JPH0733517A - Oxide superconductive material and its production - Google Patents

Oxide superconductive material and its production

Info

Publication number
JPH0733517A
JPH0733517A JP4151278A JP15127892A JPH0733517A JP H0733517 A JPH0733517 A JP H0733517A JP 4151278 A JP4151278 A JP 4151278A JP 15127892 A JP15127892 A JP 15127892A JP H0733517 A JPH0733517 A JP H0733517A
Authority
JP
Japan
Prior art keywords
superconducting
superconductor
superconducting phase
critical temperature
chemicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4151278A
Other languages
Japanese (ja)
Inventor
Naomi Inoue
直美 井上
Atsuko Soeda
厚子 添田
Toshiya Doi
俊哉 土井
Seiji Takeuchi
瀞士 武内
Yuichi Kamo
友一 加茂
Shinpei Matsuda
臣平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4151278A priority Critical patent/JPH0733517A/en
Publication of JPH0733517A publication Critical patent/JPH0733517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductive material high in a critical electric current density also in a magnetic field and strengthened in the superconductive bonding of the crystal grain boundary against the magnetic field by mixing compounds giving the oxides of Ti, Pb, Sr, Ba, Ca and Cu and subsequently heating the mixture under specific conditions. CONSTITUTION:Tl2O3, PbO, BaO, SrO, CaO and CuO are mixed with each other, heated at >=840 deg.C and then at >=940 deg.C and subsequently at 880 deg.C to provide a superconductive material comprising a composition of the formula (Tl1-xPbx)i(Sr1-yBay)jCakCulOz (0.8<=i<=1.6, 1.6<=j<=2.4; 0.8<=k<=3.6; 1.6<=1<=4.6; 0.05<=x<=0.9; 0<=y<=0.5; 6<=z<=12), having a critical temperature of >=80K and having a non-superconductive phase comprising at least an element selected from Tl, Pb, Ba, Ca, and Cu left at parts of the crystal grain boundary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体ヘリウムまたは液
体窒素を冷媒とする、酸化物系超電導物質を用いた超電
導体の構成及びそれを用いた超電導線材,超電導コイ
ル,磁気シールド材、及びそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a superconductor using an oxide-based superconducting material, which uses liquid helium or liquid nitrogen as a refrigerant, and a superconducting wire, a superconducting coil, a magnetic shield, and the like. Manufacturing method.

【0002】[0002]

【従来の技術】従来の酸化物系高温超電導物質は、臨界
磁界の値が非常に低く、超電導物質に印加される磁場が
ない場合には、大きな超電導電流密度を確保することが
できたが、少しでも磁場が超電導物質にかかった場合に
はわずかの超電導電流しか流れない。従って、実際の超
電導電流を流す応用製品を作製していくうえでは適用が
難しかった。このため、磁場中でも高い臨界電流密度を
得る方法として、Y系超電導体では、Y1Ba2Cu3x
超電導体のマトリックス中に、Y2BaCuO5を微細分
散させることにより、ピニングセンタを導入するなどの
方法がとられている(村上雅人:日本金属学会会報,2
9,9(1990),749.)。
2. Description of the Related Art Conventional oxide high temperature superconducting materials have a very low critical magnetic field value, and when there is no magnetic field applied to the superconducting material, a large superconducting current density can be secured. When a magnetic field is applied to the superconducting material, even a small amount of superconducting current flows. Therefore, it was difficult to apply it when manufacturing an application product that actually flows a superconducting current. Therefore, as a method for obtaining a high critical current density even in a magnetic field, Y 1 Ba 2 Cu 3 O x is used in a Y-based superconductor.
A method such as introducing a pinning center by finely dispersing Y 2 BaCuO 5 in a superconductor matrix (Murakami Masato: The Japan Institute of Metals, 2)
9, 9 (1990), 749. ).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、ピニ
ングセンタが存在してバルク結晶粒内を大きな超電導電
流が流れても、線材などに適用していく上では、多結晶
体であることを避けられないため粒界の接合が磁場に対
して弱く、磁場中における超電導臨界電流密度を充分大
きな値として確保することについて考慮がなされておら
ず、僅かな磁場が超電導物質に印加されただけで臨界電
流密度が大きく低下するという問題があった。
The above-mentioned prior art, even if a pinning center exists and a large superconducting current flows in the bulk crystal grains, is a polycrystal when applied to a wire or the like. Since it is unavoidable, the junction of grain boundaries is weak against a magnetic field, and no consideration has been given to securing a superconducting critical current density in the magnetic field to a sufficiently large value, and even if a slight magnetic field is applied to the superconducting substance. There is a problem that the critical current density is greatly reduced.

【0004】本発明の目的は、臨界磁場の高い酸化物系
超電導物質で、かつ、磁場中でも高い臨界電流密度を有
し、結晶粒界の超電導結合を磁場に対して強くすること
にある。
An object of the present invention is to make an oxide-based superconducting material having a high critical magnetic field, have a high critical current density even in a magnetic field, and strengthen the superconducting coupling of grain boundaries against the magnetic field.

【0005】[0005]

【課題を解決するための手段】上記目的は、少なくとも
Tl,Sr,Ca,Cu,Oをその構成元素として含む
超電導物質を含んだ超電導体を少なくとも一部にTl,
Pb,Ba,Ca,Cuのうち少なくとも1種の元素か
らなる非超電導相が、超電導体より分解,生成する温度
領域に保持し、これを徐々に冷却しながら超電導相を結
晶成長させ、超電導物質からなる結晶粒の内部、或いは
外部の一部に非超電導物質もしくは超電導性の弱い部分
を分散させると同時に、超電導物質からなっている結晶
粒子同士の超電導結合性を高めることによって達成され
る。
The above object is to provide a superconductor containing a superconducting material containing at least Tl, Sr, Ca, Cu, O as its constituent elements at least in part.
A non-superconducting phase composed of at least one element of Pb, Ba, Ca, and Cu is kept in a temperature range where it decomposes and forms from the superconductor, and while gradually cooling this, the superconducting phase is crystal-grown to obtain a superconducting material. This is achieved by dispersing a non-superconducting substance or a portion having a weak superconducting property in the inside or outside part of the crystal grains consisting of, and at the same time increasing the superconducting bondability between the crystal grains consisting of the superconducting substances.

【0006】第二種超電導体である酸化物系超電導物質
を臨界温度以下に冷却し、超電導状態にしたものを磁場
中で保持すると、量子化された磁束線が超電導物質中に
侵入する。この状態で超電導物質に電流を流すと磁束線
にローレンツ力が働いて、磁束線が超電導物質の中を動
くことになる。磁束線が動くことによってエネルギが少
しロスし、電気抵抗の発生として観測される。従って、
磁場中においてより高い超電導臨界電流密度を確保する
には、超電導物質内部に侵入した磁束線が、電流を流し
た状態でも動かないようにするなんらかの措置を講じれ
ば良い。金属系及び金属間化合物系の超電導物質を用い
た従来の超電導線材では、超電導物質のマトリックス内
部に超電導性の弱い結晶粒界あるいは超電導でない析出
物を導入し、この部分(ピニングセンタ)に量子化され
た磁束線をトラップして侵入した磁束線を動かないよう
にして、磁場中でも実質上抵抗の発生のない状態で電流
を流せるようにした超電導体を作製している。
When an oxide type superconducting substance, which is a type II superconductor, is cooled to a temperature below the critical temperature and kept in a superconducting state in a magnetic field, quantized magnetic flux lines penetrate into the superconducting substance. When an electric current is applied to the superconducting substance in this state, the Lorentz force acts on the magnetic flux lines, and the magnetic flux lines move in the superconducting substance. The movement of the magnetic flux lines causes a slight loss of energy, which is observed as the generation of electrical resistance. Therefore,
In order to secure a higher superconducting critical current density in a magnetic field, some measure may be taken to prevent the magnetic flux lines penetrating inside the superconducting material from moving even when a current is applied. In a conventional superconducting wire using a metal-based or intermetallic compound-based superconducting substance, a weak superconducting grain boundary or a non-superconducting precipitate is introduced into the matrix of the superconducting substance, and quantization occurs at this part (pinning center). We are producing a superconductor that traps the generated magnetic flux lines and keeps the invading magnetic flux lines from moving so that a current can flow in a magnetic field with substantially no resistance.

【0007】超電導物質中に侵入した量子化された磁束
線をトラップして、電流を流した場合でも、磁束線が動
いて電気抵抗が発生しないように磁束線を固定化する働
きのある部分をピニングセンタと呼ぶ。超電導物質で構
成されたマトリックス中に非超電導部分を導入すると、
超電導物質が超電導状態に相転移する温度(以下Tcと
略記する)以下の温度で、非超電導部分に侵入した量子
化された磁束線が存在すると、エネルギ的に低い状態と
なり、磁束線はこの非超電導部分に固定されることにな
る。即ち、超電導物質のマトリックス中に非超電導部分
を導入するとそれらはすべてピニングセンタとなる可能
性を持っている。しかし、ピニングセンタを形成してい
る物質の種類,非超電導部分の大きさ,形状,分布状
態,非超電導部分同士の距離,超電導物質と非超電導物
質の界面の接合状態によって、量子化された磁束線を固
定する力(ピニングホース)は大きく違って来る。
Even if a quantized magnetic flux line that has penetrated into the superconducting material is trapped and an electric current is applied, a portion that has a function of fixing the magnetic flux line so that the magnetic flux line does not move and electrical resistance is not generated. It is called a pinning center. When a non-superconducting part is introduced into a matrix composed of superconducting materials,
If there is a quantized magnetic flux line penetrating into the non-superconducting portion at a temperature below the temperature (hereinafter abbreviated as Tc) at which the superconducting substance undergoes a phase transition to the superconducting state, the energies become low, and the magnetic flux line is It will be fixed to the superconducting part. That is, when the non-superconducting portion is introduced into the matrix of the superconducting material, they all have the possibility of becoming pinning centers. However, the quantized magnetic flux depends on the type of material forming the pinning center, the size, shape and distribution state of the non-superconducting portion, the distance between the non-superconducting portions, and the bonding state at the interface between the superconducting material and the non-superconducting material. The power to fix the wire (pinning hose) is very different.

【0008】ピニングセンタを超電導物質中に導入する
ことにより、超電導結晶粒内における臨界電流密度は高
くなるが、結晶粒子同士の結合が弱いと、わずかの印加
磁場で結晶粒子間に超電導電流が流れず、トランスポー
トJcが急激に減少する。粒界の接合性の改善は、超電
導体の実用化を考えた場合に重要な問題であり、溶融プ
ロセスはその有効な解決手段の一つである。溶融法で
は、液相が反応して超電導物質からなる結晶粒が成長
し、結晶粒同士の結合性が良くなる。しかし、反応しき
れなかった液相は、結晶粒界に残存し、弱接合の原因と
なる。このため、残存する液相はコントロールしなけれ
ばならない。本発明では、Tl,Pb,Ba,Ca,C
uのうち1種以上の元素からなる非超電導相が液相成分
にあたり、非超電導相が10%以下で残存するようにす
ることで、結晶粒界の結合性の良い超電導体が得られる
ことを見出した。
By introducing the pinning center into the superconducting substance, the critical current density in the superconducting crystal grains increases, but if the coupling between the crystal grains is weak, a superconducting current flows between the crystal grains with a slight applied magnetic field. However, the transport Jc sharply decreases. Improving the bondability of grain boundaries is an important issue when considering the practical application of superconductors, and the melting process is one of the effective means for solving it. In the melting method, the liquid phase reacts with each other to grow crystal grains made of a superconducting substance, and the bond between the crystal grains is improved. However, the liquid phase that has not completely reacted remains at the crystal grain boundaries and causes weak bonding. Therefore, the remaining liquid phase must be controlled. In the present invention, Tl, Pb, Ba, Ca, C
The non-superconducting phase composed of one or more elements of u corresponds to the liquid phase component, and the non-superconducting phase is allowed to remain at 10% or less, so that a superconductor having good bonding of crystal grain boundaries can be obtained. I found it.

【0009】本発明では、如何なる非超電導物質がピニ
ングセンタとなっているかを明確に特定することはでき
なかった。しかし、少なくともTl,Sr,Ca,C
u,Oからなる超電導体を、少なくとも一部にTl,P
b,Ba,Ca,Cuのうち1種以上の元素からなる非
超電導相が超電導体より分解,生成するような温度領域
で熱処理し、超電導体と非超電導相を共存させた状態で
超電導相を再結晶化させ、非超電導相の体積率が10%
以下になるように超電導体マトリックスの中に非超電導
相を分散析出させることによって、ピニングホースのか
なり強い、しかも粒界の結合性の良い、即ち、磁場中で
も超電導臨界電流密度の高い超電導体を作製することが
できることを発見するに至った。
In the present invention, it was not possible to clearly specify what kind of non-superconducting material was the pinning center. However, at least Tl, Sr, Ca, C
A superconductor consisting of u and O, with at least a portion of Tl and P
Heat treatment is performed in a temperature range where a non-superconducting phase composed of one or more elements of b, Ba, Ca, and Cu is decomposed and generated from the superconductor, and the superconducting phase is formed in the state where the superconductor and the non-superconducting phase coexist. Recrystallized, volume ratio of non-superconducting phase is 10%
By dispersing and precipitating a non-superconducting phase in a superconductor matrix as shown below, a superconductor with a pinning hose having a fairly high strength and good grain boundary connectivity, that is, a superconductor with a high superconducting critical current density even in a magnetic field, was prepared. I came to discover what I could do.

【0010】[0010]

【作用】本発明において、磁場中でも超電導臨界電流密
度の高い超電導体を作製することができる理由は次のよ
うに考えられる。超電導体を、800℃以上の温度で熱
処理すると、Tl,Pb,Ba,Ca,Cuのうち少な
くとも1種の元素からなる非超電導相が分解,生成して
くる。これらの非超電導相が分解,生成する温度で熱処
理した超電導体には、上記の非超電導の他、Ca,S
r,Cuの各元素から成り、(Ca,Sr)とCuの比
がほぼ1:1または2:1である相、(Ba,Sr)C
3と考えられるSr,Baからなる相の非超電導性の
物質が存在している。これをアニールすると、分解,生
成した非超電導相同士が反応して超電導相が再結晶化
し、Tl,Pb,Ba,Ca,Cuのうち1種以上の元
素からなる非超電導相が超電導体に残存する。この超電
導体の再結晶化反応の過程で、なんらかのピニングセン
タを導入すると考えられる。
In the present invention, the reason why a superconductor having a high superconducting critical current density can be produced even in a magnetic field is considered as follows. When the superconductor is heat-treated at a temperature of 800 ° C. or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca and Cu is decomposed and produced. In addition to the non-superconducting materials mentioned above, Ca, S and
(Ba, Sr) C, which is composed of r and Cu elements and has a ratio of (Ca, Sr) to Cu of approximately 1: 1 or 2: 1
There exists a non-superconducting substance having a phase composed of Sr and Ba which is considered to be O 3 . When this is annealed, the decomposed and generated non-superconducting phases react with each other and the superconducting phase is recrystallized, and the non-superconducting phase consisting of one or more of Tl, Pb, Ba, Ca, and Cu remains in the superconductor. To do. It is considered that some kind of pinning center is introduced in the process of the recrystallization reaction of the superconductor.

【0011】また、高い超電導臨界電流密度が得られた
もう一つの重要なポイントは、多結晶体である超電導体
に電流を流すために、超電導物質からなっている結晶粒
子同士の結合性を高めたことにある。液相が共存する状
態であると原子の拡散が速くなるので、超電導体を構成
する結晶粒界の結晶性が良くなる。超電導体を、Tl,
Pb,Ba,Ca,Cuのうち1種以上の元素からなる
非超電導相と共存させた状態で結晶成長させると、超電
導体を構成する結晶粒界の結晶性が向上するが、非超電
導相が10%以上残存すると、超電導物質からなる結晶
粒子の周りを取り囲むように非超電導相が存在するの
で、超電導物質からなる結晶粒子同士の結合を阻害し、
超電導電流が流れなくなるため、臨界電流密度が低くな
る。超電導相が成長するための反応時間を十分にとり、
残存する非超電導相の体積率が10%以下になるように
すると、非超電導相は、超電導体マトリックス中に分
散,析出し、超電導物質からなる結晶粒子同士の接合性
が高まり、高い臨界電流密度が得られたものと考えられ
る。
Another important point that a high superconducting critical current density is obtained is to increase the bonding property between crystal grains made of a superconducting substance in order to pass an electric current through a superconductor which is a polycrystalline body. There is something. In the state where the liquid phase coexists, the diffusion of atoms becomes faster, so that the crystallinity of the crystal grain boundaries forming the superconductor is improved. The superconductor is Tl,
When crystal growth is performed in the state of coexisting with a non-superconducting phase composed of one or more elements of Pb, Ba, Ca and Cu, the crystallinity of the crystal grain boundaries constituting the superconductor is improved, but the non-superconducting phase is When 10% or more remains, the non-superconducting phase exists so as to surround the crystal particles made of the superconducting substance, so that the binding of the crystal particles made of the superconducting substance is hindered,
Since the superconducting current does not flow, the critical current density becomes low. Take enough reaction time for the superconducting phase to grow,
When the volume ratio of the remaining non-superconducting phase is set to 10% or less, the non-superconducting phase disperses and precipitates in the superconducting matrix, the bondability between the crystal particles made of the superconducting substance increases, and the high critical current density is achieved. Is believed to have been obtained.

【0012】非超電導相が生成する温度は、超電導体の
組成によって変わってくるが、例えば、Tl:Pb:S
r:Ba:Ca:Cu=0.5:0.5:1.6:0.4:
2.0:3.0 の組成では、870℃で熱処理し、その組
織を観察すると、CaとPbを主成分とする非超電導相
が生成していた。また、880℃以上で熱処理すると、
BaとPbを主成分とする非超電導相が生成し、970
℃で焼成したものを室温まで急冷すると、Tl,Pb,
Ba,Cuを主成分とする非超電導相が生成していた。
これらの非超電導相は、液状であった形跡があった。こ
れらの非超電導相が分解,生成する温度で熱処理した超
電導体には、非超電導相の他、Ca,Sr,Cuの各元
素から成り、(Ca,Sr)とCuの比がほぼ1:1ま
たは2:1である相、(Ba,Sr)CO3と考えられる
Sr,Baからなる相の非超電導性の物質が存在してい
る。これを、850〜900℃でアニールすると、分
解,生成した非超電導相同士が反応して、超電導相が再
結晶化し、非超電導相のいずれか、あるいは複数の相、
すなわち、Tl,Pb,Ba,Ca,Cuのうち1種以
上の元素からなる非超電導相が超電導体に残存する。こ
の残存する非超電導相の種類はいずれでも良いが、残存
する体積率が10%以下になるようにすると、結晶粒子
同士の結合性の良い超電導体が得られる。また、蒸気圧
の高いTlをストイキオ組成より多めにすることによっ
て、Tlの蒸散による組成ずれを防ぎ、異相の析出を抑
えることが出来る。
The temperature at which the non-superconducting phase is generated varies depending on the composition of the superconductor, but for example, Tl: Pb: S.
r: Ba: Ca: Cu = 0.5: 0.5: 1.6: 0.4:
With the composition of 2.0: 3.0, when heat-treated at 870 ° C. and the structure thereof was observed, a non-superconducting phase containing Ca and Pb as main components was generated. Also, if heat treatment is performed at 880 ° C or higher,
A non-superconducting phase mainly composed of Ba and Pb is generated, and 970
When the product baked at ℃ is rapidly cooled to room temperature, Tl, Pb,
A non-superconducting phase composed mainly of Ba and Cu was generated.
There was evidence that these non-superconducting phases were liquid. In the superconductor heat-treated at a temperature at which these non-superconducting phases decompose and form, in addition to the non-superconducting phases, each element of Ca, Sr, and Cu has a ratio of (Ca, Sr) to Cu of about 1: 1. Alternatively, there is a non-superconducting substance having a phase of 2: 1 and a phase composed of Sr, Ba which is considered to be (Ba, Sr) CO 3 . When this is annealed at 850 to 900 ° C., the decomposed and generated non-superconducting phases react with each other, and the superconducting phase is recrystallized, so that one or more of the non-superconducting phases,
That is, the non-superconducting phase made of one or more elements among Tl, Pb, Ba, Ca, and Cu remains in the superconductor. The remaining non-superconducting phase may be of any type, but if the remaining volume ratio is 10% or less, a superconductor having good bonding between crystal grains can be obtained. Further, by making Tl having a high vapor pressure larger than the stoichiometric composition, compositional deviation due to evaporation of Tl can be prevented and precipitation of a different phase can be suppressed.

【0013】超電導体は、800℃以上の温度で溶融体
が生成し始めるため、800℃以上の温度、望ましくは
850℃以上の温度で熱処理を行う。熱処理時間は温度
との兼ね合いで溶融体の生成状況から決まり、低い方の
温度では長く、高温に成るほど短い時間で良い。また、
1100℃より高い温度で熱処理を行うと、Tlが蒸散
が著しく、溶融した相が超電導相に再結晶化できなくな
ってしまうため、1100℃以下の温度で熱処理を行うこと
が好ましい。熱処理は、Agパイプなどの封管中、或い
は、Tl雰囲気中で行うと、Tlの蒸散を抑えることが
できる。
The superconductor is subjected to heat treatment at a temperature of 800 ° C. or higher, preferably 850 ° C. or higher, because a melt starts to be generated at a temperature of 800 ° C. or higher. The heat treatment time depends on the temperature of the melt and is determined by the state of formation of the melt. The lower heat treatment time is longer and the higher heat treatment time is shorter. Also,
If the heat treatment is performed at a temperature higher than 1100 ° C., Tl is significantly evaporated and the melted phase cannot be recrystallized into a superconducting phase. Therefore, it is preferable to perform the heat treatment at a temperature of 1100 ° C. or lower. When the heat treatment is performed in a sealed tube such as an Ag pipe or in a Tl atmosphere, the evaporation of Tl can be suppressed.

【0014】[0014]

【実施例】以下、本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0015】(実施例1)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。この粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
5:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。粉末
を直径30mm,厚さ3mmのペレットに成型し、ふたのつ
いたアルミナるつぼ中で880℃,10時間大気中で焼
成する。得られた焼結体の粉末X線回折測定を行ったと
ころ、焼結体は、図3に示すような結晶構造を有する超
電導物質が90%以上含まれていることが確認された。
この焼結体を大気中で、970℃に加熱し、1時間保持
したのち、室温まで冷却した。得られた試料片の断面を
研磨し、走査型電子顕微鏡を用いて試料内部の組織を観
察した。生成している主な相は、EDX分析によりT
l,Pb,Ba,Cuの各元素から成り、その組成は、
Tl:Pb:Ba:Cu=0.6〜2.0:0.79〜2.
0:0.34〜1.0:3.04〜4.0であることが分か
った。その他、(Sr,Ca)CuO,CaOが析出して
いた。そこで970℃で1時間保持した後、880℃ま
で5℃/min.で冷却し20時間アニールを行なった。得
られた試料の試料片を断面研磨し、走査型電子顕微鏡を
用いて試料内部の組織を観察した。その結果、Tl0.5Pb
0.5Sr1.6Ba0.4Ca2Cu3O9で表される図3で示すような結
晶構造をもつ超電導物質が主結晶相であった。また、E
DX分析による組成が、Tl:Pb:Ba:Cu=0〜
0.46:1.1〜2.0:0.19〜1.0:0.25〜
0.85である非超電導相が生成していた。SEM像の
マッピングによって求めた該非超電導相の体積率は、5
%であった。その他、Tl0.5Pb0.5Sr1.6Ba0.4
1Cu27 で表される超電導物質及びCa,Sr,C
uからなる非超電導相、(Ba,Sr)CO3の非超電導
相が含まれていることが分かった。
Example 1 As a starting material, a purity of 99%
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. This powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 5: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. The powder is formed into pellets having a diameter of 30 mm and a thickness of 3 mm, and the pellets are fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG.
This sintered body was heated to 970 ° C. in the air, held for 1 hour, and then cooled to room temperature. The cross section of the obtained sample piece was polished, and the structure inside the sample was observed using a scanning electron microscope. The main phase generated is T by EDX analysis.
It consists of each element of l, Pb, Ba, Cu, and its composition is
Tl: Pb: Ba: Cu = 0.6-2.0: 0.79-2.
It was found to be 0: 0.34 to 1.0: 3.04 to 4.0. In addition, (Sr, Ca) CuO and CaO were precipitated. Therefore, after holding it at 970 ° C. for 1 hour, it was cooled to 880 ° C. at 5 ° C./min. A sample piece of the obtained sample was cross-section polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, Tl 0.5 Pb
The superconducting material represented by 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu 3 O 9 and having a crystal structure as shown in FIG. 3 was the main crystal phase. Also, E
The composition by DX analysis is Tl: Pb: Ba: Cu = 0 to
0.46: 1.1-2.0: 0.19-1.0: 0.25-
A non-superconducting phase of 0.85 was formed. The volume ratio of the non-superconducting phase obtained by mapping the SEM image is 5
%Met. Others, Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 C
a 1 Cu 2 O 7 superconducting material and Ca, Sr, C
It was found that a non-superconducting phase composed of u and a non-superconducting phase of (Ba, Sr) CO 3 were included.

【0016】この超電導体の超電導臨界温度を直流4端
子法で測定したところ123Kであった。また、VSM
装置でこの試料の77KにおけるB−Hカーブの測定を
行なったところ、印加磁場1テスラにおけるヒステリシ
スの大きさ(ΔM)は、20.0emu/cc であり、これよ
り、結晶粒子内を流れる臨界電流密度を求めるとJc=
40000A/cm2 であった。
The superconducting critical temperature of this superconductor was 123 K as measured by the DC 4-terminal method. Also, VSM
When the BH curve of this sample at 77 K was measured by the device, the magnitude of hysteresis (ΔM) at an applied magnetic field of 1 Tesla was 20.0 emu / cc, and from this, the critical current density flowing in the crystal grains was determined. Jc =
It was 40,000 A / cm 2 .

【0017】次に、得られた超電導体を粉砕して、外形
6mm,内径4mmの5wt%Pd−Auパイプに充填し、
外径0.5mmまで線引きした後、厚さ0.1mmまで圧延し
た。これを300mmの試料片として切り出し、酸素雰囲
気中で、30℃/min.で950℃まで昇温して1時間保
持したのち、30℃/min.で880℃まで冷却し、その
温度で20時間保持した。得られた試料について77
K,1テスラの磁場中で臨界電流密度を直流4端子法で
測定したところ、Jc=36000A/cm2であった。
Next, the obtained superconductor is crushed and filled in a 5 wt% Pd-Au pipe having an outer diameter of 6 mm and an inner diameter of 4 mm,
After drawing to an outer diameter of 0.5 mm, it was rolled to a thickness of 0.1 mm. This was cut out as a 300 mm sample piece, heated to 950 ° C. at 30 ° C./min. In an oxygen atmosphere and held for 1 hour, then cooled to 880 ° C. at 30 ° C./min. Held About the obtained sample 77
When the critical current density was measured by a direct current 4-terminal method in a magnetic field of K, 1 Tesla, it was Jc = 36000 A / cm 2 .

【0001】(実施例2)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。この粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
5:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。該粉
末を直径30mm,厚さ3mmのペレットに成型し、ふたの
ついたアルミナるつぼ中で880℃,10時間大気中で
焼成する。得られた焼結体の粉末X線回折測定を行った
ところ、該焼結体は、図3に示すような結晶構造を有す
る超電導物質が90%以上含まれていることが確認され
た。この焼結体を大気中で、980℃に加熱して1時間
保持したのち、30℃/min.で880℃まで冷却し、3
0時間保持した。得られた試料片の断面を研磨し、走査
型電子顕微鏡を用いて試料内部の組織を観察した。その
結果、Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu39
表される図3で示すような結晶構造を有する超電導物質
が主結晶相で、Tl,Pb,Ba,Cuの各元素から成
り、EDX分析による組成が、Tl:Pb:Ba:Cu
=0〜0.91:0.88〜2.0:0.68〜1.0:2.
79〜4.0 である非超電導相、およびPbとBaが主
成分でPb:Baが1:1である非超電導相が超電導結
晶粒子の粒間に、10%生成していることが分かった。
(Example 2) Purity 99% as a starting material
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. This powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 5: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. The powder is formed into pellets having a diameter of 30 mm and a thickness of 3 mm, and the pellets are fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG. This sintered body was heated to 980 ° C in the air and held for 1 hour, then cooled to 880 ° C at 30 ° C / min.
Hold for 0 hours. The cross section of the obtained sample piece was polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, the superconducting material represented by Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu 3 O 9 and having a crystal structure as shown in FIG. 3 is the main crystalline phase, and is composed of Tl, Pb, Ba, and Cu elements. And the composition by EDX analysis is Tl: Pb: Ba: Cu
= 0 to 0.91: 0.88 to 2.0: 0.68 to 1.0: 2.
It was found that a non-superconducting phase of 79 to 4.0 and a non-superconducting phase of Pb and Ba as main components and Pb: Ba of 1: 1 were formed in 10% between the grains of the superconducting crystal grains. .

【0002】また、試料を再び大気中で880℃に加熱
して30時間保持した。その結果、PbとBaが主成分
でPb:Baが1:1である非超電導相が超電導結晶粒
子の粒間に、7%生成していることが分かった。その
他、Ca,Sr,Cuからなる非超電導相,(Ba,S
r)CO3の非超電導相が析出していた。この超電導体の
臨界電流密度を直流4端子法で測定したところ、Jc=
33000A/cm2 であった。
The sample was again heated to 880 ° C. in the atmosphere and kept for 30 hours. As a result, it was found that a non-superconducting phase containing Pb and Ba as main components and Pb: Ba being 1: 1 was formed in 7% between the superconducting crystal grains. In addition, a non-superconducting phase composed of Ca, Sr, Cu, (Ba, S
The non-superconducting phase of r) CO 3 was deposited. When the critical current density of this superconductor was measured by the DC 4-terminal method, Jc =
It was 33000 A / cm 2 .

【0003】(実施例3)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。この粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
6:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。この
粉末を直径30mm,厚さ3mmのペレットに成型し、ふた
のついたアルミナるつぼ中で880℃,10時間大気中で
焼成する。得られた焼結体の粉末X線回折測定を行った
ところ、焼結体は、図3に示すような結晶構造を有する
超電導物質が90%以上含まれていることが確認され
た。この焼結体を大気中で、950℃に加熱して1時間
保持したのち、30℃/min.で880℃まで冷却し、3
0時間保持した。得られた試料片の断面を研磨し、走査
型電子顕微鏡を用いて試料内部の組織を観察した。その
結果、Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu39
表される図3で示すような結晶構造を有する超電導物質
が主結晶相で、Tl,Pb,Ba,Ca,Cuの各元素
から成り、EDX分析による組成が、Tl:Pb:B
a:Cu=0〜0.58:0.88〜2.0:0.57〜
1.0:1.70〜3.3 である非超電導相、およびPb
とCaが主成分でPb:Caがほぼ1:2である非超電
導相が5%生成していることが分った。その他、Ca,
Sr,Cuからなる非超電導相,(Ba,Sr)CO3
非超電導相が析出していた。
(Example 3) Purity 99% as a starting material
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. This powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 6: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. This powder is molded into pellets having a diameter of 30 mm and a thickness of 3 mm and fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG. This sintered body was heated to 950 ° C in the air and held for 1 hour, then cooled to 880 ° C at 30 ° C / min.
Hold for 0 hours. The cross section of the obtained sample piece was polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, the superconducting material represented by Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu 3 O 9 and having a crystal structure as shown in FIG. 3 is the main crystalline phase, and each of Tl, Pb, Ba, Ca, and Cu is It is composed of elements and the composition by EDX analysis is Tl: Pb: B.
a: Cu = 0 to 0.58: 0.88 to 2.0: 0.57 to
1.0: 1.70 to 3.3 non-superconducting phase, and Pb
It was found that 5% of non-superconducting phase having Ca as a main component and Pb: Ca of about 1: 2 was formed. Other, Ca,
A non-superconducting phase composed of Sr and Cu and a non-superconducting phase of (Ba, Sr) CO 3 were deposited.

【0004】この超電導体の77K,1テスラの磁場中
での臨界電流密度を直流4端子法で測定したところ、J
c=32000A/cm2 であった。
The critical current density of this superconductor in a magnetic field of 77 K, 1 Tesla was measured by the DC 4-terminal method.
It was c = 32000 A / cm 2 .

【0005】(実施例4)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。この粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
5:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。この
粉末を直径30mm,厚さ3mmのペレットに成型し、ふた
のついたアルミナるつぼ中で880℃,10時間大気中で
焼成する。得られた焼結体の粉末X線回折測定を行った
ところ、焼結体は、図3に示すような結晶構造を有する
超電導物質が90%以上含まれていることが確認され
た。この焼結体を大気中で、980℃に加熱して1時間
保持したのち室温まで冷却した。得られた試料を、大気
中で880℃に加熱し、170時間保持した。得られた
試料片の断面を研磨し、走査型電子顕微鏡を用いて試料
内部の組織を観察した。その結果、Tl0.5Pb0.5Sr1.6Ba
0.4Ca2Cu3O9で表される図3で示すような結晶構造を有
する超電導物質が主結晶相で、Pb,Baが主成分で、
Pb:Baがほぼ1:1である非超電導相、Pb,Ca
が主成分でPb:Caがほぼ1:2である非超電導相
が、超電導結晶粒子の粒間に、4%生成していることが
分かった。その他、Ca,Sr,Cuからなる非超電導
相,(Ba,Sr)CO3の非超電導相が析出していた。
(Example 4) As a starting material, a purity of 99%
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. This powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 5: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. This powder is molded into pellets having a diameter of 30 mm and a thickness of 3 mm and fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG. This sintered body was heated to 980 ° C. in the air, held for 1 hour, and then cooled to room temperature. The obtained sample was heated to 880 ° C. in the atmosphere and kept for 170 hours. The cross section of the obtained sample piece was polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, Tl 0.5 Pb 0.5 Sr 1.6 Ba
The superconducting material represented by 0.4 Ca 2 Cu 3 O 9 and having a crystal structure as shown in FIG. 3 is the main crystalline phase, and Pb and Ba are the main components.
Non-superconducting phase with Pb: Ba of approximately 1: 1 Pb, Ca
It was found that 4% of the non-superconducting phase in which Pb: Ca is the main component and Pb: Ca is approximately 1: 2 is formed between the superconducting crystal grains. In addition, a non-superconducting phase composed of Ca, Sr and Cu and a non-superconducting phase of (Ba, Sr) CO 3 were deposited.

【0006】この超電導体の77K,1テスラの磁場中
での臨界電流密度を直流4端子法で測定したところ、J
c=19000A/cm2 であった。
The critical current density of this superconductor in a magnetic field of 77 K, 1 Tesla was measured by the DC 4-terminal method.
c = 19000 A / cm 2 .

【0007】(実施例5)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。該粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
5:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。該粉
末を直径30mm,厚さ3mmのペレットに成型し、ふたの
ついたアルミナるつぼ中で880℃,10時間大気中で
焼成する。得られた焼結体の粉末X線回折測定を行った
ところ、焼結体は、図3に示すような結晶構造を有する
超電導物質が90%以上含まれていることが確認され
た。さらにこの焼結体を大気中で880℃に加熱し、1
6時間保持して室温まで冷却した。これを3回繰り返し
た。得られた試料の試料片を断面研磨し、走査型電子顕
微鏡を用いて試料内部の組織を観察した。その結果、主
結晶相は、Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu3
9 で表される超電導物質で、その他、Pb,Baが主成
分で、Pb:Baがほぼ1:1である非超電導相が10
%生成していた。その他Ca,Sr,Cuからなる非超
電導相,(Ba,Sr)CO3の非超電導相が析出してい
た。
(Example 5) As a starting material, a purity of 99%
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. The powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 5: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. The powder is formed into pellets having a diameter of 30 mm and a thickness of 3 mm, and the pellets are fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG. Furthermore, this sintered body is heated to 880 ° C. in the atmosphere and
It was kept for 6 hours and cooled to room temperature. This was repeated 3 times. A sample piece of the obtained sample was cross-section polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, the main crystal phase was Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu 3 O.
In addition to the superconducting material represented by 9 , there are 10 non-superconducting phases in which Pb and Ba are the main components and Pb: Ba is approximately 1: 1.
% Was generated. In addition, a non-superconducting phase composed of Ca, Sr, Cu and a non-superconducting phase of (Ba, Sr) CO 3 were precipitated.

【0008】この超電導体の77K,1テスラの磁場中
での臨界電流密度を直流4端子法で測定したところ、J
c=27000A/cm2 であった。
The critical current density of this superconductor in a magnetic field of 77 K, 1 Tesla was measured by the DC 4-terminal method.
c = 27,000 A / cm 2 .

【0009】(実施例6)出発原料として、純度99%
以上のTl23,PbO,SrO,CaO,CuOを用い
た。まず、SrO,CaO,CuOをそれぞれSr,C
a,Cuの原子比率が2:2:3になるように混合し、
880℃で20時間大気中で焼成する。この粉末を粉砕
し、得られた粉末にTl:Pb:Sr:Ca:Cuの原
子比率が0.5:0.5:2:2:3 となるようにTl2
3とPbOを加え、らいかい機で30分混合する。粉末
を直径30mm,厚さ3mmのペレットに成型し、ふたのつ
いたアルミナるつぼ中で880℃,10時間大気中で焼
成する。得られた焼結体の粉末X線回折測定を行ったと
ころ、焼結体は、図3に示すような結晶構造を有する超
電導物質が90%以上含まれていることが確認された。
さらにこの焼結体を再び大気中で880℃に加熱し、1
0時間保持して室温まで冷却した。得られた試料の試料
片を断面研磨し、走査型電子顕微鏡を用いて試料内部の
組織を観察した。その結果、主結晶相は、Tl0.5Pb
0.5Sr2Ca2Cu39で表される超電導物質で、その
他、Pb,Caが主成分で、Pb:Caがほぼ1:2で
ある非超電導相が7%生成していた。その他、Ca,S
r,Cuからなる非超電導相,(Ba,Sr)CO3の非超
電導相が析出していた。
(Example 6) As a starting material, a purity of 99%
The above Tl 2 O 3 , PbO, SrO, CaO and CuO were used. First, SrO, CaO, and CuO are replaced with Sr and C, respectively.
Mix so that the atomic ratio of a and Cu is 2: 2: 3,
Bake at 880 ° C. for 20 hours in air. This powder was pulverized, and Tl 2 O was added to the obtained powder so that the atomic ratio of Tl: Pb: Sr: Ca: Cu was 0.5: 0.5: 2: 2: 3.
Add 3 and PbO and mix for 30 minutes on a fryer. The powder is formed into pellets having a diameter of 30 mm and a thickness of 3 mm, and the pellets are fired in an alumina crucible with a lid at 880 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG.
Furthermore, this sintered body is heated again to 880 ° C. in the atmosphere, and
Hold for 0 hours and cool to room temperature. A sample piece of the obtained sample was cross-section polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, the main crystalline phase was Tl 0.5 Pb.
As a superconducting substance represented by 0.5 Sr 2 Ca 2 Cu 3 O 9 , 7% of non-superconducting phase having Pb and Ca as main components and Pb: Ca of about 1: 2 was formed. Others, Ca, S
A non-superconducting phase composed of r and Cu and a non-superconducting phase of (Ba, Sr) CO 3 were deposited.

【0010】この超電導体の77K,1テスラの磁場中
での臨界電流密度を直流4端子法で測定したところ、J
c=25000A/cm2 であった。
The critical current density of this superconductor in a magnetic field of 77 K, 1 Tesla was measured by the DC 4-terminal method.
c = 25,000 A / cm 2 .

【0011】(実施例7)出発原料として、純度99%
以上のTl23,PbO,BaO,SrO,CaO,CuO
を用いた。まず、BaO,SrO,CaO,CuOをそ
れぞれBa,Sr,Ca,Cuの原子比率が0.4:1.
6:2:3になるように混合し、880℃で20時間大
気中で焼成する。この粉末を粉砕し、得られた粉末にT
l:Pb:Ba:Sr:Ca:Cuの原子比率が0.
5:0.5:0.4:1.6:2:3となるようにTl2
3とPbOを加え、らいかい機で30分混合する。粉末
を直径30mm,厚さ3mmのペレットに成型し、ふたのつ
いたアルミナるつぼ中で870℃,10時間大気中で焼
成する。得られた焼結体の粉末X線回折測定を行ったと
ころ、焼結体は、図3に示すような結晶構造を有する超
電導物質が90%以上含まれていることが確認された。
Example 7 As a starting material, a purity of 99%
The above Tl 2 O 3 , PbO, BaO, SrO, CaO, CuO
Was used. First, BaO, SrO, CaO, and CuO have an atomic ratio of Ba, Sr, Ca, and Cu of 0.4: 1.
Mix so as to be 6: 2: 3, and bake in air at 880 ° C. for 20 hours. This powder is crushed, and the obtained powder is T
The atomic ratio of l: Pb: Ba: Sr: Ca: Cu is 0.
Tl 2 O to be 5: 0.5: 0.4: 1.6: 2: 3
Add 3 and PbO and mix for 30 minutes on a fryer. The powder is formed into pellets having a diameter of 30 mm and a thickness of 3 mm, and the pellets are fired in an alumina crucible with a lid at 870 ° C. for 10 hours in the air. When powder X-ray diffraction measurement was performed on the obtained sintered body, it was confirmed that the sintered body contained 90% or more of a superconducting substance having a crystal structure as shown in FIG.

【0012】次に、得られた超電導体を粉砕して、外形
6mm,内径4mmのAgパイプに充填し、外径0.7mmま
で線引きした後、厚さ0.1mmまで圧延した。これを3
00mmの試料片として切り出し、酸素雰囲気中で、30
℃/min.で870℃まで昇温して50時間保持したのち
室温まで冷却した。得られた試料について断面を研磨
し、走査型電子顕微鏡を用いて、線材内部の組織を観察
した。その結果、Tl0.5Pb0.5Sr1.6Ba0.4Ca2
Cu39で表される超電導物質が主結晶相であり、P
b,Baが主成分で、Pb:Baがほぼ1:1である非
超電導相、Pb,Caが主成分でPb:Caがほぼ1:
2である非超電導相が、超電導結晶粒子の粒間に、1%
生成していることが分かった。その他、Ca,Sr,C
uからなる非超電導相,(Ba,Sr)CO3の非超電導
相が析出していた。この試料を77K,1テスラの磁場
中で臨界電流密度を直流4端子法で測定したところ、J
c=29000A/cm2 であった。
Next, the obtained superconductor was crushed, filled in an Ag pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.7 mm, and then rolled to a thickness of 0.1 mm. This 3
Cut out as a 00 mm sample piece, and in an oxygen atmosphere,
The temperature was raised to 870 ° C. at a rate of ° C./min. The cross section of the obtained sample was polished, and the structure inside the wire was observed using a scanning electron microscope. As a result, Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2
The superconducting material represented by Cu 3 O 9 is the main crystalline phase, and P
b, Ba is the main component, Pb: Ba is about 1: 1 in the non-superconducting phase, Pb, Ca is the main component, and Pb: Ca is about 1:
The non-superconducting phase of 2 is 1% between the superconducting crystal grains.
It turns out that it is generating. Others, Ca, Sr, C
A non-superconducting phase composed of u and a non-superconducting phase of (Ba, Sr) CO 3 were deposited. The critical current density of this sample was measured by a DC 4-terminal method in a magnetic field of 77 K and 1 Tesla.
c = 29000 A / cm 2 .

【0013】(比較例)実施例4と同様の組成,熱処理
方法にて超電導体を合成したが、880℃におけるアニ
ール時間を30時間とした。得られた試料片の断面を研
磨し、走査型電子顕微鏡を用いて試料内部の組織を観察
した。その結果、Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu
39で表される図3で示すような結晶構造を有する超電
導物質が主結晶相で、Tl,Pb,Ba,Cuの各元素
から成り、EDX分析による組成が、Tl:Pb:B
a:Cu=0.99〜2.00:0.58〜1.07:0〜
0.20:1.58〜4.0 である非超電導相が、超電導
結晶粒子の粒間に、22%生成していることが分かっ
た。この超電導体の臨界電流密度を直流4端子法で測定
したところ、Jcは100A/cm2 以下であった。
Comparative Example A superconductor was synthesized by the same composition and heat treatment method as in Example 4, but the annealing time at 880 ° C. was set to 30 hours. The cross section of the obtained sample piece was polished, and the structure inside the sample was observed using a scanning electron microscope. As a result, Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu
A superconducting material represented by 3 O 9 and having a crystal structure as shown in FIG. 3 is a main crystal phase and is composed of each element of Tl, Pb, Ba, and Cu, and the composition by EDX analysis is Tl: Pb: B.
a: Cu = 0.99 to 2.00: 0.58 to 1.07: 0
It was found that the non-superconducting phase of 0.20: 1.58 to 4.0 was formed in 22% between the superconducting crystal grains. When the critical current density of this superconductor was measured by the DC 4-terminal method, Jc was 100 A / cm 2 or less.

【0014】[0014]

【発明の効果】本発明によれば、液体ヘリウムによる冷
却は勿論、液体窒素による冷却によって運転される、高
磁界中においても高い超電導臨界電流密度を有する酸化
物超電導物質を用いた超電導体,超電導線材,超電導マ
グネットが得られる。
According to the present invention, superconductors and superconductors using an oxide superconducting material which has a high superconducting critical current density even in a high magnetic field are operated by liquid nitrogen cooling as well as liquid helium cooling. Wires and superconducting magnets can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例による超電導体の走査型電子顕微
鏡写真。
FIG. 1 is a scanning electron micrograph of a superconductor according to the first embodiment.

【図2】第1の実施例による超電導体の77Kにおいて
測定したB−H特性図。
FIG. 2 is a BH characteristic diagram of the superconductor according to the first embodiment measured at 77K.

【図3】第1の実施例による超電導物質の結晶構造を表
す説明図。
FIG. 3 is an explanatory diagram showing a crystal structure of a superconducting material according to the first embodiment.

【符号の説明】[Explanation of symbols]

1…Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu39 で表
される超電導相、2…Tl,Pb,Ba,Cuの各元素
からなる非超電導相、3…Ca,Sr,Cuの各元素か
らなる非超電導相、4…(Ba,Sr)CO3相、5…T
l原子もしくはPb原子、6…Sr原子もしくはBa原
子、7…Ca原子、8…Cu原子、9…酸素原子。
1 ... Tl 0.5 Pb 0.5 Sr 1.6 Ba 0.4 Ca 2 Cu 3 O 9 superconducting phase, 2 ... non-superconducting phase consisting of Tl, Pb, Ba, Cu elements, 3 ... Ca, Sr, Cu Non-superconducting phase consisting of elements, 4 ... (Ba, Sr) CO 3 phase, 5 ... T
1 atom or Pb atom, 6 ... Sr atom or Ba atom, 7 ... Ca atom, 8 ... Cu atom, 9 ... Oxygen atom.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月12日[Submission date] March 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例における超電導体の結晶構造を表
わす走査型電子顕微鏡写真。
FIG. 1 is a scanning electron micrograph showing a crystal structure of a superconductor in a first example.

【図2】第1の実施例による超電導体の77Kにおいて
測定したB−H特性図。
FIG. 2 is a BH characteristic diagram of the superconductor according to the first embodiment measured at 77K.

【図3】第1の実施例による超電導物質の結晶構造を表
す説明図。
FIG. 3 is an explanatory diagram showing a crystal structure of a superconducting material according to the first embodiment.

【符号の説明】 1…Tl0.5Pb0.5Sr1.6Ba0.4Ca2Cu39 で表
される超電導相、2…Tl,Pb,Ba,Cuの各元素
からなる非超電導相、3…Ca,Sr,Cuの各元素か
らなる非超電導相、4…(Ba,Sr)CO3 相、5…
Tl原子もしくはPb原子、6…Sr原子もしくはBa
原子、7…Ca原子、8…Cu原子、9…酸素原子。
[Description of Reference Numerals] 1 ... Tl 0. Consisting 5 Pb 0. 5 Sr 1. 6 Ba 0. 4 superconducting phase represented by Ca 2 Cu 3 O 9, 2 ... Tl, Pb, Ba, each element of Cu Non-superconducting phase, 3 ... Non-superconducting phase composed of Ca, Sr, and Cu elements, 4 ... (Ba, Sr) CO 3 phase, 5 ...
Tl atom or Pb atom, 6 ... Sr atom or Ba
Atom, 7 ... Ca atom, 8 ... Cu atom, 9 ... Oxygen atom.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武内 瀞士 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 松田 臣平 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshi Takeuchi 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute Ltd. (72) Inventor Yuichi Kamo 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Japan Corporation Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inheihei Matsuda, 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】化学物質の組成式が一般に (化1) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導材料。
1. A composition formula chemicals in general (of 1) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1.6 1 .6 ≦ j ≦ 2.4 0.8 ≦ k ≦ 3.6 1.6 ≦ l ≦ 4.6 0.05 ≦ x ≦ 0.9 0 ≦ y ≦ 0.5 6 ≦ z ≦ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a portion between crystal grains, which is a superconducting material. .
【請求項2】請求項1において、Tl,Pb,Ba,C
uのうち少なくとも1種の元素からなる非超電導相の融
点が、980℃以下である超電導材料。
2. The method according to claim 1, wherein Tl, Pb, Ba, C
A superconducting material in which the melting point of the non-superconducting phase consisting of at least one element of u is 980 ° C. or lower.
【請求項3】請求項1において、Tl,Pb,Ca,C
uのうち少なくとも1種の元素からなる非超電導相の融
点が、900℃以下である超電導材料。
3. The Tl, Pb, Ca, C according to claim 1.
A superconducting material in which the melting point of the non-superconducting phase composed of at least one element of u is 900 ° C. or lower.
【請求項4】請求項1において、Tl,Pb,Ba,C
a,Cuのうち少なくとも1種の元素からなる非超電導
相を含み、77Kにおける磁化ヒステリシスが1Tで1
emu/cc以上である超電導材料。
4. The Tl, Pb, Ba, C according to claim 1.
a, containing a non-superconducting phase composed of at least one element of Cu and having a magnetization hysteresis at 77K of 1T
Superconducting material with emu / cc or higher.
【請求項5】化学物質の組成式が、一般に、 (化2) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部に元素比が、 (化3) Tl:Pb:Ba:Ca:Cu=a:b:c:d:e 0≦a≦2.0 0.4≦b≦2.0 0≦c≦1.0 0≦d≦2.0 0.25≦e≦4.0 で表される非超電導相が残存している超電導材料。
5. The composition formula of chemicals, generally, (of 2) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a given critical temperature of 80 K or higher, the element ratio in a part between crystal grains is as follows: Tl: Pb: Ba: Ca: Cu = a: b: c: d: e 0 ≦ a ≦ A superconducting material in which a non-superconducting phase represented by 2.0 0.4 ≤ b ≤ 2.0 0 ≤ c ≤ 1.0 0 ≤ d ≤ 2.0 0.25 ≤ e ≤ 4.0 remains.
【請求項6】化学物質の組成式が、一般に、 (化4) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられ臨界温度が80K以上の超電導体において、
結晶粒間の一部にTl,Pb,Ba,Ca,Cuのうち
少なくとも1種の元素からなる非超電導相が10%以下
で残存していることを特徴とする超電導材料。
Composition formula of wherein chemicals, generally, (of 4) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a given superconductor with a critical temperature of 80K or higher,
A superconducting material, characterized in that a non-superconducting phase composed of at least one element out of Tl, Pb, Ba, Ca, and Cu remains at 10% or less in a part between crystal grains.
【請求項7】化学物質の組成式が、一般に、 (化5) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体を主成分
としてなる材料を合成する方法において、構成元素の酸
化物を与えるそれぞれの化合物を混合する工程と、この
混合物を、840℃以上に加熱処理する工程と、これを
さらに、940℃以上に加熱したのち、880℃以下の
温度で、加熱する工程を含むことを特徴とする超電導材
料の合成方法。
Composition formula 7. chemicals, generally, (of 5) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a method of synthesizing a material mainly composed of a superconductor having a given critical temperature of 80 K or more, a step of mixing each compound that gives an oxide of a constituent element, and a step of heat-treating this mixture to 840 ° C. or more And a method of synthesizing a superconducting material, further comprising the step of further heating it to 940 ° C. or higher and then heating it at a temperature of 880 ° C. or lower.
【請求項8】化学物質の組成式が、一般に、 (化6) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられ、臨界温度が80K以上であって、結晶粒間
の一部にTl,Pb,Ba,Ca,Cuのうち少なくと
も1種の元素からなる非超電導相が残存していることを
特徴とする超電導体で構成される線材。
Composition formula 8. chemicals, generally, (of 6) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 It is characterized in that the critical temperature is 80 K or higher, and a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a portion between crystal grains. A wire made of superconductor.
【請求項9】請求項8において、超電導体で構成される
線材の77Kにおけるトランスポートの臨界電流密度が
1Tで1000A/cm2 以上である線材。
9. The wire according to claim 8, wherein the critical current density of the transport at 77K of the wire made of a superconductor is 1000 A / cm 2 or more at 1T.
【請求項10】化学物質の組成式が、一般に、 (化7) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネット。
Composition formula of 10. chemicals, generally, (of 7) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. A magnet for generating a magnetic field using a wire that uses a superconductor.
【請求項11】化学物質の組成式が、一般に、 (化8) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する機器。
11. The composition formula of chemicals, generally, (of 8) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. A device that has a magnet for generating a magnetic field using a wire that uses a superconductor.
【請求項12】化学物質の組成式が、一般に、 (化9) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する電子スピン共鳴装
置。
12. The composition formula of chemicals, generally, (of 9) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. An electron spin resonance apparatus having a magnet for generating a magnetic field using a wire material using a superconductor.
【請求項13】化学物質の組成式が、一般に、 (化10) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する核磁気共鳴装置。
13. The composition formula of chemicals, generally, (of 10) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. A nuclear magnetic resonance apparatus having a magnet for generating a magnetic field using a wire using a superconductor.
【請求項14】化学物質の組成式が、一般に、 (化11) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する磁気共鳴イメ−ジン
グ装置。
14. The composition formula of chemicals, generally, (of 11) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. A magnetic resonance imaging apparatus having a magnet for generating a magnetic field using a wire material using a superconductor.
【請求項15】化学物質の組成式が、一般に、 (化12) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する磁気浮上列車。
15. The chemical formula of a chemical substance is generally represented by:1-xPbx)i(Sr1-yBay)jCakCulOz  0.8 ≤ i ≤ 1.6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 ≤ 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0 .5 in superconductors with a critical temperature of 80K or more given by 6 ≦ z ≦ 12
The Tl, Pb, Ba, Ca, Cu
A non-superconducting phase consisting of at least one element remains
Using a wire material using a superconductor
Magnetic levitation train with a magnet for generating a magnetic field.
【請求項16】化学物質の組成式が、一般に、 (化13) (Tl1-xPbx)i(Sr1-yBay)jCakCulz 0.8≦i≦1.6 1.6≦j≦2.4 0.8≦k≦3.6 1.6≦l≦4.6 0.05≦x≦0.9 0≦y≦0.5 6≦z≦12 で与えられる臨界温度が80K以上の超電導体におい
て、結晶粒間の一部にTl,Pb,Ba,Ca,Cuの
うち少なくとも1種の元素からなる非超電導相が残存し
ていることを特徴とする超電導体を用いた線材を使用し
た磁場発生用のマグネットを有する核融合装置。
Composition formula of 16. chemicals, generally, (Formula 13) (Tl 1-x Pb x) i (Sr 1-y Ba y) j Ca k Cu l O z 0.8 ≦ i ≦ 1. 6 1.6 ≤ j ≤ 2.4 0.8 ≤ k ≤ 3.6 1.6 ≤ l ≤ 4.6 0.05 ≤ x ≤ 0.9 0 ≤ y ≤ 0.5 6 ≤ z ≤ 12 In a superconductor having a critical temperature of 80 K or higher, a non-superconducting phase composed of at least one element of Tl, Pb, Ba, Ca, and Cu remains in a part between crystal grains. A fusion device having a magnet for generating a magnetic field using a wire using a superconductor.
JP4151278A 1992-05-20 1992-05-20 Oxide superconductive material and its production Pending JPH0733517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151278A JPH0733517A (en) 1992-05-20 1992-05-20 Oxide superconductive material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151278A JPH0733517A (en) 1992-05-20 1992-05-20 Oxide superconductive material and its production

Publications (1)

Publication Number Publication Date
JPH0733517A true JPH0733517A (en) 1995-02-03

Family

ID=15515189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151278A Pending JPH0733517A (en) 1992-05-20 1992-05-20 Oxide superconductive material and its production

Country Status (1)

Country Link
JP (1) JPH0733517A (en)

Similar Documents

Publication Publication Date Title
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
Mentink et al. Antiferromagnetism and crystal‐field effects in CeCuX3 (X= Al, Ga) compounds
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
US5648322A (en) Tl-based superconductive material, a superconductive body, and a method of forming such a superconductive material or body
US5017554A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-Cu-O compositions and processes for manufacture and use
JPH0733517A (en) Oxide superconductive material and its production
US5444039A (en) (Hg,Pb)-Ba-Ca-Cu-O superconductor and method of manufacturing the same
Isawa et al. Synthesis of Superconducting Cuprates,(Pb (1+ x)/2 Cu (1− x)/2))(Sr 1− y Ca y) 2 (Y 1− x Ca x) Cu 2 O z by Means of Encapsulation and Post-Annealing (ECPA) Technique
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH06211519A (en) Superconductor and its production
US20050176586A1 (en) High-field superconductors
JPH05816A (en) Oxide superconductor production and superconducting wire
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
JP3282688B2 (en) Manufacturing method of oxide superconductor
JPH04214027A (en) Oxide superconductor and production thereof
JP2761727B2 (en) Manufacturing method of oxide superconductor
JPH04300202A (en) Superconductor using oxide and production thereof
US5482917A (en) T1-M-Cu-O-F superconductors
JP3411048B2 (en) Manufacturing method of oxide superconductor
JP3283909B2 (en) Metal oxide material and method for producing the same
JPH05301717A (en) Production of oxide superconductor
JPH06187848A (en) Oxide superconducting wire and manufacture thereof
JPH06157041A (en) Lead complex copper oxide material
Hakuraku et al. Reaction and Intermixing at the Bi2Sr2Ca4Cu6Ox/PbO Interfaces