JPH07335376A - Infrared light source - Google Patents

Infrared light source

Info

Publication number
JPH07335376A
JPH07335376A JP6121501A JP12150194A JPH07335376A JP H07335376 A JPH07335376 A JP H07335376A JP 6121501 A JP6121501 A JP 6121501A JP 12150194 A JP12150194 A JP 12150194A JP H07335376 A JPH07335376 A JP H07335376A
Authority
JP
Japan
Prior art keywords
infrared light
heat
light source
light emitting
light emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6121501A
Other languages
Japanese (ja)
Inventor
Yoshihiko Murakami
嘉彦 村上
Masayuki Hashimoto
昌幸 橋本
Yukio Ikuhara
幸雄 生原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP6121501A priority Critical patent/JPH07335376A/en
Publication of JPH07335376A publication Critical patent/JPH07335376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To realize a high luminance with no unevenness with low power consumption, and downsize a device by combining an infrared light emitting boy consisting of a silicon carbide sintered body having prescribed physical properties, a leg part consisting of a heat resisting material having low heat conductivity, and a conductive member together. CONSTITUTION:A silicon carbide sintered body having a sintered body density of 2.8g/cm<3> or more and an electric specific resistance value at room temperature lower than 1OMEGAcm is thinned in the top end part, and superposed to form a flat infrared light emitting body 1. A heat resisting material of ceramic such as alumina having low heat conductivity is used for the leg part 2 between the light emitting body 1 and a electrode part 2, whereby the flow of heat from the light emitting body 1 is interrupted. A metal having high electric conductivity is used for a conductive member 4 between the electrode part 2 and the light emitting body 1. The light emitting body 1 and the leg part 3 are separately bonded to one side surface of the member 4 molded into a plate, and integrated thereto. The member 4 may consist of a thin film by evaporation. Thus, oxidation resistance, heat resistance, and thermal impact resistance are excellent, and S/N ratio is also enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐酸化性、耐熱性、及
び耐熱衝撃性に優れ、酸化雰囲気中で好適に使用される
赤外線用光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared light source which is excellent in oxidation resistance, heat resistance and thermal shock resistance and which is preferably used in an oxidizing atmosphere.

【0002】[0002]

【従来の技術】例えば、赤外線分光装置に使用される赤
外線用光源としては、従来、コイル状ニクロム線光源、
金属リボンフィラメント光源、珪化モリブデン光源、ネ
ルンスト灯、巻線セラミック灯、グローバ光源などがあ
る。
2. Description of the Related Art For example, as an infrared light source used in an infrared spectroscopic device, a coiled nichrome line light source has been conventionally used.
There are metal ribbon filament light sources, molybdenum silicide light sources, Nernst lamps, wound ceramic lamps, and global light sources.

【0003】[0003]

【発明が解決しようとする課題】ここで、赤外線分光光
度計のS/N比を向上させるためには、高輝度の光源が
必要である。光源の放射エネルギーは、絶対温度の4乗
に比例するので、高輝度の光源を得るには発熱体の温度
を高くする必要がある。しかし、従来の技術では下記に
述べるような不都合がある。
Here, in order to improve the S / N ratio of the infrared spectrophotometer, a light source with high brightness is required. Since the radiant energy of the light source is proportional to the fourth power of the absolute temperature, it is necessary to raise the temperature of the heating element to obtain a high-luminance light source. However, the conventional techniques have the following disadvantages.

【0004】コイル状ニクロム線、金属リボンフィラメ
ント光源は、大気中で1000℃以上では酸化が進み、
寿命が短くなってしまうという問題がある。そこで、こ
のような光源の酸化を防ぐためには不活性ガス中に封入
する必要があり、構造が複雑でコストが高くなってしま
うという問題を有している。また、珪化モリブデンも放
射率が比較的悪く、1700℃でも使用可能であるが、
非常に脆くて微細加工が難しく、細線化できないので、
発光部の集中化ができず、また、比抵抗が0.0003
と小さいため、発熱させるためにはある程度の大電流が
必要となる。
Coiled nichrome wire and metal ribbon filament light sources are oxidized at 1000 ° C. or higher in the atmosphere,
There is a problem that the life is shortened. Therefore, in order to prevent such oxidation of the light source, it is necessary to fill it with an inert gas, which has a problem that the structure is complicated and the cost becomes high. Also, molybdenum silicide has a relatively low emissivity and can be used even at 1700 ° C.
It is very fragile and difficult to micromachine, and it cannot be thinned, so
The light emitting part cannot be concentrated, and the specific resistance is 0.0003.
Since it is small, a certain amount of large current is required to generate heat.

【0005】さらに、ネルンスト灯、巻線セラミック灯
は、使用されるセラミックスの常温比抵抗が高いため
に、自己始動することができず、補助ヒーターが必要と
なり、光源構造が複雑になる。さらに微細加工が困難な
ために抵抗の集中化ができず、電極部分での接続までが
比較的長くなり、発光源として小型化できず、電力効率
が悪くなってしまう。しかも、セラミックスとして使用
するジルコニアやアルミナは、放射率が比較的悪く、2
〜20μmで平均0.75であり、3μmでは0.15
〜0.30まで低下する。
Further, the Nernst lamp and the wound-ceramic lamp cannot be self-started because the ceramics used have a high room temperature specific resistance, and an auxiliary heater is required, which complicates the light source structure. Further, since it is difficult to perform fine processing, the resistance cannot be concentrated, the connection at the electrode portion becomes relatively long, the light emitting source cannot be downsized, and the power efficiency becomes poor. Moreover, zirconia and alumina used as ceramics have relatively low emissivity.
The average is 0.75 at ˜20 μm and 0.15 at 3 μm.
~ 0.30.

【0006】そして、グローバ光源は、光源素材に炭化
珪素を使用しているために放射率は非常に優れている
が、上述したネルンスト灯や巻線セラミック灯と同様の
欠点を有する。また、電極部分を水冷する必要があり、
構造が複雑で電力効率はさらに悪くなるという問題があ
る。赤外線分光光度計のS/N比を向上させるために
は、光源としては、高輝度であること、広い波長領
域で放射率が高いこと、発光部に温度むらがなくかつ
集中化していることが必要となる。の高輝度の光源を
得るためには、光源の放射エネルギーが、絶対温度の4
乗に比例するので、発熱体の温度を高くする必要があ
る。は広い波長領域で放射率が高くなる発熱体材料を
選択する必要がある。さらに重要なことは、の発光部
に温度むらがなく集中化していることである。通常、発
光源は、赤外線の発光体と、発光体から発散する光を集
光して閉口光束する光学系(リフレクター及びレンズ)
とからなる。その平行光束をガス測定セル内に通過させ
た後、赤外線検出器により、ガスで一部吸収された赤外
線を検出するという基本構造となっている。従って、赤
外線の平行光束性が良好でないと、測定セルの内壁に衝
突し、反射を繰り返すために、赤外線は減衰してしま
い、赤外線分光光度計のS/N比は極端に悪化する。赤
外線の強い平行光束を得るためには、温度むらのない、
集中化された点状或いは面状の発光源であることが望ま
しい。さらに発光部を集中化させることによって、電極
部分の温度が下がり、消費電力が低減されるために、熱
の影響からくる光学系の機械的な歪みによる平行光束の
ずれも防止することができる。しかし、従来の技術で
は、上記に述べたような不都合があり、このような理想
的な光源は存在しなかった。
Since the global light source uses silicon carbide as a light source material, it has a very excellent emissivity, but it has the same drawbacks as the above-mentioned Nernst lamp and wound ceramic lamp. Also, it is necessary to cool the electrode part with water,
There is a problem that the structure is complicated and the power efficiency becomes worse. In order to improve the S / N ratio of the infrared spectrophotometer, the light source must have high brightness, high emissivity in a wide wavelength range, and that the light emitting section has no temperature unevenness and is concentrated. Will be needed. In order to obtain the high brightness light source of
Since it is proportional to the power, it is necessary to raise the temperature of the heating element. It is necessary to select a heating element material that has a high emissivity in a wide wavelength range. What is more important is that there is no temperature unevenness in the light emitting part and the light is concentrated. Usually, the light emitting source is an infrared light emitting body and an optical system (reflector and lens) that collects light emitted from the light emitting body and closes it.
Consists of. After the parallel light flux is passed through the gas measuring cell, the infrared detector partially detects the infrared rays partially absorbed by the gas. Therefore, if the parallel luminous flux of the infrared rays is not good, the infrared rays are attenuated because they collide with the inner wall of the measurement cell and repeat reflection, so that the S / N ratio of the infrared spectrophotometer is extremely deteriorated. In order to obtain a strong parallel light flux of infrared rays, there is no temperature unevenness,
It is desirable to have a centralized point-shaped or planar light-emitting source. Further, by concentrating the light emitting portions, the temperature of the electrode portion is lowered and the power consumption is reduced, so that the deviation of the parallel light flux due to the mechanical distortion of the optical system due to the influence of heat can be prevented. However, the conventional technique has the disadvantages described above, and such an ideal light source does not exist.

【0007】本発明者らは、本願と同時に特許出願「赤
外線用光源及びその製造方法」を提案し、放射率が優れ
ている炭化珪素素材に着目し、焼結体密度が2.8g/
cm 3 以上で、室温での電気比抵抗値が1Ω・cm以下
の、緻密で放電加工が可能な炭化珪素焼結体からなる赤
外線発光源を開発した。もちろん、炭化珪素単体でも、
赤外線光源としても、上記のように従来には存在しない
理想的な光源であるが、炭化珪素は熱伝導が良いため
に、そのまま電極部分まで炭化珪素とすると、電極部分
の温度が上がってしまうという欠点を有していた。
At the same time as the present application, the present inventors filed a patent application “Red
Outer line light source and its manufacturing method "
Focusing on the existing silicon carbide material, the density of the sintered body is 2.8 g /
cm 3Above, electrical resistivity at room temperature is less than 1 Ω · cm
, Which consists of a dense and electric discharge machineable silicon carbide sintered body
We have developed an external light source. Of course, even with silicon carbide alone,
Even as an infrared light source, it does not exist conventionally as described above.
It is an ideal light source, but silicon carbide has good thermal conductivity.
In addition, if the electrode portion is made of silicon carbide as it is, the electrode portion
It had the drawback that the temperature of the product would rise.

【0008】[0008]

【課題を解決するための手段】本発明では、この不具合
を鋭意検討した結果、焼結体密度が2.8g/cm3
上で、室温での電気比抵抗値が1Ω・cm以下の、緻密
で放電加工が可能な炭化珪素焼結体からなる赤外線光源
用発光体と、電極部への熱の伝導を遮断するために、脚
部を熱伝導率が低いセラミックス等の耐熱材料として熱
の流れを遮断し、一方で、導電するための金属、カーボ
ン等の電気伝導性の良好な部材からなる導電部材とを組
み合わせた複合体で、赤外線用光源とすることによっ
て、上記課題を解決した。
In the present invention, as a result of earnestly studying this inconvenience, as a result, a compact having a sintered body density of 2.8 g / cm 3 or more and an electrical resistivity value of 1 Ω · cm or less at room temperature is obtained. Infrared light source light emitter made of silicon carbide sintered body that can be electric discharge machined, and to prevent heat conduction to the electrodes, the legs are made of a heat-resistant material such as ceramics with low thermal conductivity to allow heat flow. On the other hand, the above-mentioned problem was solved by using a composite body in which a conductive member made of a member having good electric conductivity such as a metal and carbon for conducting electricity is combined to form an infrared light source.

【0009】本発明において上記の課題を解決するため
の第1の手段は、焼結体密度が2.8g/cm3 以上で
あり、室温での電気比抵抗値が1Ω・cm以下である炭
化珪素焼結体からなる赤外線用発光体1と、該赤外線用
発光体1と該赤外線発光体1に電力を供給する電極部2
との間に介在して赤外線発光体1から電極部2への熱の
伝導を遮断する耐熱材料製からなる脚部3と、電極部2
から前記赤外線用発光体1へ通電するための導電部材4
とを備えた赤外線用光源である。
The first means for solving the above problems in the present invention is carbonization in which the density of the sintered body is 2.8 g / cm 3 or more and the electrical resistivity at room temperature is 1 Ω · cm or less. Infrared light emitter 1 made of a silicon sintered body, the infrared light emitter 1 and an electrode section 2 for supplying power to the infrared light emitter 1.
And a leg portion 3 made of a heat-resistant material which is interposed between the leg portion 3 and the electrode portion 2 to block heat conduction from the infrared light emitting body 1 to the electrode portion 2.
Conductive member 4 for energizing the infrared light emitter 1 from the
It is an infrared light source equipped with.

【0010】本発明の第2の手段は、上記第1の手段の
導電部材4を板状体とし、該導電部材4の一側面上の一
部位に前記赤外線用発光体1を接合し、導電部材4の同
一側面上の他の部位に前記脚部3をそれぞれ接合するこ
とにより、前記赤外線用発光体1と、前記脚部3と、前
記導電部材4とを一体化したことである。本発明の第3
の手段は、上記第1の手段の赤外線用発光体1と前記脚
部3とを接合して一体化すると共に、前記赤外線用発光
体1と前記脚部3とにまたがるように、蒸着等で形成し
た薄膜を前記導電部材4として配設したことである。
In the second means of the present invention, the conductive member 4 of the first means is formed into a plate-like body, and the infrared light emitting body 1 is joined to a part of one side surface of the conductive member 4 so that the conductive material 4 is electrically conductive. By joining the leg portions 3 to other portions on the same side surface of the member 4, the infrared light emitting body 1, the leg portion 3, and the conductive member 4 are integrated. Third of the present invention
Means for joining and integrating the infrared light emitter 1 and the leg portion 3 of the first means, and by vapor deposition or the like so as to straddle the infrared light emitter 1 and the leg portion 3. That is, the formed thin film is provided as the conductive member 4.

【0011】本発明の第4の手段は、上記第1乃至第3
の手段の赤外線用発光体は、微細な抵抗回路が密に形成
されてなる集中化された平面状発光部を有することであ
る。本発明の第5の手段は、上記第1乃至第4の手段の
耐熱材料製脚部は、セラミックスからなる低熱伝導性材
料で形成されてなることである。以下、本発明の炭化珪
素を含む赤外線用光源についてその詳細を説明する。
A fourth means of the present invention is to provide the above first to third means.
The infrared light emitter of the above means has a centralized planar light emitting portion in which fine resistance circuits are densely formed. A fifth means of the present invention is that the heat-resistant material leg portions of the first to fourth means are formed of a low heat conductive material made of ceramics. The details of the infrared light source containing silicon carbide of the present invention will be described below.

【0012】焼結体密度が2.8g/cm3 以上で、室
温での電気比抵抗値が1Ω・cm以下の炭化珪素焼結体
を、放電加工により、先端部分を細線化して重ね合わせ
た平面状とし、細線化した1本1本の線が互いに輻射熱
を受けるようにした構造とする。脚部は熱の流れを遮断
するために、熱伝導率の低いアルミナ、ジルコニア、フ
ォルステライト、ステアタイトなどのセラミックス製の
耐熱材料を使用することが望ましい。これは、材料の構
造を空隙率の高いものにすることで熱伝導率を下げた材
料も使用することができる。
A silicon carbide sintered body having a sintered body density of 2.8 g / cm 3 or more and an electric resistivity value of 1 Ω · cm or less at room temperature was thinned by electric discharge machining and superposed. The structure is flat and each thinned wire receives radiant heat from each other. In order to block the flow of heat in the legs, it is desirable to use a heat-resistant material made of ceramics such as alumina, zirconia, forsterite, and steatite, which has a low thermal conductivity. For this, it is possible to use a material whose thermal conductivity is lowered by making the structure of the material have a high porosity.

【0013】導電部材としては、電気伝導率が高い、ニ
ッケル、銅、白金、金、銀、カーボン等を使用すること
ができる。そして、上記炭化珪素焼結体からなる赤外線
用発光体と、上記耐熱材料製脚部と、導電部材とを複合
一体化して赤外線用光源を得る。ここに、複合一体化す
る方法に一例としては、導電部材を板状体とし、該板状
体の一側面上の一部位に前記赤外線用発光体を、同一側
面上の他部位に前記赤外線用発光体をそれぞれ接合する
ことにより、前記赤外線用発光体と、前記耐熱材料製脚
部と、前記導電部材とを一体化する。なお、赤外線用発
光体と耐熱材料製脚部との間には適度な空間を設けても
良く、または空間を設けることなく両者が只単に接する
ようにしても良く、更に両者を接合しても良い。
As the conductive member, nickel, copper, platinum, gold, silver, carbon or the like having high electric conductivity can be used. Then, the infrared light emitter made of the silicon carbide sintered body, the heat-resistant material leg portion, and the conductive member are combined and integrated to obtain an infrared light source. Here, as an example of the method of composite integration, the conductive member is a plate-shaped member, the infrared emitter is provided at a part of one side surface of the plate-shaped member, and the infrared emitter is provided at another portion on the same side surface. By joining the light emitting bodies, the infrared light emitting body, the heat-resistant material leg portion, and the conductive member are integrated. It should be noted that an appropriate space may be provided between the infrared light emitter and the heat-resistant material leg portion, or both may be simply in contact with each other without providing a space. good.

【0014】また、一体化する他の方法としては、赤外
線用発光体と前記耐熱材料製脚部とを接合一体化すると
共に、赤外線用発光体と耐熱材料製脚部とにまたがるよ
うに、蒸着等で形成された薄膜を前記導電部材として配
設することにより、前記赤外線用発光体と、前記耐熱材
料製脚部と、前記導電部材とを一体化する。なお、接合
するに際しては、従来公知の接合方法を使用することが
できる。例えば、炭化珪素発光体と脚部とを、あらかじ
め接合部分をメタライズする。メタライズの材料は一般
に用いられるものであるので良いが、ある程度耐熱性が
ある材料が望ましい。例えば、銀−銅−チタンや、銀−
チタン、ニッケル−チタン、金−チタン、白金−チタン
などが好適である。メタライズ方法は、適当に選択した
金属粉末をめのう乳鉢に入れて良く混合し、スクリーン
油を用いてペースト状にし、接合部分に塗布する。次に
塗布した炭化珪素発光体と脚部を真空乾燥機で100か
ら150℃程度で30分程度乾燥させた後、真空炉に入
れて必要な温度で熱処理する。
As another method of integration, the infrared light emitter and the heat-resistant material leg portion are joined and integrated, and vapor deposition is performed so as to straddle the infrared light emitter and the heat-resistant material leg portion. By disposing a thin film formed of, for example, the conductive member, the infrared light emitter, the heat-resistant material leg portion, and the conductive member are integrated. For joining, a conventionally known joining method can be used. For example, the silicon carbide luminescent material and the leg are preliminarily metallized at the joint. The metallization material may be a commonly used material, but a material having heat resistance to some extent is desirable. For example, silver-copper-titanium, silver-
Titanium, nickel-titanium, gold-titanium, platinum-titanium and the like are suitable. In the metallization method, an appropriately selected metal powder is placed in an agate mortar, mixed well, made into a paste using screen oil, and applied to the joint portion. Next, the coated silicon carbide luminescent material and the legs are dried by a vacuum dryer at about 100 to 150 ° C. for about 30 minutes, then placed in a vacuum furnace and heat-treated at a necessary temperature.

【0015】次に、炭化珪素発光体と脚部の接合部分
と、電気電導率が高い金属薄膜を、ろう剤を挟んで真空
炉にセットし、必要な温度で熱処理する。接合するとき
のろう材としては、例えば銀ろう、ニッケルろう、金ろ
う、パラジウムろう、白金ろうなどの耐熱性が高いろう
材を使用することが好適である。このようにして接合さ
れた複合体を、アルミナ絶縁板とニッケル電極を含めて
メタライズ、ろう付けを行い、赤外線用光源を作製す
る。
Next, the joining portion between the silicon carbide luminescent material and the leg portion and the metal thin film having high electric conductivity are set in a vacuum furnace with a brazing agent sandwiched between them and heat-treated at a necessary temperature. As a brazing material for joining, it is preferable to use a brazing material having high heat resistance such as silver brazing material, nickel brazing material, gold brazing material, palladium brazing material, and platinum brazing material. The composite thus bonded is metallized and brazed including the alumina insulating plate and the nickel electrode to manufacture an infrared light source.

【0016】[0016]

【作用】本発明によれば、消費電力がかなり低減され、
電極部の温度も低くなったために、非常に低い消費電力
で面状で光むらのない高輝度の赤外線の光源が実現でき
るようになり、電極部分の水冷が不要であることはもち
ろん、その電源装置も含めたその周辺装置の大幅な小型
化が可能になった。さらに、発光源からくる熱が、周辺
機器の温度を上昇させるために起こっていた故障を現象
させる結果となった。
According to the present invention, the power consumption is significantly reduced,
Since the temperature of the electrode part has also decreased, it is now possible to realize a high-intensity infrared light source that is flat and has no unevenness of light with extremely low power consumption. It has become possible to significantly reduce the size of peripheral devices, including the device. In addition, the heat from the light emitting source causes a phenomenon that occurs because the temperature of the peripheral device is increased.

【0017】また、粒界に存在する不純物が少ないため
に、150W/m・K以上の高い熱電導率が得られる。
従って熱応答性も非常に速く、短時間に熱的平衡に達す
るために、赤外線のパルス点灯光源としても使用でき
る。
Further, since the impurities existing in the grain boundaries are small, a high thermal conductivity of 150 W / m · K or more can be obtained.
Therefore, the thermal response is very fast, and thermal equilibrium is reached in a short time, so that it can be used as a pulsed light source for infrared rays.

【0018】[0018]

【実施例】以下本発明の実施例を詳細に説明するが、本
発明はこれにより限定されるものではない。四塩化珪素
と、エチレンとを原料ガスとしてプラズマCVD法によ
り気相合成して得た平均粒子計0.01μm、比表面積
96m2 /gの非晶質炭化珪素超日粉末を5重量%と、
炭化珪素粉末として平均粒子径が0.7μm、BET比
表面積が13m2 /gのβ型炭化珪素粉末95重量%
を、メタノール中に分散せしめ、さらにボールミルで1
2時間混合した。
EXAMPLES Examples of the present invention will be described in detail below, but the present invention is not limited thereto. 5% by weight of amorphous silicon carbide ultra-day powder having an average particle size of 0.01 μm and a specific surface area of 96 m 2 / g, obtained by gas phase synthesis by plasma CVD using silicon tetrachloride and ethylene as raw material gases,
95% by weight of β-type silicon carbide powder having an average particle diameter of 0.7 μm and a BET specific surface area of 13 m 2 / g as silicon carbide powder
Dispersed in methanol, and then 1 with a ball mill.
Mix for 2 hours.

【0019】ついで、この混合物を乾燥して内径100
mmの黒鉛製モールドに充填し、ホットプレス装置に
て、アルゴン雰囲気下、プレス圧400kg/cm3
焼結温度2200℃の条件で90分間焼結した。得られ
た炭化珪素焼結体の密度を調べたところ、3.1g/c
3 であった。また、この焼結体の室温時における3点
曲げ強度は、JIS R−1601に準拠して測定した
ところ64.3kg/mm3 という結果が得られ、さら
に1500℃における3点曲げ強度は、68.5kg/
mmであった。また、室温時における電気比抵抗値を四
端子法で測定したところ0.05Ω・cmという結果が
得られ、さらに室温時の熱電導率をレーザーフラッシュ
法で測定したところ、197W/m.Kであった。ま
た、焼結体の表面を濃度10%のフェロシアン化カリウ
ムでエッチングし、走査型電子顕微鏡(SEM)により
焼結体の微細構造を調べたところ、ポアの大きさが1μ
m以下であり、その数も少なく、非常に均質かつ緻密な
組織であることが判明した。
The mixture is then dried to an inner diameter of 100.
mm graphite mold and filled with a hot press machine under an argon atmosphere at a press pressure of 400 kg / cm 3 ,
Sintering was carried out for 90 minutes at a sintering temperature of 2200 ° C. When the density of the obtained silicon carbide sintered body was examined, it was 3.1 g / c
It was m 3 . Further, the three-point bending strength of this sintered body at room temperature was 64.3 kg / mm 3 when measured according to JIS R-1601, and the three-point bending strength at 1500 ° C. was 68. 0.5 kg /
It was mm. When the electrical resistivity at room temperature was measured by the four-terminal method, a result of 0.05 Ω · cm was obtained, and when the thermal conductivity at room temperature was measured by the laser flash method, it was 197 W / m. It was K. The surface of the sintered body was etched with potassium ferrocyanide having a concentration of 10%, and the microstructure of the sintered body was examined by a scanning electron microscope (SEM). As a result, the pore size was 1 μm.
It was found to be a very homogeneous and dense structure with the number of m or less and the number thereof being small.

【0020】ついで、この直径100mm、厚さ5mm
の円板状炭化珪素焼結体をワイヤ放電加工により、図2
(1),(2)乃至図4(1),(2)に示すように切
り出し赤外線用光源の発光体11,21,31を作成し
た。この赤外線用光源の発光体の構造は、細線化(幅
0.4mm)した部分を平面状にできるだけ重ね合わ
せ、細線化した線の1本1本が互いに輻射熱を受けるよ
うにし、さらに、微細な抵抗回路が密に形成されてなる
集中化された平面状のものとした。
Next, the diameter is 100 mm and the thickness is 5 mm.
The disc-shaped silicon carbide sintered body of Fig.
As shown in (1), (2) to FIGS. 4 (1), (2), the light emitting bodies 11, 21, 31 of the infrared light source were cut out. The structure of the luminous body of this infrared light source is such that the thinned portions (width 0.4 mm) are overlapped as flatly as possible so that each thinned wire receives radiant heat from each other. The resistance circuit is densely formed and has a centralized planar shape.

【0021】これらの例では発光体の先端部12,2
2,32の線幅は、図2乃至図4に示すように、炭化珪
素の比抵抗、熱伝導性から、0.4〜1.0mm程度と
したが、常温及び高温強度の向上と、耐酸化性、耐熱性
の向上により、本来、制約されるものではない。また、
先端部の線と線との幅は、放電加工のワイヤーの幅が最
低で0.2mmなので、0.3mmとしたが、本来制約
されるものではない。
In these examples, the tip portions 12, 2 of the light emitter are
As shown in FIGS. 2 to 4, the line widths of 2 and 32 are set to about 0.4 to 1.0 mm in view of the specific resistance and thermal conductivity of silicon carbide. Originally, there is no restriction due to the improvement in chemical resistance and heat resistance. Also,
The width of the wire at the tip is 0.3 mm because the width of the wire for electrical discharge machining is at least 0.2 mm, but it is not limited in principle.

【0022】このようにして、先端部の線幅を0.4m
m、厚さ1.0mmとして折り返し、線と線との間の寸
法を0.3mmとした例示の形状の赤外線用光源を作成
した。赤外線用光源の詳細な寸法を図2乃至図4に示し
た。なお、ワイヤー放電加工はトランジスタパルス回路
方式の放電加工機を用いて行った。また、放電用ワイヤ
ーには外径が2mmの黄銅のワイヤーを用い、加工条件
としては、加工電圧を50V、パルス幅を1.2μse
c、休止時間を20μsecとした。
In this way, the line width of the tip is 0.4 m.
An infrared light source having an exemplary shape was prepared in which the distance between the lines was 0.3 mm and the line was folded back to have a thickness of 1.0 mm and a thickness of 1.0 mm. Detailed dimensions of the infrared light source are shown in FIGS. The wire electric discharge machining was performed using a transistor pulse circuit type electric discharge machine. A brass wire with an outer diameter of 2 mm was used as the discharge wire, and the processing conditions were a processing voltage of 50 V and a pulse width of 1.2 μse.
c, the rest time was 20 μsec.

【0023】放電加工を行なった後、放電加工面の表面
粗さを測定したところ、Rmaxが2.5μmであり、
上記炭化珪素焼結体は放電加工性が良好であることが確
認された。そして、図1に示すように、アルミナで脚部
42と絶縁板45と板状及び半円板状に加工したものを
使用し、また、ニッケル板製の導電部材43と電圧引加
用のニッケル製電極44により赤外線用光源を組み立て
た。
After the electric discharge machining, the surface roughness of the electric discharge machined surface was measured and found that Rmax was 2.5 μm.
It was confirmed that the above-mentioned silicon carbide sintered body had good electric discharge machinability. Then, as shown in FIG. 1, a leg 42, an insulating plate 45, and a plate-shaped or semi-circular disk-shaped member made of alumina are used, and a conductive member 43 made of a nickel plate and a nickel for voltage application are used. The light source for infrared rays was assembled by the electrode 44 made.

【0024】接合部分をメタライズするために、銀−銅
(27wt%)−チタン(5wt%)の混合粉をスクリ
ーン油とともにめのう乳鉢で混合してスラリーとして塗
布し、真空雰囲気中(5×10-5Torr以下)、87
0℃で熱処理してメタライズした。次に、銀−銅(28
wt%)の薄膜を使用して、炭化珪素、アルミナ、ニッ
ケル薄板を、真空雰囲気中(5×10-5Torr以
下)、850℃で熱処理して、ろう付けした。また、ア
ルミナ絶縁板45とニッケル製電極も、同様にメタライ
ズ、ろう付けし、図1のように、赤外線用光源として組
み立てた。
In order to metallize the joint portion, a mixed powder of silver-copper (27 wt%)-titanium (5 wt%) was mixed with a screen oil in an agate mortar and applied as a slurry, which was then applied in a vacuum atmosphere (5 × 10 − 5 Torr or less), 87
It heat-processed at 0 degreeC and metallized. Next, silver-copper (28
(wt%) thin film was used to heat braze silicon carbide, alumina, and nickel thin plates at 850 ° C. in a vacuum atmosphere (5 × 10 −5 Torr or less). Further, the alumina insulating plate 45 and the nickel electrode were similarly metallized and brazed and assembled as an infrared light source as shown in FIG.

【0025】本実施例に係る赤外線用光源の加熱実験の
結果を表1に示す。赤外線用光源に直流電圧を印加し
て、先端部温度が1000℃以上になるところで安定さ
せたものである。なお、先端部の温度は、サーモビュア
で、放射率を0.8として測定し、電極部の温度はK熱
電対を用いて測定した。
Table 1 shows the results of the heating experiment of the infrared light source according to this embodiment. A direct current voltage was applied to the infrared light source to stabilize the temperature at the tip temperature of 1000 ° C. or higher. The temperature at the tip was measured with a thermoviewer at an emissivity of 0.8, and the temperature at the electrode was measured using a K thermocouple.

【0026】[0026]

【表1】 [Table 1]

【0027】この加熱実験の後、さらに5時間加熱を続
けたが、どの形状の炭化珪素発光体の先端部もほとんど
消耗が認められず、さらにこの加熱試験を10回繰り返
した後でも先端部分及び炭化珪素とアルミナの接合部に
異常は認められなかった。また、最初の1000℃の加
熱には3分程度かかるものの、電圧の印加を切ると約2
0秒で先端部は400℃まで温度が低下し、その時点で
また印加すると、約5秒で1000℃に到達した。この
ON/OFFを1000回繰り返したが、炭化珪素先端
部分及び炭化珪素とアルミナの接合部にはほとんど異常
が認められたかった。
After this heating experiment, heating was continued for another 5 hours, but almost no wear was observed on the tip of any shape of the silicon carbide luminescent material, and after the heating test was repeated 10 times, the tip and No abnormality was found at the joint between silicon carbide and alumina. Also, although it takes about 3 minutes to initially heat at 1000 ° C, it takes about 2 minutes when the voltage is turned off.
At 0 seconds, the temperature of the tip portion decreased to 400 ° C., and when the voltage was applied again at that time, the temperature reached 1000 ° C. in about 5 seconds. This ON / OFF operation was repeated 1000 times, but it was desired that almost no abnormality was recognized in the tip portion of silicon carbide and the joint portion of silicon carbide and alumina.

【0028】また、電極部の温度上昇も有効に防止する
ことができた。
Further, the temperature rise of the electrode portion could be effectively prevented.

【0029】[0029]

【発明の効果】以上説明したように、本発明に係る赤外
線用光源によれば、耐酸化性、耐熱性、及び耐熱衝撃性
に優れ、酸化雰囲気中で好適に使用され、高輝度で放射
率が高く、平面状で光むらがなく、消費電力が小さい、
小型の電極部分へ熱伝導が少ない、即ち、電極部分の温
度上昇が少ないものとすることができる。
As described above, according to the infrared light source of the present invention, it has excellent oxidation resistance, heat resistance, and thermal shock resistance, is preferably used in an oxidizing atmosphere, and has high emissivity and high emissivity. High, flat, with no uneven light, and low power consumption,
It is possible to reduce the heat conduction to the small electrode portion, that is, the temperature rise of the electrode portion is small.

【0030】よって、非常に低い消費電力で高輝度で放
射率の高い赤外線の面状光源が実現できるようになり、
損失の少ない、強い平行光束を取り出すことができるた
めに、赤外線分光計として、S/N比が大幅に向上でき
るようになった。さらに、従来必要であった電極部分の
水冷も不要となり、赤外線発光源及びその周辺装置の大
幅な小型化が可能になった。
Therefore, it becomes possible to realize an infrared planar light source with high brightness and high emissivity with very low power consumption,
Since it is possible to extract a strong parallel light flux with little loss, the S / N ratio of the infrared spectrometer can be significantly improved. Further, the water cooling of the electrode portion, which was necessary in the past, is not necessary, and the infrared light emitting source and its peripheral devices can be greatly downsized.

【0031】そして、熱応答性も非常に速く、短時間に
熱的平衡に達するために、赤外線のパルス点灯光源とし
ても使用できるようになった。このように、赤外線発光
源として、S/N比の高い、耐久性が高い、長寿命で、
かつ非常に小型化されたために、工業用から研究用にい
たるまで、広い範囲で赤外線発光分析計の用途が拡大さ
れ、産業上多大な効果を奏するものとなる。
Since the thermal response is very fast and thermal equilibrium is reached in a short time, it can be used as a pulsed light source for infrared rays. Thus, as an infrared light emitting source, it has a high S / N ratio, high durability, long life,
Since the size of the infrared emission spectrometer is extremely small, the range of applications of the infrared emission spectrometer is expanded in a wide range from industrial use to research use, resulting in great industrial effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る赤外線用光源を示す正面図、平面
図及び側面図である。
FIG. 1 is a front view, a plan view and a side view showing an infrared light source according to the present invention.

【図2】本発明に係る赤外線用光源の発光体の構成例を
示す平面図及び側面図である。
FIG. 2 is a plan view and a side view showing a configuration example of a light emitting body of an infrared light source according to the present invention.

【図3】本発明に係る赤外線用光源の発光体の構成例を
示す平面図及び側面図である。
FIG. 3 is a plan view and a side view showing a configuration example of a light emitting body of an infrared light source according to the present invention.

【図4】本発明に係る赤外線用光源の発光体の構成例を
示す平面図及び側面図である。
FIG. 4 is a plan view and a side view showing a configuration example of a light emitting body of an infrared light source according to the present invention.

【符号の説明】[Explanation of symbols]

1 発光体 2 電極部 3 脚部 4 導電部材 1 Light emitter 2 Electrode part 3 Leg part 4 Conductive member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 焼結体密度が2.8g/cm3 以上であ
り、室温での電気比抵抗値が1Ω・cm以下である炭化
珪素焼結体からなる赤外線用発光体(1)と、 該赤外線用発光体(1)と該赤外線用発光体(1)に電
力を供給する電極部(2)との間に介在して赤外線発光
体(1)から電極部(2)への熱の伝導を遮断する耐熱
材料製からなる脚部(3)と、 電極部(2)から前記赤外線用発光体(1)へ通電する
ための導電部材(4)とを備えた赤外線用光源。
1. An infrared emitter (1) made of a silicon carbide sintered body having a sintered body density of 2.8 g / cm 3 or more and an electrical resistivity value of 1 Ω · cm or less at room temperature, The heat from the infrared light emitter (1) to the electrode portion (2) is interposed between the infrared light emitter (1) and the electrode portion (2) for supplying power to the infrared light emitter (1). An infrared light source comprising a leg portion (3) made of a heat-resistant material that blocks conduction, and a conductive member (4) for conducting electricity from the electrode portion (2) to the infrared light emitter (1).
【請求項2】 前記導電部材(4)を板状体とし、該導
電部材(4)の一側面上の一部位に前記赤外線用発光体
(1)を接合し、導電部材(4)の同一側面上の他の部
位に前記脚部(3)をそれぞれ接合することにより、 前記赤外線用発光体(1)と、前記脚部(3)と、前記
導電部材(4)とを一体化したことを特徴とする請求項
1記載の赤外線用光源。
2. The conductive member (4) is a plate-like member, and the infrared light emitter (1) is joined to a part of one side surface of the conductive member (4) to form the same conductive member (4). The infrared light emitter (1), the leg portion (3), and the conductive member (4) are integrated by joining the leg portions (3) to other portions on the side surface. The infrared light source according to claim 1, wherein
【請求項3】 前記赤外線用発光体(1)と前記脚部
(3)とを接合して一体化すると共に、前記赤外線用発
光体(1)と前記脚部(3)とにまたがるように、蒸着
等で形成した薄膜を前記導電部材(4)として配設した
ことを特徴とする請求項1記載の赤外線用光源。
3. The infrared light emitter (1) and the leg portion (3) are joined and integrated with each other, and straddle the infrared light emitter (1) and the leg portion (3). The infrared light source according to claim 1, wherein a thin film formed by vapor deposition or the like is provided as the conductive member (4).
【請求項4】 前記赤外線用発光体は、微細な抵抗回路
が密に形成されてなる集中化された平面状発光部を有す
ることを特徴とする請求項1乃至3のいずれかに記載の
赤外線用光源。
4. The infrared light emitter according to claim 1, wherein the infrared light emitter has a centralized planar light emitting portion in which fine resistance circuits are densely formed. Light source.
【請求項5】 前記耐熱材料製脚部は、セラミックスか
らなる低熱伝導性材料で形成されてなることを特徴とす
る請求項1乃至4いずれかに記載の赤外線用光源。
5. The infrared light source according to claim 1, wherein the heat-resistant material leg portion is formed of a low heat conductive material made of ceramics.
JP6121501A 1994-06-02 1994-06-02 Infrared light source Pending JPH07335376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6121501A JPH07335376A (en) 1994-06-02 1994-06-02 Infrared light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6121501A JPH07335376A (en) 1994-06-02 1994-06-02 Infrared light source

Publications (1)

Publication Number Publication Date
JPH07335376A true JPH07335376A (en) 1995-12-22

Family

ID=14812753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6121501A Pending JPH07335376A (en) 1994-06-02 1994-06-02 Infrared light source

Country Status (1)

Country Link
JP (1) JPH07335376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684845A1 (en) * 2011-03-08 2014-01-15 Shin-Etsu Chemical Co., Ltd. Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2684845A1 (en) * 2011-03-08 2014-01-15 Shin-Etsu Chemical Co., Ltd. Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body
EP2684845A4 (en) * 2011-03-08 2014-09-10 Shinetsu Chemical Co Readily sinterable silicon carbide powder and silicon carbide ceramic sintered body

Similar Documents

Publication Publication Date Title
CN102165841B (en) Ceramic heater
US6891263B2 (en) Ceramic substrate for a semiconductor production/inspection device
EP1229571B1 (en) Hot plate
JP4421595B2 (en) Heating device
JP2003133195A (en) Heater
EP1391919A1 (en) Ceramic heater for semiconductor manufactring/inspecting apparatus
TW201731082A (en) Infrared emitter
US20030170415A1 (en) Ceramic substrate
JP3618640B2 (en) Hot plate for semiconductor manufacturing and inspection equipment
TWI289321B (en) Holding body for semiconductor manufacturing apparatus
KR20190032499A (en) Manufacturing Method of Infrared Panel Radiator and Infrared Panel Radiator
JP2005018992A (en) Electrode embedding member for plasma generator
JP3156031U (en) Ceramic heater
JPH07335376A (en) Infrared light source
JP2005032842A (en) Electrode structure and ceramic joint
JP5026510B2 (en) Foil connected body for lamp, manufacturing method of foil connected body for lamp, interface provided with foil connected body, and lamp provided with foil connected body
JP2000286331A (en) Wafer support member
JP3162324B2 (en) Ceramic heater and oxygen sensor
JP3393953B2 (en) Infrared light source
JPH07324980A (en) Light source for infrared ray and its manufacture
US20030214258A1 (en) Selective emitter with electrical stabilization and switching
JP2005026585A (en) Ceramic joined body
JP2001274229A (en) Method of manufacturing electrostatic chuck and method of manufacturing ceramic heater
JPH08195101A (en) Infrared light source
JP3119264B2 (en) Tube with a closure made of functionally graded material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116