ) / R 1 R 2 (2) In such a state, the magnetic body is not magnetized by the magnetic field due to the common mode noise current, and thus does not work as a noise filter. In other words, in the conventional shape in which the parallel two-core wire is passed through the magnetic material ring or the like, when a large current flows such as a power line, a magnetic field higher than the saturation magnetic field of the magnetic material ring is generated and the magnetization is saturated. Therefore, there is a drawback that the above noise suppressing effect cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は、大電流
が流れる電力供給用線路等に重畳するコモンモードノイ
ズを低減することにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and its object is to reduce common mode noise superimposed on a power supply line or the like through which a large current flows. is there.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は同軸線路の周囲に絶縁層を介して、周回す
るように磁性膜が設置されているフィルタを発明の特徴
とする。さらに本発明は、磁性膜において磁気異方性の
容易軸が同軸の軸方向に揃い、かつ前記磁性膜の厚さは
表皮深さの1〜10倍の範囲にある軟磁性薄膜であるフ
ィルタを発明の特徴とする。さらに本発明は、磁性膜は
磁性膜と絶縁層とが交互に重なる多層構造であるフィル
タを発明の特徴とする。本発明は同軸線路の周囲に絶縁
層を介して周回するように磁性膜が設置されることを最
も主要な特徴とする。従来の技術では平行線路の周囲に
絶縁層を介して周回するように磁性膜が設置されてお
り、使用した線路の構造が異なる。
In order to achieve the above object, the present invention features a filter in which a magnetic film is provided so as to circulate around a coaxial line via an insulating layer. Further, the present invention provides a filter which is a soft magnetic thin film in which the easy axis of magnetic anisotropy is aligned in the coaxial axial direction in the magnetic film, and the thickness of the magnetic film is in the range of 1 to 10 times the skin depth. It is a feature of the invention. Further, the invention is characterized in that the magnetic film has a multilayer structure in which magnetic films and insulating layers are alternately laminated. The main feature of the present invention is that a magnetic film is provided around the coaxial line so as to circulate through an insulating layer. In the conventional technique, a magnetic film is provided around a parallel line so as to circulate through an insulating layer, and the structure of the line used is different.

【0006】[0006]

【作用】線路に発生するコモンモードノイズを抑制する
フィルタの構造として上記の通り同軸線路の周囲に磁性
膜を設置した構造を用いる。この構造では信号電流から
発生する磁場は同軸線路の外側では完全に打ち消し、信
号電流が増しても線路の周囲に巻いた磁性体が飽和しな
い。一方、コモンモードノイズ電流によって発生する磁
場のみが線路の周囲に巻いた磁性膜を磁化し、磁化の変
化に伴う渦電流損失によってノイズ電力を消費する。従
来のフィルタである平行線路の周囲に絶縁層を介して周
回するように磁性膜を設置した構造では信号電流から発
生する磁場が磁性膜の位置で完全に打ち消し合わないた
めに、大電流が流れると磁性膜の磁化が飽和してノイズ
低減効果が劣化した。本発明の構造では信号電流から発
生する磁場は線路の外側では完全に打ち消してしまうの
で、本発明の目的である大電流の信号線路においてもコ
モンモードノイズを減衰させることが可能になる。
As a structure of the filter for suppressing the common mode noise generated in the line, the structure in which the magnetic film is installed around the coaxial line is used as described above. In this structure, the magnetic field generated from the signal current is completely canceled outside the coaxial line, and the magnetic material wound around the line is not saturated even if the signal current increases. On the other hand, only the magnetic field generated by the common mode noise current magnetizes the magnetic film wound around the line, and the noise power is consumed by the eddy current loss due to the change in the magnetization. In the structure where a magnetic film is installed around a parallel line that is a conventional filter via an insulating layer, a large current flows because the magnetic fields generated from the signal currents do not completely cancel each other at the position of the magnetic film. And the magnetization of the magnetic film was saturated and the noise reduction effect deteriorated. In the structure of the present invention, the magnetic field generated from the signal current is completely canceled outside the line, so that the common mode noise can be attenuated even in the large current signal line which is the object of the present invention.

【0007】[0007]

【実施例】次に本発明の実施例について説明する。本発
明は、大電流が流れる線路に発生するコモンモードノイ
ズを抑制するフィルタ構造として同軸線路の周囲に磁性
膜を設置した構造である。図1は本発明によるノイズフ
ィルタの構造図を示す。1は同軸芯線、2は同軸外皮導
体、3は絶縁被覆、4は磁性体である。同軸線路の中心
の芯線1と外皮導体2に流れる電流によって発生する磁
場は、線路の外側では極性が逆で分布形状は同一である
ため完全にキャンセルする。従って、大電流が流れても
線路の周囲に巻いた磁性体が飽和することはなく、コモ
ンモードノイズ電流によって発生する磁場のみが磁性体
を磁化する。
EXAMPLES Next, examples of the present invention will be described. The present invention is a structure in which a magnetic film is installed around a coaxial line as a filter structure for suppressing common mode noise generated in a line in which a large current flows. FIG. 1 shows a structural diagram of a noise filter according to the present invention. Reference numeral 1 is a coaxial core wire, 2 is a coaxial outer conductor, 3 is an insulating coating, and 4 is a magnetic material. The magnetic field generated by the current flowing through the core wire 1 and the outer conductor 2 at the center of the coaxial line is completely canceled because the polarities are opposite and the distribution shape is the same outside the line. Therefore, even if a large current flows, the magnetic body wound around the line is not saturated, and only the magnetic field generated by the common mode noise current magnetizes the magnetic body.

【0008】磁性体としてパーマロイのような金属磁性
体を用いた場合には膜厚を以下の考え方に基づいた設定
範囲内とすることで、コモンモードノイズを抑制でき
る。例えば磁性膜の複素比透磁率μr=μr′+iμ
r″の虚数成分μr″が大きい程、コモンモードノイズ
は渦電流損失で消費される〔千田,石井,森:「高損失
性CoZrNb/SiO2 多層膜のEMIノイズフィル
タへの応用」応用磁気学会誌18,2(1994)51
1−514〕。μr′,μr″は回転磁化機構を仮定し
た場合に以下の式で表される。
When a metal magnetic material such as Permalloy is used as the magnetic material, the common mode noise can be suppressed by setting the film thickness within a setting range based on the following concept. For example, the complex relative permeability of the magnetic film μr = μr ′ + iμ
The larger the imaginary component μr ″ of r ″, the more the common mode noise is consumed by eddy current loss. [Chida, Ishii, Mori: “Application of high-loss CoZrNb / SiO 2 multilayer film to EMI noise filter”] Magazine 18, 2 (1994) 51
1-514]. μr ′ and μr ″ are represented by the following equations when the rotating magnetization mechanism is assumed.

【数1】 ここで、tmは磁性層の厚さ、ρmは磁性体の抵抗率、
fはノイズ周波数、μ0は真空の透磁率である。一方、
表皮厚δは、 δ=√{2ρm/(2πf・μr・μ0 )} と表される。従ってθは以下の式で表される。 θ=2√{π・(tm/δ)}
[Equation 1] Here, tm is the thickness of the magnetic layer, ρm is the resistivity of the magnetic substance,
f is the noise frequency, and μ 0 is the magnetic permeability of the vacuum. on the other hand,
The skin thickness δ is expressed as δ = √ {2ρm / (2πf · μr · μ 0 )}. Therefore, θ is represented by the following equation. θ = 2√ {π · (tm / δ)}

【0009】図2はμr′(f)/μr′(0),μ
r″(f)/μr′(0)のtm/δ依存性を示す。
0.1≦(tm/δ)≦10の範囲ではμr″(0)/
μr′(0)≧0.03であり、渦電流損失が発生する
ことを示している。特に、0.1≦(tm/δ)≦1の
範囲ではμr″(0)<μr′(0)なので磁性膜を巻
いた線路のインピーダンスは誘導性(インダクタンスが
大きい)となるのに対し、1≦(tm/δ)≦10の範
囲ではμr′(0)≒μr″(0)となり磁性体を巻い
た線路の抵抗もインダクタンス並に大きくなる。0.1
≦(tm/δ)≦1の範囲で磁性膜を巻き付けた線路の
インダクタンスが高い場合には、磁性膜を巻いた部分の
線路のインピーダンスが大きく、インピーダンス整合が
悪いため信号やノイズの反射が大きい。反射されたノイ
ズ電力は消費されないので、機器の内部に悪影響を及ぼ
す。従って、磁性膜を巻き付けた線路の抵抗を高くして
ノイズ電力が消費される比率を大きくするためには単に
μ″(0)が大きいだけでは不十分であり、μ′(0)
が小さいことも重要であり、この条件を満足する膜厚範
囲として1≦(tm/δ)≦10が適当である。(tm
/δ)>10ではμr″(0)/μr′(0)<0.0
3であり、渦電流によるノイズ電流吸収効果が測定誤差
と同等になるので、tm/δの適性範囲として10以下
と定めた。
FIG. 2 shows μr '(f) / μr' (0), μ
The tm / δ dependence of r ″ (f) / μr ′ (0) is shown.
In the range of 0.1 ≦ (tm / δ) ≦ 10, μr ″ (0) /
μr ′ (0) ≧ 0.03, indicating that eddy current loss occurs. In particular, in the range of 0.1 ≦ (tm / δ) ≦ 1, μr ″ (0) <μr ′ (0), so the impedance of the line wound with the magnetic film becomes inductive (large inductance), In the range of 1 ≦ (tm / δ) ≦ 10, μr ′ (0) ≈μr ″ (0), and the resistance of the line around which the magnetic material is wound becomes as large as the inductance. 0.1
When the inductance of the line around which the magnetic film is wound is high within the range of ≦ (tm / δ) ≦ 1, the impedance of the line around the magnetic film is large and the impedance matching is poor, resulting in large reflection of signals and noise. . Since the reflected noise power is not consumed, it adversely affects the inside of the device. Therefore, in order to increase the resistance of the line around which the magnetic film is wound and increase the ratio of noise power consumption, simply increasing μ ″ (0) is not sufficient, and μ ′ (0)
Is also important, and 1 ≦ (tm / δ) ≦ 10 is suitable as a film thickness range that satisfies this condition. (Tm
/ Δ)> 10, μr ″ (0) / μr ′ (0) <0.0
Since the noise current absorption effect due to the eddy current is equal to the measurement error, the appropriate range of tm / δ is set to 10 or less.

【0010】実施例1 図1に示したノイズフィルタにおいて磁性体の具体的な
構造はポリイミドシート(幅5cm,長さ14cm)上
にパーマロイ薄膜を形成し、ケーブルに多数回巻きつけ
てチューブ状としたものである。パーマロイ薄膜はf=
250MHzとし、パーマロイのρm(〜20μΩc
m)、μr′(0)=3000を代入するとδ≒0.2
5μmとなり、約0.25μmから2.5μm厚のパー
マロイ膜がノイズ低減に有効なことが予想できる。本実
施例ではパーマロイ膜厚は1.5μmとした。パーマロ
イ薄膜は磁場中スパッタリング法で形成し、ケーブルと
平行方向に一軸磁気異方性の容易軸を揃えることができ
る。このような製法で形成されたパーマロイ膜の異方性
磁場は通常50e程度である。
Example 1 In the noise filter shown in FIG. 1, the concrete structure of the magnetic material is as follows: a permalloy thin film is formed on a polyimide sheet (width 5 cm, length 14 cm) and wound around a cable many times to form a tube. It was done. F = permalloy thin film
250MHz, permalloy ρm (~ 20μΩc
Substituting m) and μr ′ (0) = 3000, δ≈0.2
It becomes 5 μm, and it can be expected that a permalloy film having a thickness of about 0.25 μm to 2.5 μm is effective for noise reduction. In this embodiment, the permalloy film thickness is 1.5 μm. The permalloy thin film is formed by a sputtering method in a magnetic field, and the easy axis of uniaxial magnetic anisotropy can be aligned in the direction parallel to the cable. The anisotropic magnetic field of the permalloy film formed by such a manufacturing method is usually about 50e.

【0011】線路として同軸線路を用いると芯線および
外皮導体から発生する磁場は図3に示す通り符号が反対
で分布は同一になる。このような構造では流れる電流値
が増加しても、磁性体4の位置に磁場は発生しない。従
って、図1に示す同軸構造のフィルタを用いれば線路の
周囲に配置した磁性体4によって大電流線路に発生する
コモンモードノイズを抑制することができる。特に、磁
性体4を線路に近付ける程ノイズ抑制効果は大きくなる
が、平行2芯線路を用いた場合には線路に流れる電流
(信号)による磁場の残留成分も大きくなるため無制限
に磁性体4を線路に近付けることはできなかった。一
方、同軸線路を用いた場合には外皮導体と磁性体4を絶
縁可能な程度まで近付けることができるので、全体の小
形・軽量化にも有利である。
When a coaxial line is used as the line, the magnetic fields generated from the core wire and the outer conductor have the opposite signs and the same distribution as shown in FIG. In such a structure, no magnetic field is generated at the position of the magnetic body 4 even if the value of the flowing current increases. Therefore, if the filter having the coaxial structure shown in FIG. 1 is used, the common mode noise generated in the large current line can be suppressed by the magnetic body 4 arranged around the line. In particular, the closer the magnetic body 4 is to the line, the greater the noise suppression effect, but when a parallel two-core line is used, the residual component of the magnetic field due to the current (signal) flowing through the line also increases, so the magnetic body 4 can be used without limitation. I couldn't get close to the tracks. On the other hand, when the coaxial line is used, the outer conductor and the magnetic body 4 can be brought close to each other so that they can be insulated, which is also advantageous in reducing the overall size and weight.

【0012】図4は本発明によるノイズ減衰効果特性の
測定系を示す。図において、6はネットワークアナライ
ザ、7は直流電源、8は電流プローブ、9は終端抵抗、
10は直流成分カット用コンデンサである。線路として
は本発明による同軸線路や従来から用いられている平行
2芯線が用いられる。線路の長さは80cmであり、約
250MHzで大きなコモンモードノイズが発生する。
磁性膜は直流電源7を接続した端から10cmの位置に
巻き付け、電流プローブは抵抗9が接続している端から
20cmの位置にセットした。直流電源の電圧を変える
ことで線路に流れる電流を変えて、250MHzのノイ
ズ抑制効果を測定した。
FIG. 4 shows a measurement system for noise attenuation effect characteristics according to the present invention. In the figure, 6 is a network analyzer, 7 is a DC power supply, 8 is a current probe, 9 is a terminating resistor,
Reference numeral 10 is a DC component cutting capacitor. As the line, a coaxial line according to the present invention or a parallel two-core wire which has been conventionally used is used. The length of the line is 80 cm, and large common mode noise is generated at about 250 MHz.
The magnetic film was wound at a position 10 cm from the end to which the DC power supply 7 was connected, and the current probe was set to a position 20 cm from the end to which the resistor 9 was connected. The noise suppression effect at 250 MHz was measured by changing the current flowing through the line by changing the voltage of the DC power supply.

【0013】図5は線路として同軸線路を用いた場合1
1と、線路として平行2芯線路を用いた場合12の線路
に流れる電流値Icとノイズ減衰量の関係を示す。平行
2芯線路を用いた場合には電流値の増加と共に徐々にノ
イズ減衰量が低下し、特に(2)式で示された臨界電流
値Ic以上の範囲では激減するのに対し、同軸線路を用
いた場合には電流値の如何に関わらずノイズ減衰量は一
定となる。
FIG. 5 shows a case where a coaxial line is used as a line 1
1 shows the relationship between the current value Ic flowing in the line 12 and the noise attenuation amount when the parallel twin core line is used as the line. When a parallel two-core line is used, the amount of noise attenuation gradually decreases as the current value increases, and in particular in the range of the critical current value Ic or more shown by the equation (2), it sharply decreases, whereas the coaxial line is used. When used, the amount of noise attenuation is constant regardless of the current value.

【0014】実施例2 磁性膜4として図6に示す通り絶縁層13を介して磁性
体14を交互に重ねた多層構造とした。具体的には磁性
膜として実施例1に述べたパーマロイ膜を2層、絶縁層
として0.1μm厚のSiO2 膜を介して形成した。パ
ーマロイ膜,SiO2 膜はスパッタリング法を用いて作
製した。ポリイミドシート15の寸法は幅2.5cm,
長さ14cmであり、磁性体の合計の体積は実施例1と
同一である。この磁性体シートを実施例1(図4)と同
様の位置に巻き付けてコモンモードノイズの抑制効果を
測定した結果、図5と同様の通電電流依存性を得た。す
なわち、同軸線路を用いた場合には通電電流に無関係に
ノイズ減衰量一定となるのに対し、平行2芯線路を用い
た場合には通電電流が臨界値Ic以上になるとノイズ減
衰量は激減する。この現象は磁性膜として単層膜を用い
ても、あるいは多層膜を用いてもコモンモードノイズ電
流から発生する磁場を磁性体の渦電流損失として消費す
るメカニズムは同じであるので、磁性体の体積が一定な
らば同一のノイズ減衰量が得られたものである。また、
通電電流が増加した場合に、線路として同軸線路を用い
た場合の方が平行線路を用いるよりも安定な動作が確保
できるメカニズムも磁性体が単層であるか多層であるか
には依存しないので、結果的に実施例1と同様なノイズ
抑制挙動を示したものである。従って、本実施例では磁
性体層は2層であるが、より多層の場合にも磁性体の総
体積が同じならば同様の効果が期待できる。磁性体多層
膜を用いた場合には、磁性層当りの基板の体積が減少す
るので、全体の小型化が図れる効果がある。
Example 2 As shown in FIG. 6, the magnetic film 4 has a multi-layer structure in which magnetic bodies 14 are alternately stacked with an insulating layer 13 interposed therebetween. Specifically, two layers of the permalloy film described in Example 1 were formed as the magnetic film, and a 0.1 μm thick SiO 2 film was formed as the insulating layer. The permalloy film and the SiO 2 film were formed by using the sputtering method. The width of the polyimide sheet 15 is 2.5 cm,
The length is 14 cm, and the total volume of the magnetic material is the same as in Example 1. This magnetic sheet was wound around the same position as in Example 1 (FIG. 4) and the effect of suppressing common mode noise was measured. As a result, the same energization current dependency as in FIG. 5 was obtained. That is, when the coaxial line is used, the noise attenuation amount is constant regardless of the energized current, whereas when the parallel two-core line is used, the noise attenuation amount is drastically reduced when the energized current exceeds the critical value Ic. . Even if a single layer film or a multilayer film is used as the magnetic film, the mechanism of consuming the magnetic field generated from the common mode noise current as the eddy current loss of the magnetic substance is the same. If is constant, the same noise attenuation amount is obtained. Also,
When the energizing current increases, the mechanism that can secure more stable operation when using a coaxial line as a line than using a parallel line does not depend on whether the magnetic material is a single layer or a multilayer. As a result, the noise suppression behavior similar to that of the first embodiment is shown. Therefore, in this embodiment, the number of magnetic layers is two, but the same effect can be expected in the case of more layers as long as the total volume of the magnetic layers is the same. When the magnetic multilayer film is used, the volume of the substrate per magnetic layer is reduced, so that there is an effect that the overall size can be reduced.

【0015】[0015]

【発明の効果】本発明による同軸線路状構造のフィルタ
を用いることで、大電流が流れるような電力供給用線路
等に重畳するコモンモードノイズを低減できる。このフ
ィルタはケーブルの外皮部分を磁性膜で覆う構造とする
と実効的な体積や重量の増加が無い。また、磁性膜を線
路導体にできる限り近付ける方がノイズ抑制効果は大き
くなるが、平行2芯線路を用いた場合には線路に流れる
電流(信号)から発生する磁場の磁性膜位置における打
ち消し残り成分も大きくなるため、無制限に磁性膜を線
路に近付けることはできず、小型化を阻んでいた。一
方、同軸線路を用いた場合には外皮導体と磁性膜の間隔
は原理的に無限に近付けることができるので、全体の小
形・軽量化にも有利である。さらに、供給電流自体では
損失を生じないので、フィルタの挿入損失が無いことも
特長である。従来、使われている平行2芯線路では供給
電流または信号電流によって、幾分かはケーブルを取り
囲んでいる磁性体を磁化するので挿入損失が必ず発生し
た。なお、本構造のフィルタはケーブルの可塑性も保た
れるので、取り扱いが容易という長所もある。また、実
施例では同軸線路1本を磁性膜で覆う構造を示したが、
多数の同軸線路の束を磁性膜で覆ったとしても同様の効
果が得られることは自明である。
EFFECT OF THE INVENTION By using the filter having the coaxial line structure according to the present invention, it is possible to reduce common mode noise which is superposed on a power supply line or the like in which a large current flows. If this filter has a structure in which the outer skin of the cable is covered with a magnetic film, the effective volume and weight do not increase. Further, the noise suppression effect is greater when the magnetic film is brought as close as possible to the line conductor, but when a parallel two-core line is used, the cancellation residual component of the magnetic field generated from the current (signal) flowing in the line at the magnetic film position. However, the magnetic film cannot be brought close to the line indefinitely because it becomes large, which hinders miniaturization. On the other hand, when the coaxial line is used, the distance between the outer conductor and the magnetic film can be infinitely close to each other in principle, which is also advantageous in reducing the overall size and weight. Further, since the supply current itself does not cause a loss, there is also a feature that there is no insertion loss of the filter. In the conventional parallel two-core line, an insertion loss is inevitably caused because a magnetic material surrounding the cable is magnetized to some extent by a supply current or a signal current. The filter of this structure also has the advantage of being easy to handle because the plasticity of the cable is maintained. In the embodiment, the structure in which one coaxial line is covered with the magnetic film is shown.
It is obvious that the same effect can be obtained even if a bundle of many coaxial lines is covered with a magnetic film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるノイズフィルタの構造図を示す。FIG. 1 shows a structural diagram of a noise filter according to the present invention.

【図2】複素比透磁率μr′(f),μr″(f)の磁
性膜厚tm依存性を示す。複素比透磁率は静磁場におけ
る比透磁率μr′(0)で、膜厚は表皮厚δで規格化し
ている。
2 shows the dependence of complex relative permeability μr ′ (f), μr ″ (f) on the magnetic film thickness tm. The complex relative permeability is relative permeability μr ′ (0) in a static magnetic field, and the film thickness is Normalized by skin depth δ.

【図3】平行2芯線路から発生する磁場分布を示す。FIG. 3 shows a magnetic field distribution generated from a parallel twin core line.

【図4】ノイズ減衰量の測定系を示す。FIG. 4 shows a measurement system for noise attenuation.

【図5】線路に流れる電流値とノイズ減衰量の関係を示
す。
FIG. 5 shows a relationship between a current value flowing in a line and a noise attenuation amount.

【図6】磁性多層膜の構造を示す。FIG. 6 shows a structure of a magnetic multilayer film.

【図7】従来のノイズフィルタを示す。FIG. 7 shows a conventional noise filter.

【図8】同軸線路から発生する磁場分布を示す。FIG. 8 shows a magnetic field distribution generated from a coaxial line.

【符号の説明】[Explanation of symbols]

1 同軸芯線 2 同軸外皮導体 3 絶縁被覆 4 磁性体 5 平行2芯線 6 ネットワークアナライザ 7 直流電源 8 電流プローブ 9 終端抵抗 10 直流成分カット用コンデンサ 11 同軸線路の場合 12 平行2芯線路の場合 13 絶縁層 14 磁性体 15 ポリイミドシート 1 coaxial core wire 2 coaxial outer conductor 3 insulating coating 4 magnetic material 5 parallel 2 core wire 6 network analyzer 7 DC power supply 8 current probe 9 terminating resistor 10 DC component cutting capacitor 11 in case of coaxial line 12 in case of parallel double core line 13 insulating layer 14 Magnetic material 15 Polyimide sheet

フロントページの続き (72)発明者 一ノ瀬 裕 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front Page Continuation (72) Inventor Hiroshi Ichinose 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 同軸線路の周囲に絶縁層を介して、周回
するように磁性膜が設置されていることを特徴とするフ
ィルタ。
1. A filter, wherein a magnetic film is provided around the coaxial line so as to circulate through an insulating layer.
【請求項2】 磁性膜において磁気異方性の容易軸が同
軸の軸方向に揃い、かつ前記磁性膜の厚さは表皮深さの
1〜10倍の範囲にある軟磁性薄膜であることを特徴と
する請求項1記載のフィルタ。ここに表皮深さは ρmは磁性膜の抵抗率 fはノイズ周波数 μrは複素比透磁率の実数成分 μ0 は真空の透磁率とすると 表皮深さδ=√{2ρm/(2πf・μr・μ0 )} である。
2. A soft magnetic thin film in which the easy axis of magnetic anisotropy is aligned in the coaxial axial direction in the magnetic film, and the thickness of the magnetic film is in the range of 1 to 10 times the skin depth. The filter according to claim 1, which is characterized. Here, the skin depth is ρm, the resistivity of the magnetic film f is the noise frequency μr, the real component of the complex relative permeability μ 0 is the permeability of the vacuum, and the skin depth δ = √ {2ρm / (2πf ・ μr ・ μ 0 )}.
【請求項3】 前記磁性膜は磁性膜と絶縁層とが交互に
重なる多層構造であることを特徴とする請求項1または
2記載のフィルタ。
3. The filter according to claim 1, wherein the magnetic film has a multilayer structure in which magnetic films and insulating layers are alternately stacked.
【請求項4】 同軸線路の周囲にパーマロイ薄膜を形成
したポリイミドシートを多数回まきつけて構成されてい
ることを特徴とするフィルタ。
4. A filter comprising a polyimide sheet having a permalloy thin film formed around a coaxial line and wound around the coaxial line a number of times.
JP15143994A 1994-06-08 1994-06-08 Filter Pending JPH07335442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15143994A JPH07335442A (en) 1994-06-08 1994-06-08 Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15143994A JPH07335442A (en) 1994-06-08 1994-06-08 Filter

Publications (1)

Publication Number Publication Date
JPH07335442A true JPH07335442A (en) 1995-12-22

Family

ID=15518638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15143994A Pending JPH07335442A (en) 1994-06-08 1994-06-08 Filter

Country Status (1)

Country Link
JP (1) JPH07335442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700214B1 (en) * 2005-10-10 2007-03-28 (주)신우아이엠에스 Straw window forming apparatus for packing bag
JP2016046401A (en) * 2014-08-25 2016-04-04 三菱電機株式会社 Wiring core structure, semiconductor evaluation apparatus and semiconductor device
WO2018179326A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Noise filter and power conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700214B1 (en) * 2005-10-10 2007-03-28 (주)신우아이엠에스 Straw window forming apparatus for packing bag
JP2016046401A (en) * 2014-08-25 2016-04-04 三菱電機株式会社 Wiring core structure, semiconductor evaluation apparatus and semiconductor device
WO2018179326A1 (en) * 2017-03-31 2018-10-04 三菱電機株式会社 Noise filter and power conversion device
JPWO2018179326A1 (en) * 2017-03-31 2019-12-12 三菱電機株式会社 Noise filter and power conversion device

Similar Documents

Publication Publication Date Title
EP0831335B1 (en) Magneto-Impedance Sensor
JP4210016B2 (en) communication cable
Senda et al. High frequency magnetic properties of CoFe/SiO/sub 2/multilayer film with the inverse magnetostrictive effect
Xiao et al. Giant magnetoimpedance effect in sandwiched films
JP3274695B2 (en) Flat type transformer
US2946025A (en) Nonreciprocal attenuator
Antonov et al. Longitudinal-transverse linear transformation of the HF-current in soft magnetic materials with induced anisotropy
WO2003081973A1 (en) Electromagnetic wave shielding sheet, electromagnetic wave shielding transmission cable and electromagnetic wave shielding lsi
JPH07335442A (en) Filter
Senda Permeability measurement of soft magnetic films at high frequency and multilayering effect
EP1734542B1 (en) Electromagnetic noise suppressing thin film
JP2002084157A (en) Distributed constant common-mode filter
JP2003257739A (en) High-frequency device
Shimada Initial permeability of amorphous single and multilayered films
Senda et al. Permeability measurement in the GHz range for soft-magnetic film using the M/C/M inductance-line
JP2001221838A (en) Magnetic impedance effect element and production method thereof
US11005149B2 (en) Metaconductor skins for low loss RF conductors
JP3290828B2 (en) Thin film inductance element and method of manufacturing the same
JP2006005887A (en) Microwave transmission line and microwave filter
Frommberger et al. High-frequency magnetic properties of FeCoBSi/SiO/sub 2/and (FeCo/CoB)/SiO/sub 2/multilayer thin films
US8164001B2 (en) Multilayer printed circuit board
Kikitsu et al. Metallic/magnetic Multilayer for Wide-band Direct-on-chip EMI Shielding
JP2636580B2 (en) Magnetostatic wave device
JP3698939B2 (en) Magnetic sensor
JP3091817B2 (en) Micro magnetic element core