JPH07335266A - Battery assembly and its charger - Google Patents

Battery assembly and its charger

Info

Publication number
JPH07335266A
JPH07335266A JP6150516A JP15051694A JPH07335266A JP H07335266 A JPH07335266 A JP H07335266A JP 6150516 A JP6150516 A JP 6150516A JP 15051694 A JP15051694 A JP 15051694A JP H07335266 A JPH07335266 A JP H07335266A
Authority
JP
Japan
Prior art keywords
unit cell
battery
charging
voltage
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6150516A
Other languages
Japanese (ja)
Inventor
Takeji Tanjiyou
雄児 丹上
Koji Morita
幸治 盛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6150516A priority Critical patent/JPH07335266A/en
Publication of JPH07335266A publication Critical patent/JPH07335266A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent overcharging a battery assembly by connecting a bias circuit, containing the second battery of small capacity, in parallel to each of the first unit cell constituting the battery assembly, controlling a charge current in each unit cell, and charging the second unit cell, connected in parallel, with an excessive current. CONSTITUTION:In accordance with advancing a charge, voltage of a unit cell 1 is gradually restored. However, a rise of terminal voltage in each cell is not uniform due to dispersing capacity, and in the unit cell of small capacity, voltage reaches high voltage quickly, but it is slow in a cell of large capacity. When, in this case, a quick one first reaches 3V, a switching circuit 4, connected in parallel to this cell, is actuated to form a bypass circuit, and a charging current to the unit cell 1 is partly guided to a unit cell 2 through this bypass circuit. In this way, when each of all the cells reaches 3V, terminal voltage of a battery assembly is generated 90V, to reach the switching voltage of a charger 5, and it is changed to a fixed voltage charge. When the charging current is decreased to 0 or to approach 0, charging is stopped as fully charged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複数個の電池を直例
に接続した組電池及びその充電装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery in which a plurality of batteries are directly connected and a charging device for the assembled battery.

【0002】[0002]

【従来の技術】近年、各種の機器を小型化やコードレス
化する傾向があるので、それらの傾向に起因して、電池
の需要が増大している。なかでも、とくに繰り返し充放
電可能な二次電池はその優れた経済性と放電特性より幅
広く各分野で使用されており、需要が高まる一方であ
る。
2. Description of the Related Art In recent years, various devices tend to be miniaturized and cordless, so that the demand for batteries is increasing due to these trends. Especially, rechargeable secondary batteries, which can be repeatedly charged and discharged, are widely used in various fields due to their excellent economic efficiency and discharge characteristics, and the demand is increasing.

【0003】二次電池の充電特性に関しては、例えば、
非水系二次電池の場合は、電池の端子電圧はその電池内
の電気量に強く相関する。すなわち、放電された電池を
充電するときに電池内の電気量が増すにつれて端子電圧
が上昇する。そして、満充電になった電池になお充電を
続けると端子電圧が続けて上昇する。このように端子電
圧が満充電のときの端子電圧より高くなると、電池容量
が低下し、性能が劣化してしまう。また電池内部にはガ
スが発生する恐れもある。
Regarding the charging characteristics of the secondary battery, for example,
In the case of a non-aqueous secondary battery, the terminal voltage of the battery has a strong correlation with the amount of electricity in the battery. That is, when charging a discharged battery, the terminal voltage rises as the amount of electricity in the battery increases. When the fully charged battery is still charged, the terminal voltage continues to rise. When the terminal voltage becomes higher than the terminal voltage at the time of full charge, the battery capacity decreases and the performance deteriorates. In addition, gas may be generated inside the battery.

【0004】この過充電による性能の劣化を防ぐための
対策としては、充電初期では定電流で充電し、充電の進
行とともに端子電圧が設定電圧に達したら定電圧充電に
移行して充電電流を減少しながら充電を続け、そして充
電電流が流れなくなったら、または0に近くなったら充
電を停止するという充電方法が用いられる。しかし、こ
の方法を利用して直列に接続された組電池を充電しよう
とすると、組電池を構成する各単電池の容量及び内部の
状態により充電反応が一様に進行しないので、充電反応
の遅いものは充電不足になったり、反応の早いものは過
充電になったり、結果的に各単電池の容量が異なってし
まい、組電池としては容量の小さい単電池の容量分しか
放電できなくなってしまう。従って、直列に接続された
組電池に対して充電を行なうときにはそれを構成する各
単電池を一様な充電状態にそろえる必要がある。
As a measure for preventing the performance deterioration due to this overcharging, charging is performed with a constant current in the initial stage of charging, and when the terminal voltage reaches a set voltage as the charging progresses, the charging current is reduced by shifting to constant voltage charging. However, the charging method is used in which the charging is continued and the charging is stopped when the charging current stops flowing or approaches 0. However, when attempting to charge a battery pack connected in series using this method, the charging reaction does not proceed uniformly due to the capacity and internal state of each battery cell that constitutes the battery pack, so the charging reaction is slow. Insufficient charging of items, overcharging of fast-reacting items, resulting in different cell capacities, and as a battery pack, only the capacity of a small cell can be discharged. . Therefore, when the assembled batteries connected in series are charged, it is necessary to arrange the individual cells constituting the assembled batteries in a uniform charged state.

【0005】そのため、特開平4−366564には組
電池を構成する各単電池を連結するそれぞれの端子より
外部へ中間端子を設け、この中間端子より単電池ごとに
充電を行なう方法が提案されている。
Therefore, Japanese Patent Laid-Open No. 4-366564 proposes a method in which an intermediate terminal is provided to the outside from each terminal connecting the individual cells forming the assembled battery, and the individual cells are charged from the intermediate terminal. There is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うに構成された組電池にあっては、充電のときには単電
池ごとに充電する方法となっていたため、組電池の充電
時間が単電池の個数分だけかかることになる。または単
電池個数分の充電器が必要になるという問題があった。
従って、この発明は、上記従来の問題点に鑑み、簡単な
構成の単電池のバラツキによる性能低下が発生しない組
電池及びその充電装置を提供することを目的とする。
However, in the assembled battery configured as described above, since the method of charging each single battery at the time of charging, the charging time of the assembled battery is equal to the number of single batteries. It will only take. Alternatively, there is a problem that a charger for the number of unit cells is required.
Therefore, in view of the above-mentioned conventional problems, it is an object of the present invention to provide an assembled battery and a charging device for the assembled battery, in which the performance is not deteriorated due to the variation in the unit cells.

【0007】[0007]

【課題を解決するための手段】本発明は、複数の第1の
単電池がそれぞれ直列に接続されている組電池におい
て、前記第1の単電池にバイパス回路が並列に接続さ
れ、該バイパス回路は前記第1の単電池の端子電圧を検
出する電圧手段と、前記バイパス回路の動作を決定する
スイッチング手段と、第2の単電池とを有し、前記組電
池が充電装置により充電されるときに前記第1の単電池
の端子電圧が検出され、その検出値が所定の値に達した
とき、前記スイッチング手段が作動し前記第1の単電池
への充電電流が前記第2の単電池に流れるように構成さ
れた組電池とした。請求項4記載の発明は、組電池の充
電装置として、充電の初期に定電流で充電し組電池の電
圧が所定の電圧値に達した後定電圧で充電するものとし
た。
According to the present invention, in an assembled battery in which a plurality of first cells are connected in series, a bypass circuit is connected in parallel to the first cells and the bypass circuit is connected. Has a voltage unit for detecting the terminal voltage of the first unit cell, a switching unit for determining the operation of the bypass circuit, and a second unit cell, and when the assembled battery is charged by a charging device. When the terminal voltage of the first unit cell is detected, and when the detected value reaches a predetermined value, the switching means is activated and the charging current to the first unit cell is changed to the second unit cell. The assembled battery was designed to flow. According to a fourth aspect of the present invention, as a battery charger for an assembled battery, the assembled battery is charged with a constant current at the initial stage of charging and then charged with a constant voltage after the voltage of the assembled battery reaches a predetermined voltage value.

【0008】[0008]

【作用】請求項1記載の組電池では、組電池を構成する
各第1の単電池に第2の単電池を有するバイパス回路が
並列に接続され、第1の単電池が満充電になったときに
充電電流がバイパス回路に流れ第2の単電池を充電する
ようにしたから、組電池全体は過充電することがなく電
池の寿命を延長するとともに、バイパスさせた電流の利
用が可能で、抵抗などを用いた場合と比べバイパス電流
による発熱を抑さえることができる。また、バイパス回
路の電源供給をバイパス内の第2の単電池で負担するも
のとしたときには第1の単電池のエネルギー利用率が向
上する。さらに、第1の単電池と第2の単電池は共通の
電槽内に設けられ、電極を共有すると組電池をコンパク
ト化することができる。
In the assembled battery according to claim 1, a bypass circuit having a second unit cell is connected in parallel to each of the first unit cells constituting the assembled battery, and the first unit cell is fully charged. Since the charging current sometimes flows into the bypass circuit to charge the second single battery, the entire battery pack is not overcharged, the battery life is extended, and the bypassed current can be used. It is possible to suppress heat generation due to the bypass current as compared with the case where a resistor or the like is used. Further, when the power supply of the bypass circuit is assumed to be borne by the second cell in the bypass, the energy utilization rate of the first cell is improved. Furthermore, if the first cell and the second cell are provided in a common battery case and the electrodes are shared, the assembled battery can be made compact.

【0009】請求項4記載の充電装置では、請求項1記
載の組電池に対して、充電初期では定電流で、充電末期
になると定電圧で充電するようにしたから、充電末期で
は組電池の充電電流が減少していくため、第2の単電池
に流れるバイパス電流値を小さくすることができる。こ
れにより、組電池全体のエネルギー効率を向上させるこ
とができる。
In the charging device according to the fourth aspect, the assembled battery according to the first aspect is charged with a constant current at the initial stage of charging and with a constant voltage at the final stage of charging. Since the charging current decreases, the value of the bypass current flowing through the second cell can be reduced. Thereby, the energy efficiency of the whole assembled battery can be improved.

【0010】[0010]

【実施例】図1は、本発明の実施例を示す。 まず、構
成を説明する。30個の非水系の単電池1、1a、…、
1bが直列に接続されるとともに、各単電池1、1a、
…、1bには並列に電圧検出回路3とスイッチング回路
4及び非水系の単電池2からなるバイパス回路10、1
0a、…、10bが接続され、組電池を構成する。組電
池両端の正、負極はそれぞれ充電器5の正、負出力端子
と接続される。各単電池1の設定電圧は3Vとし、スイ
ッチング回路4の動作電圧もそれに合わせて3Vに設定
してある。そして充電器5は、充電初期は定電流で充電
し、充電末期は定電圧で充電する方式で、その切り替え
る電圧を90Vに設定してある。単電池2は充電の初期
は放電した状態にある。
FIG. 1 shows an embodiment of the present invention. First, the configuration will be described. 30 non-aqueous cells 1, 1a, ...
1b are connected in series and each of the cells 1, 1a,
... 1b is a bypass circuit 10 including a voltage detection circuit 3, a switching circuit 4 and a non-aqueous battery cell 2 in parallel.
0a, ..., 10b are connected to form an assembled battery. The positive and negative electrodes on both ends of the assembled battery are connected to the positive and negative output terminals of the charger 5, respectively. The set voltage of each unit cell 1 is set to 3V, and the operating voltage of the switching circuit 4 is also set to 3V accordingly. The charger 5 is charged by a constant current at the beginning of charging and at a constant voltage at the end of charging, and the switching voltage is set to 90V. The unit cell 2 is in a discharged state at the beginning of charging.

【0011】まず、放電された状態にある組電池に充電
器5により充電を行なうと、初期では組電池の端子電圧
が低いので、充電器5が定電流で充電する。その間各単
電池の端子電圧も低いのでスイッチング回路4がOFF
状態で、単電池1のバイパス回路は稼働せず、単電池1
のみが充電される。充電の進行に連れて単電池1の電圧
は徐々に回復する。しかし、各電池の端子電圧の上昇は
容量のバラツキのため均一のものでなく、容量の小さい
単電池は早く高い電圧に到達し、容量の大きい電池の上
昇は遅い。その早いものが最初に3V電圧に達すると、
それに並列に接続されているスイッチング回路4が作動
し、バイパス回路が形成されて、単電池1への充電電流
の一部がこのバイパス回路を通して単電池2へ導かれ
る。
First, when the battery pack in a discharged state is charged by the charger 5, since the terminal voltage of the battery pack is low at the initial stage, the battery charger 5 charges with a constant current. During that time, the terminal voltage of each cell is also low, so the switching circuit 4 is turned off.
In this state, the bypass circuit of unit cell 1 does not operate, and unit cell 1
Only charged. The voltage of the unit cell 1 gradually recovers as the charging progresses. However, the increase in the terminal voltage of each battery is not uniform due to the variation in the capacity, and a single battery with a small capacity reaches a high voltage quickly and a battery with a large capacity rises slowly. When the first one reaches 3V voltage,
The switching circuit 4 connected in parallel to it operates to form a bypass circuit, and a part of the charging current to the unit cell 1 is guided to the unit cell 2 through this bypass circuit.

【0012】このようにして、図2の実線のように各電
池ともに3Vに達したときには組電池の端子電圧が90
Vとなり、充電器5の切り替える電圧に達し、充電方式
は定電流充電から定電圧充電に変わる。こうして、定電
圧で組電池に充電をし続け、充電電流が0またはそれに
近くなると満充電と判断し充電を停止する。こうするこ
とによって、各単電池1の充電状態が図2の点線のよう
なバイパス回路10が接続される前のばらばらから実線
のように一様となり、組電池のサイクル寿命も図3に示
すように点線から実線で示したように大きく延びる。
In this way, the terminal voltage of the assembled battery is 90 when each battery reaches 3V as shown by the solid line in FIG.
The voltage becomes V and reaches the switching voltage of the charger 5, and the charging method changes from constant current charging to constant voltage charging. In this way, the assembled battery is continuously charged at a constant voltage, and when the charging current becomes 0 or close to it, it is determined that the battery is fully charged and the charging is stopped. By doing so, the state of charge of each unit cell 1 becomes uniform as shown by the dotted line in FIG. 2 before the bypass circuit 10 is connected, and as shown by the solid line, and the cycle life of the assembled battery is also as shown in FIG. It greatly extends from the dotted line to the solid line.

【0013】バイパス回路の具体例を図4に示す。抵抗
R3、ダイオードDはアンプAの出力を反転させるしき
い値を設定するためのものであり、アンプAとともに比
較器を構成する。抵抗R1、抵抗R2は単電池1の端子
電圧を分圧してアンプAとともに電圧を検出する回路を
構成する。その検出電圧が前記しきい値に達するとアン
プAの出力が反転する。このアンプAの出力によりオ
ン、オフするトランジスタTが単電池2への充電路を開
閉するようになっている。
A concrete example of the bypass circuit is shown in FIG. The resistor R3 and the diode D are for setting a threshold value for inverting the output of the amplifier A, and constitute a comparator together with the amplifier A. The resistors R1 and R2 form a circuit that divides the terminal voltage of the unit cell 1 and detects the voltage together with the amplifier A. When the detected voltage reaches the threshold value, the output of the amplifier A is inverted. The transistor T that is turned on and off by the output of the amplifier A opens and closes the charging path to the unit cell 2.

【0014】組電池が充電されると、単電池1の端子電
圧が上昇する。その電圧が抵抗R1とR2により分圧さ
れてからアンプAの正端子に印加する。印加された電圧
がしきい値電圧に達したらアンプAが反転し、それを受
けてトランジスタTがOFF状態からON状態に変わ
り、充電電流の一部が単電池1から分流され単電池2へ
流れそれを充電する。
When the assembled battery is charged, the terminal voltage of the unit cell 1 rises. The voltage is divided by the resistors R1 and R2 and then applied to the positive terminal of the amplifier A. When the applied voltage reaches the threshold voltage, the amplifier A is inverted, and accordingly, the transistor T changes from the OFF state to the ON state, and a part of the charging current is shunted from the unit cell 1 and flows to the unit cell 2. Charge it.

【0015】単電池の構造は図5に示す。正極12、1
3とそれらに挟まれた負極14からなる電極及び正、負
極の間を絶縁するために設けたセパレータ15、16を
渦巻状に巻いて円筒型のケース11内に挿入している。
ケース11は負極端子として負極14と接続されてい
る。電極の内周部にある正極12と負極14とにより単
電池1が形成されるとともに、外周部にある正極13と
負極14とにより単電池2が形成される。正極12及び
13がそれぞれのリード線17、18により制御回路1
9と接続され、リード線17はさらに正極であるふた2
1とも接続される。ふた21、ケース11の間にはガス
ケット20が填め合わされている。制御回路19は前記
図4の抵抗R1、R2、R3、ダイオードDおよびトラ
ンジスタTより構成される。
The structure of the unit cell is shown in FIG. Positive electrodes 12, 1
An electrode including 3 and a negative electrode 14 sandwiched between them and separators 15 and 16 provided for insulating between the positive electrode and the negative electrode are spirally wound and inserted in a cylindrical case 11.
The case 11 is connected to the negative electrode 14 as a negative electrode terminal. The unit cell 1 is formed by the positive electrode 12 and the negative electrode 14 on the inner periphery of the electrode, and the unit cell 2 is formed by the positive electrode 13 and the negative electrode 14 on the outer periphery. The positive electrodes 12 and 13 are connected to the control circuit 1 by the respective lead wires 17 and 18.
9 and the lead wire 17 is also the positive electrode 2
1 is also connected. A gasket 20 is fitted between the lid 21 and the case 11. The control circuit 19 is composed of the resistors R1, R2, R3, the diode D and the transistor T shown in FIG.

【0016】本実施例は、以上のように構成され、各単
電池1に単電池2を含むバイパス回路が設けられるた
め、単電池1は過充電されることがなく、サイクル寿命
の延長ができる。そしてバイパス電流が単電池2に消費
されるからバイパス電流による発熱を生じず、バイパス
回路は単電池2から電源供給を受けることが可能で、単
電池1のエネルギーの利用効率が向上する。さらに、単
電池2を含むバイパス回路を単電池1と一体化すると、
組電池及び充電装置の大型化を防止することもできる。
そして一体化した電池ユニットを一般の円筒型充電池と
同様に直列に並べて接続するだけですみ、取り扱いが簡
単である。
The present embodiment is configured as described above, and since each cell 1 is provided with the bypass circuit including the cell 2, the cell 1 is not overcharged and the cycle life can be extended. . Then, since the bypass current is consumed by the unit cell 2, heat generation due to the bypass current does not occur, and the bypass circuit can be supplied with power from the unit cell 2, and the energy use efficiency of the unit cell 1 is improved. Further, when a bypass circuit including the unit cell 2 is integrated with the unit cell 1,
It is also possible to prevent the assembled battery and the charging device from increasing in size.
Then, the integrated battery units are simply arranged and connected in series like a general cylindrical rechargeable battery, and the handling is easy.

【0017】本実施例は、以上の効果を有する他に、さ
らに以下の効果も得られる。一般に電池の寿命が来る
と、その容量が著しく減少する。その目安としては10
%の減少で判断する。つまり組電池を構成する各単電池
において容量最大と最小の差が10%以内か否かが判断
の基準とされる。その容量差を求めるには、従来、充電
電流を検出して、その検出値を各単電池において時間に
対して積分し、その積分した面積から充電された電気量
を得て、さらに電気量の差から容量差を求めるなど面倒
な手順を踏まねばならなかったが、実施例によると、容
量の異なる単電池はそのバイパスされた電流も異なるた
め、バイパス回路内の単電池2の充電量を測定すること
により、各単電池1間の容量差を求めることができる。
In addition to the above effects, this embodiment can also obtain the following effects. Generally, when a battery reaches the end of its life, its capacity is significantly reduced. The standard is 10
We judge by decrease of%. In other words, whether or not the difference between the maximum capacity and the minimum capacity of each unit cell that constitutes the assembled battery is within 10% is used as a criterion for determination. To obtain the capacity difference, conventionally, the charging current is detected, the detected value is integrated with respect to time in each cell, and the charged amount of electricity is obtained from the integrated area. Although a complicated procedure such as obtaining the capacity difference from the difference has to be taken, according to the embodiment, since the cells with different capacities have different bypassed currents, the charge amount of the cell 2 in the bypass circuit is measured. By doing so, it is possible to obtain the capacity difference between the unit cells 1.

【0018】例えば、直列に接続された各単電池1が容
量など全く同じものとすれば、バイパス電流が発生せ
ず、各単電池2の充電量がともに0のため、単電池1の
容量差が0という結果が得られる。しかし実際には、図
6の実線で示した組電池の充電電流に対し容量の小さい
単電池1の端子電圧はほかより早く設定電圧に達する。
これにより、バイパス電流が発生して、単電池1に流れ
る電流は点線で示したようにバイパス電流の発生しない
単電池1より減少される。従って、図6のハッチング部
分で示される電気量が単電池2に充電され、この電気量
はそれと接続している単電池1の容量と組電池内の容量
最大の単電池1の容量差を示している。単電池1の容量
の減少は単電池2の充電量に反映する。
For example, if the cells 1 connected in series have exactly the same capacity and the like, no bypass current is generated and the charging amount of each cell 2 is 0. The result is 0. However, in reality, the terminal voltage of the unit cell 1 having a small capacity with respect to the charging current of the assembled battery shown by the solid line in FIG. 6 reaches the set voltage earlier than others.
As a result, the bypass current is generated, and the current flowing through the unit cell 1 is reduced as compared with the unit cell 1 in which the bypass current is not generated as shown by the dotted line. Therefore, the amount of electricity indicated by the hatched portion in FIG. 6 is charged in the unit cell 2, and this amount of electricity indicates the difference between the capacity of the unit cell 1 connected to it and the capacity of the unit cell 1 having the maximum capacity in the assembled battery. ing. The decrease in the capacity of the unit cell 1 is reflected in the charge amount of the unit cell 2.

【0019】ちなみに、単電池2の容量は単電池1の容
量の10%ぐらいであると、前記のように、単電池2が
満充電になったら、それに並列に接続された単電池1は
寿命であると判断できる。本実施例においては単電池2
に非水系の二次電池を用いたため、電池の端子電圧とそ
の内部の電気量は1対1の関係を有するから、満充電に
対応する端子電圧を検出することにより、それに並列す
る単電池1は寿命がきていることを判断できる。なお、
単電池2は非水系に限らず、端子電圧と内部の電気量が
相関する電池であれば、任意の電池を使用できる。
By the way, if the capacity of the unit cell 2 is about 10% of the capacity of the unit cell 1, as described above, when the unit cell 2 is fully charged, the unit cells 1 connected in parallel with it have a limited life. Can be determined. In this embodiment, the unit cell 2
Since the non-aqueous secondary battery is used for the battery, there is a one-to-one relationship between the terminal voltage of the battery and the amount of electricity inside it. Therefore, by detecting the terminal voltage corresponding to full charge, the unit cell Can determine that he has reached the end of his life. In addition,
The unit cell 2 is not limited to the non-aqueous system, and any battery can be used as long as the terminal voltage correlates with the internal quantity of electricity.

【0020】[0020]

【発明の効果】以上の通り、この発明は、組電池を構成
する各第1の単電池に容量の小さな第2の電池を含むバ
イパス回路を並列に接続し、各単電池ごとに充電電流を
制御し過剰な電流は並列に接続された第2の単電池に充
電するものとしたため、組電池のサイクル寿命が向上す
るとともにバイパスされた電流の利用が可能で、第1の
単電池のエネルギーの利用率が向上すると同時にバイパ
ス電流による発熱を抑さえることができるという効果が
得られる。
As described above, according to the present invention, a bypass circuit including a second battery having a small capacity is connected in parallel to each of the first cells forming the assembled battery, and a charging current is supplied to each of the cells. By controlling and charging the excess current to the second cell connected in parallel, the cycle life of the assembled battery is improved and the bypassed current can be used, and the energy of the first cell can be saved. It is possible to obtain an effect that the utilization factor is improved and at the same time, the heat generation due to the bypass current can be suppressed.

【0021】さらには、第1の単電池と第2の単電池を
共通の電槽内に設け、電極を共有すると、組電池をコン
パクト化することもできる。かつ並列に接続された電池
の容量を測定することにより、直列に接続された各単電
池間の充電容量差を容易に測定でき、その容量差により
容易に単電池1の寿命を判断することができる。上記組
電池に対して充電を行なう充電手段は、充電の初期では
定電流で、充電の末期では定電圧で充電するようにした
ため、バイパス電流値を小さくすることができる。これ
により、第2の単電池が発熱せずにバイパス電流を受け
ることができる。
Furthermore, if the first cell and the second cell are provided in a common battery case and the electrodes are shared, the assembled battery can be made compact. Moreover, by measuring the capacities of the batteries connected in parallel, it is possible to easily measure the difference in charging capacity between the cells connected in series, and it is possible to easily determine the life of the unit cell 1 by the difference in capacity. it can. Since the charging means for charging the assembled battery charges at a constant current at the initial stage of charging and at a constant voltage at the final stage of charging, the bypass current value can be reduced. As a result, the second cell can receive the bypass current without generating heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】各単電池の端子電圧を示す図である。FIG. 2 is a diagram showing a terminal voltage of each unit cell.

【図3】組電池の容量とサイクル数の関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the capacity of a battery pack and the number of cycles.

【図4】バイパス回路の構成を示す回路図である。FIG. 4 is a circuit diagram showing a configuration of a bypass circuit.

【図5】組電池の構造を示す図である。FIG. 5 is a diagram showing a structure of an assembled battery.

【図6】バイパス電流と容量差の関係を示す図である。FIG. 6 is a diagram showing a relationship between a bypass current and a capacity difference.

【符号の説明】[Explanation of symbols]

1、1a、1b、2 単電池 3 電圧検出回路 4 スイッチング回路 5 充電器 10、10a、10b バイパス回路 11 ケース 12、13 正極 14 負極 15、16 セパレータ 17、18 リード線 19 制御回路 20 ガスケット 21 ふた R1、R2、R3 抵抗 A アンプ D ダイオード T トランジスタ 1, 1a, 1b, 2 Single cell 3 Voltage detection circuit 4 Switching circuit 5 Charger 10, 10a, 10b Bypass circuit 11 Case 12, 13 Positive electrode 14 Negative electrode 15, 16 Separator 17, 18 Lead wire 19 Control circuit 20 Gasket 21 Lid R1, R2, R3 resistance A amplifier D diode T transistor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の第1の単電池がそれぞれ直列に接
続されている組電池において、前記第1の単電池にバイ
パス回路が並列に接続され、該バイパス回路は前記第1
の単電池の端子電圧を検出する電圧検出手段と、スイッ
チング手段と、第2の単電池とを有し、前記組電池が充
電装置により充電されるときに前記第1の単電池の端子
電圧が検出され、その検出値が所定の値に達したとき、
前記スイッチング手段が作動し前記第1の単電池への充
電電流が前記第2の単電池に流れるように構成されたこ
とを特徴とする組電池。
1. In an assembled battery in which a plurality of first cells are connected in series, a bypass circuit is connected in parallel to the first cells, and the bypass circuit is the first circuit.
The voltage detecting means for detecting the terminal voltage of the unit cell, the switching means, and the second unit cell, and the terminal voltage of the first unit cell when the battery pack is charged by the charging device. When it is detected and the detected value reaches a predetermined value,
An assembled battery, wherein the switching means is activated so that a charging current to the first unit cell flows to the second unit cell.
【請求項2】 前記バイパス回路の電源供給が、前記第
2の単電池により行われることを特徴とする請求項1記
載の組電池。
2. The assembled battery according to claim 1, wherein power supply to the bypass circuit is performed by the second unit cell.
【請求項3】 前記第1の単電池の電極と前記第2の単
電池の電極は、共通の電槽内に設けられ、正極または負
極を共有することを特徴とする請求項1記載の組電池。
3. The set according to claim 1, wherein the electrode of the first unit cell and the electrode of the second unit cell are provided in a common battery case and share a positive electrode or a negative electrode. battery.
【請求項4】 複数の第1の単電池がそれぞれ直列に接
続されている組電池において、前記第1の単電池にバイ
パス回路が並列に接続され、該バイパス回路は前記第1
の単電池の端子電圧を検出する電圧検出手段と、スイッ
チング手段と、第2の単電池とを有し、前記組電池が充
電装置により充電されるときに前記第1の単電池の端子
電圧が検出され、その検出値が所定の値に達したとき、
前記スイッチング手段が作動し前記第1の単電池への充
電電流が前記第2の単電池に流れるように構成された組
電池の充電装置であって、充電の初期に定電流で充電し
組電池の端子電圧が所定の電圧値に達した後定電圧で充
電する充電回路を有することを特徴とする組電池の充電
装置。
4. In an assembled battery in which a plurality of first cells are connected in series, a bypass circuit is connected in parallel to the first cells, and the bypass circuit comprises the first cells.
The voltage detecting means for detecting the terminal voltage of the unit cell, the switching means, and the second unit cell, and the terminal voltage of the first unit cell when the battery pack is charged by the charging device. When it is detected and the detected value reaches a predetermined value,
What is claimed is: 1. A battery pack charging apparatus configured to operate the switching means so that a charging current for the first cell flows into the second cell, wherein the battery pack is charged with a constant current at the initial stage of charging. A battery charger for an assembled battery, comprising: a charging circuit that charges the battery at a constant voltage after the terminal voltage of the battery reaches a predetermined voltage value.
JP6150516A 1994-06-08 1994-06-08 Battery assembly and its charger Withdrawn JPH07335266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6150516A JPH07335266A (en) 1994-06-08 1994-06-08 Battery assembly and its charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6150516A JPH07335266A (en) 1994-06-08 1994-06-08 Battery assembly and its charger

Publications (1)

Publication Number Publication Date
JPH07335266A true JPH07335266A (en) 1995-12-22

Family

ID=15498573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6150516A Withdrawn JPH07335266A (en) 1994-06-08 1994-06-08 Battery assembly and its charger

Country Status (1)

Country Link
JP (1) JPH07335266A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239580B1 (en) 1998-12-01 2001-05-29 Sanyo Electric Co., Ltd. Method of controlling charging and discharging
US6304061B1 (en) 1998-11-30 2001-10-16 Sanyo Electric Co., Ltd. Method of controlling charging and discharging
JP2002246071A (en) * 2001-02-20 2002-08-30 Osaka Gas Co Ltd Electricity storage device
CN104009517A (en) * 2013-02-27 2014-08-27 蔡富生 Battery system for performing balance control with aid of reference voltage and balance control method
JP5623629B2 (en) * 2011-04-01 2014-11-12 トヨタ自動車株式会社 Remaining life judgment method
CN112874384A (en) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 Parallel charging circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304061B1 (en) 1998-11-30 2001-10-16 Sanyo Electric Co., Ltd. Method of controlling charging and discharging
US6239580B1 (en) 1998-12-01 2001-05-29 Sanyo Electric Co., Ltd. Method of controlling charging and discharging
JP2002246071A (en) * 2001-02-20 2002-08-30 Osaka Gas Co Ltd Electricity storage device
JP4526718B2 (en) * 2001-02-20 2010-08-18 株式会社Kri Power storage device
JP5623629B2 (en) * 2011-04-01 2014-11-12 トヨタ自動車株式会社 Remaining life judgment method
US9523740B2 (en) 2011-04-01 2016-12-20 Toyota Jidosha Kabushiki Kaisha Method for determining remaining lifetime
CN104009517A (en) * 2013-02-27 2014-08-27 蔡富生 Battery system for performing balance control with aid of reference voltage and balance control method
JP2014166139A (en) * 2013-02-27 2014-09-08 Fu-Sheng Tsai Method and device performing balancing control with aid of reference voltage information
CN112874384A (en) * 2021-02-26 2021-06-01 重庆星座汽车科技有限公司 Parallel charging circuit
CN112874384B (en) * 2021-02-26 2022-09-02 苏州清研精准汽车科技有限公司 Parallel charging circuit

Similar Documents

Publication Publication Date Title
JP4865103B2 (en) Charging apparatus and charging method
JP4798548B2 (en) Battery pack
JP3231801B2 (en) Battery charger
JP4388094B2 (en) Battery pack protection device and battery pack device
KR101399754B1 (en) Charge control device and method for secondary battery module
US11489349B2 (en) Battery control unit and battery system
JP4499164B2 (en) Charging apparatus and charging method
US20080122399A1 (en) Charging system, charging device and battery pack
US20090184685A1 (en) Battery pack and method of charging the same
US20210075230A1 (en) Battery control unit and battery system
JP3229696B2 (en) How to charge the battery
US20080024948A1 (en) Electrical device and battery pack
CN109313235B (en) Battery pack circuit and capacity coefficient detection method
JPH07335266A (en) Battery assembly and its charger
JPH07105986A (en) Battery pack
JPS6255274B2 (en)
JPH03173323A (en) Secondary battery charger
JPH11258280A (en) Voltage detector for secondary battery and secondary battery device
JPH07123604A (en) Charger for secondary battery
JPH04267078A (en) Combined battery and charging method thereof
JPH1174001A (en) Charging method for lead-acid battery
JPH11191932A (en) Quick charger for battery pack
JPH05336675A (en) Charging circuit for secondary battery
JPH02273036A (en) Hybrid battery
JP2001268817A (en) Series secondary cell group

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904