JPH0733511B2 - Blast furnace coke manufacturing method - Google Patents

Blast furnace coke manufacturing method

Info

Publication number
JPH0733511B2
JPH0733511B2 JP1313889A JP1313889A JPH0733511B2 JP H0733511 B2 JPH0733511 B2 JP H0733511B2 JP 1313889 A JP1313889 A JP 1313889A JP 1313889 A JP1313889 A JP 1313889A JP H0733511 B2 JPH0733511 B2 JP H0733511B2
Authority
JP
Japan
Prior art keywords
coke
temperature
kiln
carbonization
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1313889A
Other languages
Japanese (ja)
Other versions
JPH02194087A (en
Inventor
博 原口
英裕 片平
幸彦 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP1313889A priority Critical patent/JPH0733511B2/en
Publication of JPH02194087A publication Critical patent/JPH02194087A/en
Publication of JPH0733511B2 publication Critical patent/JPH0733511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉用コークスを製造する方法に関する。更に
詳しくは室式コークス炉では高温のフリュー温度で乾留
し、炭化室内中心部のコークス温度が700〜900℃の範囲
と従来より大幅に低い温度で早期窯出しを行い、この乾
留が不足しているコークスを乾式消火設備(以下CDQと
称す)のプレチャンバー内で加熱・焼成することにより
高炉用コークスとして完成させることを特徴とする高炉
用コークスの製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing blast furnace coke. More specifically, in a room-type coke oven, carbonization is carried out at a high flue temperature, and the coke temperature in the center of the carbonization chamber is 700 to 900 ° C, which is significantly lower than in the past, and early kiln removal is performed. The present invention relates to a method for producing a blast furnace coke, which comprises heating and firing the existing coke in a prechamber of a dry fire extinguishing facility (hereinafter referred to as CDQ) to complete the blast furnace coke.

〔従来の技術〕[Conventional technology]

高炉用コークスは、室式コークス炉で石炭を乾留して製
造されている。このコークス炉の炭化室は、高さ4〜7
m、長さ12〜18m、幅0.4〜0.55mの直方体であり、その炭
化室の両側のフリューから約100mm厚さの煉瓦壁をへだ
てて間接的に加熱される構造になっており、装入された
石炭は炭化室壁側から徐々に中心部に向かって乾留され
る。この乾留されたコークスは、従来高炉用としての強
度確保および炭化室からのコークスケーキの排出安定化
のため、炭化室中心部のコークス温度が1000℃以上に到
達してから炭化室より押し出されてきた。フリュー温度
は通常1000℃以上に保持され、石炭が装入されてからコ
ークスになって押し出されるまでの乾留所要時間は16〜
29時間であり、この乾留所要時間は主に炭化室の幅とフ
リュー温度によって決まる。乾留末期になると炭化室内
のコークスとフリューの温度差が縮小してくることによ
り、フリューからコークスへの熱移動速度が遅くなるた
め、単位温度当たりの加熱所要時間が延長して設備生産
性と熱効率が悪化する。
Blast furnace coke is manufactured by dry distillation of coal in a room coke oven. The coking chamber of this coke oven has a height of 4 to 7
It is a rectangular parallelepiped with a length of m, a length of 12 to 18 m, and a width of 0.4 to 0.55 m, and is structured so that it is indirectly heated by bulging brick walls of about 100 mm thickness from the flues on both sides of the carbonization chamber. The coal is gradually carbonized from the carbonization chamber wall side toward the center. This dry-distilled coke is extruded from the carbonization chamber after the coke temperature in the center of the carbonization chamber reaches 1000 ° C or higher in order to secure the strength for conventional blast furnaces and stabilize the discharge of coke cake from the carbonization chamber. It was The flue temperature is usually maintained at 1000 ° C or higher, and the time required for carbonization from the charging of coal to the formation of coke and extrusion is 16-
It takes 29 hours, and the time required for carbonization is mainly determined by the width of the carbonization chamber and the flue temperature. At the end of the dry distillation, the temperature difference between the coke and the flue in the carbonization chamber becomes smaller, and the heat transfer rate from the flue to the coke becomes slower, so the heating time per unit temperature is extended and equipment productivity and thermal efficiency are increased. Becomes worse.

炭化室中心部のコークス温度がまだ低い段階でコークス
を炭化室から押し出すと、効率の悪い乾留末期の乾留時
間は短縮可能であるが、低温で窯出しされたコークスは
まだ強度が十分でないために輸送過程や高炉内での粉化
が増大することから、実施されている例はない。これは
主として窯出し後にコークス品質を改善できる加熱・焼
成手段が存在しなかったためである。従来公知の文献と
しては、鉄と鋼Vol 73(1987)12,S791には石炭の乾留
過程での物理化学的な性状は、800℃近傍に変曲点があ
り、800℃以上に加熱されて初めて、熱間性状の支配因
子とされる黒鉛化度Lcが増大を初めることが開示されて
いる。また、材料とプロセスVol 1(1988),1004には、
炭化室中心部近傍のコークス温度が670℃〜1100℃で乾
留を終了し、冷却したものは、最終乾留温度が低いほど
コークスの物理化学的性状は悪化し、コークス塊内の性
状差は拡大するが、1100℃までのN2ガス雰囲気下での再
加熱により、いずれのコークスも1100℃の最終温度まで
乾留されたコークスとほぼ同じ物理化学的性状に回復
し、コークス塊内の性状も均質化することが示されてい
る。これらの公知文献は、コークスを炭化室中心部の温
度が670〜1100℃で乾留を終了させたものを、仮に高炉
(溶鉱炉)に装入したと考えた時、高炉シャフト部で後
加熱され、結局強度を必要とする高炉下部に到達するま
でに、コークス性状が回復均質化されるのではないかと
いう希望的目的をもって(実際には、低温コークス窯出
しの困難性、冷却によるコークス劣化、途中のハンドリ
ングの困難性、高炉技術者の反対等で実現していない
が)、乾留過程におけるコークス性状の変化を基礎的に
検討することを目的にしており、1100℃迄の再加熱も高
炉シャフト部を想定したN2ガス雰囲気で行っておりコー
クス窯出温度を低下するための乾留方法に関する記載は
全くなされていない。また、乾留温度の低いコークスは
まだ強度が十分に発現されていないため、冷却時の熱応
力によって微細な亀裂が発生し、再加熱による強度回復
に悪影響を及ぼすことから一旦冷却してからの再加熱は
好ましくない。
If the coke is pushed out of the carbonization chamber when the coke temperature in the center of the carbonization chamber is still low, the dry distillation time at the end of dry distillation, which is inefficient, can be shortened, but the coke discharged from the kiln at low temperature is not yet strong enough. No examples have been implemented because of increased powdering in the transportation process and in the blast furnace. This is mainly because there was no heating / firing means that could improve the quality of coke after kiln removal. As a conventionally known document, iron and steel Vol 73 (1987) 12, S791 has a physicochemical property in the carbonization process of coal that has an inflection point near 800 ° C and is heated to 800 ° C or higher. For the first time, it is disclosed that the degree of graphitization Lc, which is a controlling factor of hot properties, starts to increase. Also, in Materials and Process Vol 1 (1988), 1004,
When the carbonization temperature near the center of the carbonization chamber is 670 ℃ to 1100 ℃ and the carbonization is completed and cooled, the lower the final carbonization temperature, the worse the physicochemical properties of the coke, and the larger the difference in the properties inside the coke mass. However, by reheating up to 1100 ° C under N 2 gas atmosphere, all coke recovered to almost the same physicochemical properties as coke carbonized to the final temperature of 1100 ° C, and the properties inside the coke mass were also homogenized. Has been shown to do. These publicly known documents are those in which the temperature of the center of the coking chamber was 670 to 1100 ° C and the dry distillation was completed, and when it was considered that the coke was charged into the blast furnace (blast furnace), it was post-heated in the shaft portion of the blast furnace, With the hopeful goal that the coke properties will eventually be recovered and homogenized by the time it reaches the lower part of the blast furnace, which requires strength (actually, difficulty in low-temperature coke kiln removal, coke deterioration due to cooling, However, it is not realized due to the difficulty of handling the blast furnace and the opposition of the blast furnace engineer, etc.), but the purpose is to fundamentally examine the changes in the coke properties during the carbonization process. It is carried out in an N 2 gas atmosphere, assuming that the above, and there is no description about the carbonization method for lowering the coke oven temperature. In addition, since the strength of coke having a low carbonization temperature is not yet sufficiently developed, minute cracks are generated by thermal stress during cooling, which adversely affects strength recovery due to reheating. Heating is not preferred.

さらに、特開昭61−103987号公報には、石炭を100〜400
℃に気流乾燥予熱し、次いで間接加熱竪型連続乾留炉に
装入して800〜900℃まで乾留し、引き続いて1000〜1200
℃まで加熱ガスにより直接加熱焼成する高炉用コークス
の連続製造方法が開示されている。この方法は現状の室
式コークス炉を使用しないことを意図しており、石炭の
400〜500℃間の加熱膨張により連続的な降下が困難と考
えられる連続乾留整備を新たに開発しなくてはならない
ため、現実的な方法には成りえない。
Further, JP-A-61-103987 discloses that coal of 100-400
Preheat by air flow drying to ℃, then put in an indirect heating vertical continuous carbonization furnace and dry-distill to 800-900 ℃, then 1000-1200
A continuous production method of blast furnace coke in which direct heating and calcination is performed with a heating gas to 0 ° C is disclosed. This method is intended to avoid the use of current room coke ovens,
It cannot be a practical method because a continuous dry distillation maintenance, which is considered to be difficult to continuously descend due to thermal expansion between 400 and 500 ° C, must be newly developed.

室式コークス炉から1000℃以上の温度で押し出されたコ
ークスの消火は、従来の撒水による湿式消火法に代わっ
て、近年は赤熱コークスの持つ顕熱を蒸気として回収・
利用するため、コークス乾式消火設備(CDQ)による乾
式消火法が普及している。このCDQはコークスの消火と
蒸気回収を目的としているので、蒸気回収量を増加させ
たり、変動を少なくさせるために、CDQ内に空気を吹き
込みコークスの一部を燃焼させることは開示されてい
る。(例:特開昭61−37893号公報)。この公報では発
生ガスも皆無ではないという意味で、可燃性ガスという
表現もあるが、本来、コークス炉で、コークス化を完成
させて窯出ししたコークスであるから、可燃性ガスは微
々たるもので、コークスの一部を燃焼させているのが発
生熱量の大部分である。そしてこのコークスの一部燃焼
は蒸気回収量増加や変動を少なくすることが目的でCDQ
内でコークスの性状改善を目的とした加熱焼成は行われ
ておらず、またこのような提案も見当たらない。
Extinguishing of coke extruded from a room type coke oven at a temperature of 1000 ° C or higher replaces the conventional wet extinguishing method with sprinkling water, and in recent years, the sensible heat of red hot coke is recovered as steam.
For use, the dry fire extinguishing method using coke dry fire extinguishing equipment (CDQ) is widely used. Since this CDQ is aimed at extinguishing coke and recovering steam, it is disclosed that air is blown into the CDQ to burn a part of the coke in order to increase the recovery amount of steam and reduce fluctuation. (Example: JP-A-61-37893). In this publication, there is also an expression of flammable gas in the sense that there is no generated gas, but originally, since it is coke that has completed coking in a coke oven and is burnt out from the kiln, flammable gas is insignificant. Most of the generated heat is generated by burning a part of the coke. The partial combustion of this coke is intended to reduce the increase and fluctuation of the amount of vapor recovery.
No heating and firing for the purpose of improving the properties of coke have been carried out, and no such proposal has been found.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来、窯出しされる直前の炭化室内のコークスは中心部
温度で1000℃以上に焼成されている。このため、フリュ
ー温度1000℃から1300℃において、コークス製造に要す
る乾留時間は、16時間から29時間に達し、石炭1kg当た
り550〜650Kcalの莫大な乾留熱量を必要とする。そし
て、コークス製造価格の大半は乾留熱量が占めていると
言っても過言ではない。
Conventionally, the coke in the carbonization chamber immediately before being taken out from the kiln is fired at a center temperature of 1000 ° C or higher. Therefore, at a flue temperature of 1000 ° C to 1300 ° C, the carbonization time required for coke production reaches 16 hours to 29 hours, and a huge amount of carbonization heat of 550 to 650 Kcal per kg of coal is required. And it is no exaggeration to say that the amount of heat from dry distillation occupies most of the coke production price.

さらに、コークス工業は装置産業であり、コークス炉1
門建設するのに約2億円、100門を有する1炉団を建設
するのに約200億円の莫大な設備投資が必要とされてい
る。例えばコークス炉における乾留時間を15%短縮する
ことは、同一量のコークスを製造するのに、炭化室の数
を15%減少させ得るということである。したがって、乾
留時間の短縮は設備投資を抑制する上での重要な技術課
題である。
Furthermore, the coke industry is an equipment industry, and the coke oven 1
A huge capital investment of about 200 million yen is required to construct one gate, and about 20 billion yen to construct one reactor group with 100 gates. For example, reducing the carbonization time in a coke oven by 15% means that the number of coking chambers can be reduced by 15% to produce the same amount of coke. Therefore, shortening the dry distillation time is an important technical issue for suppressing capital investment.

本発明の目的は、高炉用コークスの製造において一般に
使用されている室式コークス炉とCDQ設備を組み合わせ
て乾留プロセスを効率化し、低乾留熱量で、かつ、高生
産性を得るコークス製造技術を提供することである。
An object of the present invention is to provide a coke production technique that combines a room-type coke oven generally used in the production of blast furnace coke and a CDQ facility to improve the efficiency of the carbonization process, and obtain a low carbonization heat amount and high productivity. It is to be.

〔課題を解決するための手段〕[Means for Solving the Problems]

コークス炉での窯出しから高炉装入に至る過程でのハン
ドリングに耐えうる強度を有する範囲内であれば、なる
べく低温でコークスを窯出しし、高炉内の上部での再加
熱により、コークスの物理化学的な性状の回復を計れば
よいとのアイデアもある。しかし、低温で窯出しされた
ままのコークスはコークス塊内の性状差が大きく、か
つ、熱間性状のCSR指数(高温度でのCO2反応後の強度)
が大幅に低い欠点があり、このコークスを高炉で使用し
てもらうことは至極困難であり、実施されている例はな
い。
If the coke has a strength that can withstand handling during the process from the kiln removal in the coke oven to the blast furnace charging, the coke is removed at the lowest possible temperature and reheated in the upper part of the blast furnace to make the physical properties of the coke. There is also an idea that the recovery of chemical properties should be measured. However, the coke as it is kiln-fired at low temperature has a large difference in properties within the coke mass, and the CSR index of hot properties (strength after CO 2 reaction at high temperature)
However, it is extremely difficult to get this coke to be used in a blast furnace, and there is no case in which it is implemented.

そこで、本発明者等は、コークス炉においては早期低温
窯出しにより大幅な乾留熱量の低下および乾留時間の短
縮による設備生産性の増大を行い、悪化したコークス性
状は窯出し後の顕熱を有するままのコークスをCDQのプ
レチャンバー内で加熱・焼成を行うことにより事前に回
復させ、従来のコークス即ちコークス炉で最後まで乾留
を完了させたコークスとほぼ同じ品質(DI、CSR等)を
有するコークスを高炉へ供給する製造方法について鋭意
研究を行った結果、本発明を完成した。
Therefore, the inventors of the present invention significantly reduce the amount of dry distillation heat in the coke oven by early low temperature kiln removal and increase the equipment productivity by shortening the dry distillation time, and the deteriorated coke property has sensible heat after kiln removal. Coke with almost the same quality (DI, CSR, etc.) as the existing coke, which is recovered in advance by heating and firing it in the CDQ prechamber, that is, the coke that has been completely carbonized in the coke oven. The present invention has been completed as a result of earnest research on a manufacturing method for supplying slag to a blast furnace.

すなわち、本発明は室式コークス炉のフリュー温度を11
50℃から1350℃の範囲に設定し、炭化室中心部のコーク
ス温度が700℃から900℃の範囲に到達した時点でコーク
スの窯出しを行い、次いで該コークスを乾式消火設備の
プレチャンバー内に装入し、その直後に該プレチャンバ
ー内に空気を導入し、プレチャンバー内で主にコークス
から発生するガスを燃焼させることにより、少なくとも
900℃以上の温度にコークスを加熱して焼成する、こと
を特徴とする高炉用コークスの製造方法である。
That is, the present invention reduces the flue temperature of a room coke oven to 11
The temperature is set in the range of 50 ℃ to 1350 ℃, and when the coke temperature in the center of the carbonization chamber reaches the range of 700 ℃ to 900 ℃, the coke is kiln-fired, and then the coke is placed in the pre-chamber of the dry fire extinguishing equipment. At least by charging and immediately after that, introducing air into the prechamber and burning gas generated mainly from coke in the prechamber.
A method for producing blast furnace coke, which comprises heating the coke to a temperature of 900 ° C. or higher and firing it.

本発明のポイントは、低温での早期窯出しが可能なコー
クス炉の乾留条件、とくにフリュー温度と窯出し温度を
設定することおよびこのコークスをCDQのプレチャンバ
ー内で主にコークスから発生するガスを燃焼させること
により、従来法のようにコークス炉で高温乾留されたコ
ークスと同等の品質を有するコークスに加熱する条件を
見出すことである。
The point of the present invention is to set the carbonization conditions of a coke oven capable of early kiln removal at a low temperature, in particular to set the flue temperature and the kiln discharge temperature, and the gas generated from the coke mainly in the coke chamber of the CDQ. It is to find the conditions for heating the coke to the coke having the same quality as the coke which has been subjected to the high temperature carbonization in the coke oven as in the conventional method.

先ず、フリュー温度と窯出し温度の関係について検討し
た結果、窯出し温度が低くなるほどコークス品質は悪化
するが、フリュー温度が高いほどコークス品質の悪化の
程度は小さく、フリュー温度1150℃〜1350℃、窯出し温
度(炭化室中心部のコークス温度)700℃〜900℃の範囲
以上であれば本発明の条件を十分に満足できることを見
出した。
First, as a result of examining the relationship between the flue temperature and the kiln discharge temperature, the coke quality deteriorates as the kiln discharge temperature decreases, but the degree of deterioration of the coke quality decreases as the flue temperature increases, and the flue temperature 1150 ° C to 1350 ° C. It was found that the conditions of the present invention can be sufficiently satisfied if the kiln discharge temperature (the coke temperature at the center of the carbonization chamber) is in the range of 700 ° C to 900 ° C.

フリュー温度が1150℃未満では、石炭の軟化溶融温度帯
での昇温速度が遅くなってコークス基質カーボンの質が
悪くなるため、CDQプレチャンバー内で加熱・焼成を行
ってもドラム強度(DI)、熱間反応後強度(CSR)など
のコークスの品質向上が見られず好ましくない(比較例
参照)。フリュー温度の高い方は本発明では問題ない
が、1350℃は従来のコークス炉設備としての上限に近
い。
If the flue temperature is less than 1150 ° C, the rate of temperature rise in the softening and melting temperature range of coal becomes slow and the quality of the coke matrix carbon deteriorates. Therefore, the drum strength (DI) is maintained even when heating and firing in the CDQ prechamber. However, the quality of coke such as strength after hot reaction (CSR) is not improved, which is not preferable (see Comparative Example). The higher flue temperature is not a problem in the present invention, but 1350 ° C is close to the upper limit of conventional coke oven equipment.

次に、窯出し温度と関連させて押出時およびCDQプレチ
ャンバーでの作業性ならびにコークスの品質向上につい
て検討した。その結果、窯出し温度700℃以上になると7
00℃未満に比べ発煙量も1/3程度になり、乾式消火ボッ
クスでの加熱(燃焼)および冷却作業も殆ど問題ないこ
とが判明した。即ち炭化室中心部の温度が700℃未満で
は窯出し時の発煙量も多く、コークスの揮発分の低減、
真比重の増大も不十分であって、かつ窯出しおよびその
後に続くハンドリングによる粉化も増大するので好まし
くない。なお、炭化室中心部の温度は、直接測定によっ
ても得られるが、その予測方法として、上昇管で測定さ
れたコークス炉ガス温度のピークが出るまでの乾留経過
時間と炭柱中心温度が所定の温度に到達するのに要する
時間の関係を予め把握しておき、熱電対を上昇管に設置
してガス温度の経時変化を測定することで、炭柱中心温
度を予測し、窯出しタイミングを決定することもでき
る。
Next, the workability at the time of extrusion and in the CDQ prechamber and the improvement of coke quality were examined in relation to the kiln discharge temperature. As a result, 7
It was found that the amount of smoke emitted was about one-third of that at temperatures below 00 ° C, and there was almost no problem with heating (combustion) and cooling work in the dry fire extinguisher box. That is, if the temperature in the center of the carbonization chamber is less than 700 ° C, there is a large amount of smoke when the kiln is discharged, and the coke volatile content is reduced.
The true specific gravity is not sufficiently increased, and the pulverization due to the kiln removal and the subsequent handling is also increased, which is not preferable. The temperature in the center of the carbonization chamber can be obtained by direct measurement, but as a predicting method, the elapsed time of carbonization until the peak of the coke oven gas temperature measured in the riser and the core temperature of the coal column are specified. Knowing the relationship of the time required to reach the temperature in advance, installing a thermocouple on the riser pipe and measuring the change over time in the gas temperature, predict the core temperature of the coal column and determine the kiln discharge timing. You can also do it.

さらに、炭柱中心800℃で窯出ししたものは窯出し時に
コークス塊内の温度差が壁側(頭部)と中心(尾部)で
200℃あったが、尾部からの発生ガス量が多く、空気で
の約30分間の燃焼により尾部の温度が頭部に比べ急激に
上昇し、尾部コークス温度も900℃以上となって頭部と
尾部間の温度差も約50℃に縮小し、塊コークス内の性状
差も従来コークスなみに均一化された。
Furthermore, the temperature of the coke mass at the center of the coal pillar was 800 ° C, and the temperature difference in the coke mass at the time of the kiln discharge was between the wall side (head) and the center (tail).
Although the temperature was 200 ° C, the amount of gas generated from the tail was large, and the temperature of the tail rose sharply compared to the head due to combustion for about 30 minutes with air, and the coke temperature of the tail was 900 ° C or higher, and The temperature difference between the tails was also reduced to about 50 ℃, and the property difference in the lump coke was also equalized to that of conventional coke.

以上の結果をもとに、本発明者等はコークス炉で高温乾
留、早期低温窯出しされたコークスを、冷却することな
くそのまま赤熱状態でCDQプレチャンバー内へ装入し、
連続的に加熱焼成させることにより、従来法と遜色のな
い品質を有する高炉用コークスの製造方法を発明した。
Based on the above results, the inventors of the present invention, high temperature carbonization in a coke oven, the coke that was early low temperature kiln, charged into the CDQ pre-chamber in the red hot state as it is without cooling,
The inventors have invented a method for producing blast furnace coke, which has quality comparable to that of the conventional method by continuously heating and firing.

〔実施例〕〔Example〕

以下、本発明を実施例によって更に詳細に説明するが、
本発明の方法はこの実施例によって何等限定されるもの
ではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The method of the invention is in no way limited by this example.

第1表に本発明の実施例、比較例および従来例を示し
た。本発明法の実施に当たっては、乾留は1/4t試験コー
クス炉を用いて行い、CDQ処理は鋼鉄製ボックスに空気
とN2ガスを吹込めるようにしてコークスの加熱、冷却を
行った。コークス炉では炭化室中心部の温度を実測し、
目標温度に到達すると直ちに窯出しして鋼鉄製ボックス
に装入した。コークスが鋼鉄製ボックスに装入されると
直ちに空気を導入し、コークスより発生するガスを約1
時間燃焼させた。燃焼によるコークス温度の上昇はフリ
ュー温度や窯出し温度によっても若干異なるが、窯出し
温度800℃の場合で30分間で900℃以上に上昇した。そし
て、燃焼終了と同時にN2ガスを導入し冷却した。冷却後
のコークス品質を第1表に示す。
Table 1 shows examples of the present invention, comparative examples and conventional examples. In carrying out the method of the present invention, dry distillation was performed using a 1 / 4t test coke oven, and CDQ treatment was performed by heating and cooling coke by blowing air and N 2 gas into a steel box. In the coke oven, the temperature at the center of the carbonization chamber is measured,
As soon as the target temperature was reached, it was removed from the kiln and placed in a steel box. Immediately after the coke is charged into the steel box, air is introduced, and the gas generated from the coke is about 1
Burned for hours. The increase in coke temperature due to combustion differed slightly depending on the flue temperature and the temperature at which the kiln was discharged, but when the temperature at which the kiln was discharged was 800 ° C, it rose to over 900 ° C in 30 minutes. Then, simultaneously with the end of combustion, N 2 gas was introduced and cooled. Table 1 shows the coke quality after cooling.

従来例では CSR=55.5〜57.5であるのに比べ、本発明法では CSR=57.0〜57.5と遜色のない品質レベルのものが得ら
れることが判明した。
In the conventional example Compared to CSR = 55.5 to 57.5, in the method of the present invention, It was found that a quality level comparable to CSR = 57.0-57.5 can be obtained.

一方、比較例としてフリュー温度も窯出し温度も低いも
の(実験No.5)と、フリュー温度も窯出し温度も高いも
のを空気で燃焼加熱後冷却した例(実験No.6)と、フリ
ュー温度は高いが、窯出し温度が低く、空気で燃焼加熱
したが、加熱温度が900℃未満の例(実験No.7)及びフ
リュー温度は高いが、窯出し温度が低く、空気導入によ
る燃焼加熱がない例(実験No.8)を示したが、 CSRなどのコークス品質は、本発明法および従来法にべ
て、実験No.5はかなり劣っており、実験No.6は差が認め
られなかった。実験No.7、実験No.8では およびCSRの悪化が明瞭に認められた。このことによ
り、低温窯出しの場合、再加熱してもフリュー温度が低
くてはコークス品質は回復せず、また、従来なみに高温
まで焼成されたコークスを空気で燃焼加熱しても品質向
上効果はないことが判明した。また、フリュー温度が高
く、低温窯出しして、空気導入による燃焼加熱が無い場
合及び加熱温度が900℃未満の場合は およびCSRの悪化が明らかに認められた。
On the other hand, as comparative examples, one with a low flue temperature and a kiln starting temperature (Experiment No. 5), an example in which one with a high flue temperature and a kiln starting temperature was burnt with air and then cooled (Experiment No. 6) The firing temperature is low, but the firing temperature is low and combustion heating is performed with air, but the heating temperature is less than 900 ° C (Experiment No. 7) and the flue temperature is high, but the firing temperature is low and combustion heating by air introduction is Although there is no example (Experiment No. 8), Coke qualities such as CSR were considerably inferior in Experiment No. 5 and no difference in Experiment No. 6 as compared with the method of the present invention and the conventional method. In Experiment No. 7 and Experiment No. 8 And the deterioration of CSR was clearly recognized. As a result, in the case of low temperature kiln removal, the coke quality does not recover even if the flue temperature is low even if reheated, and the quality improvement effect is obtained even if the coke fired to a high temperature is heated by combustion with air. Turned out not to be. In addition, when the flue temperature is high, the low temperature kiln is discharged and there is no combustion heating due to air introduction, and the heating temperature is less than 900 ° C And the deterioration of CSR was clearly recognized.

コークス炉から中心部のコークス温度が800〜900℃にし
か焼成されていない状態でコークスを窯出しすることに
より、コークス粉率(−15mm)が増大するのではないか
と懸念されたので、窯出し直後の赤熱コークスに約6mの
落下衝撃を与えて粉率を測定したところ、従来法が6.5
〜7.5(%)であるのに対し、本発明法では6.2〜7.5
(%)とほぼ同程度であった。これに対して、比較法の
フリュー温度も窯出し温度も従来より低いものは10.5
(%)と高くなった。また、比較法のフリュー温度も窯
出し温度も高いものは本発明法および従来法と粉率は差
がないが、これは窯出し直後のコークスの結果であり、
CDQ内で空気で燃焼・加熱させる場合には、コークスか
らのガスの発生が少ないためコークスが燃焼し、若干粉
率は増加するものと考えられる。本発明法で粉率が増加
しなかったのは、落下衝撃による破壊はコークス塊内の
亀裂や熱歪を起点とする体積破壊が主であり、本発明法
では低温窯出しのため、高温窯出しコークスに比べ、高
温焼成過程での焼締まりによるコークス塊内の亀裂の生
成、成長が少なかったためと推定される。これにより、
低温窯出しコークスの窯出しからCDQ装入過程での粉化
の懸念はないものと判断した。
It was feared that the coke dust rate (−15mm) would increase by firing the coke from the coke oven in the state where the temperature of the coke in the center was only fired at 800 to 900 ° C. Immediately after, a drop impact of about 6 m was applied to the red hot coke and the powder ratio was measured.
~ 7.5 (%), while the method of the present invention is 6.2-7.5.
It was almost the same as (%). On the other hand, the flue temperature of the comparison method and the firing temperature are 10.5
It became as high as (%). In addition, although the flue temperature and the kiln discharge temperature of the comparative method are not different from those of the method of the present invention and the conventional method, this is the result of coke immediately after the kiln discharge,
When air is burned and heated in the CDQ, it is considered that the coke burns because the amount of gas generated from the coke is small and the powder rate slightly increases. The powder ratio did not increase in the method of the present invention, the destruction by drop impact is mainly volume fracture starting from cracks and thermal strain in the coke lump, and in the method of the present invention, because of low temperature kiln, high temperature kiln It is presumed that the generation and growth of cracks in the coke lump due to the compaction during the high-temperature firing process were less than that of the out-coke. This allows
It was judged that there was no concern about pulverization during the CDQ charging process from the low temperature kiln discharge coke kiln removal.

以上のことにより、本発明においてはコークス炉におけ
る適正な乾留条件(炉温)および窯出し温度を設定し、
CDQのプレチャンバー内に空気を導入する方法で適正な
加熱・焼成を行うことが、技術上の重要なポイントであ
ることが判明した。
From the above, in the present invention, appropriate carbonization conditions (furnace temperature) and kiln discharge temperature in the coke oven are set,
It was found that the proper heating and firing by introducing air into the CDQ pre-chamber is an important technical point.

〔作用〕[Action]

従来、早期低温窯出しされたコークスを(低温窯出しす
ること自体に困難性があったこともあるが)、空気を導
入して再加熱することは、コークスの一部を燃焼させる
結果、必然的にコークスの強度低下や灰分増加など、品
質を悪化させるものと考えられて実施されなかった。し
かし、コークス塊尾部に可燃性ガスを多量に含む状態で
低温窯出ししたコークスをCDQのプレチャンバー上部空
間に空気を導入して加熱すると、可燃性ガスが優先的に
燃焼してCDQ設備での冷却工程を妨げることなく、プレ
チャンバー滞留時間内の短時間でコークスの温度を上
げ、コークス自体は殆ど燃焼せずに室炉で正規に乾留し
たコークスと同等の品質が得られることが判明した。
Conventionally, the introduction of air to reheat the coke that has been discharged from an early low-temperature kiln (although it has been difficult to discharge the low-temperature kiln itself) is inevitable as a result of burning a part of the coke. However, it was not implemented because it was considered that the quality of the coke deteriorated, such as the strength of the coke decreased and the ash increased. However, when the coke lump tail contains a large amount of combustible gas, low-temperature kiln is heated by introducing air into the upper space of the CDQ pre-chamber, the combustible gas burns preferentially and the It was found that the temperature of the coke was raised in a short time within the pre-chamber residence time without disturbing the cooling process, the coke itself was hardly burned, and the quality equivalent to that of the coke which was normally carbonized in the chamber furnace was obtained.

〔発明の効果〕〔The invention's effect〕

本発明は、高炉用コークスの製造において通常使われて
いる室式コークス炉とCDQ設備の機能を追求し、且つ、
コークス生成過程を詳細に究明することにより、この2
つの設備を組み合わせてこれまでには例を見ない全く新
しいコークスの乾留方法を創出したものである。すなわ
ち、従来の方法では室式コークス炉の中のみでコークス
の高温乾留をさせているのに対して、本発明は間接加熱
で効率の悪い室式コークス炉内の乾留を最小限に留め、
コークス品質上で必要な高温乾留は効率の良いCDQプレ
チャンバー内の直接加熱で行うことにした高炉用コーク
スの製造方法である。これによって、乾留熱量の大幅低
下(消費熱量約80Kcal/kg低減)、および、乾留時間の
短縮(乾留時間約15%短縮)による生産性の増大(すな
わち、同一量のコークスを製造するのに現在のコークス
炉の炭化室数の85%の炭化室数のコークス炉で足りる)
を達成した。そして、低温窯出しにより、乾留途中で押
出したにもかかわらず、従来の最後まで完全乾留した正
規の乾留コークスと同一品質のコークスが得られると共
に、コークス製造コストの大幅な低下を可能とした。消
費熱量の低減は、コークス炉の燃料の節減と共にCO2、C
OX、NOXの排出の抑制により、地球環境問題に対しても
大きな貢献を果たすものである。さらに、本発明は既存
の室式コークス炉とCDQ設備を効果的に利用することを
基本としているため、実用性が極めて高く、コークス炉
のリプレースにおける投資の抑制など、社会的にも大き
な意義を持つものである。
The present invention pursues the functions of a room-type coke oven and a CDQ facility that are usually used in the production of blast furnace coke, and
By investigating the coke formation process in detail,
Combining two facilities, we have created a completely new method of carbonization for coke, which has never been seen before. That is, in the conventional method, the high temperature carbonization of the coke is carried out only in the room type coke oven, whereas the present invention minimizes the carbonization in the inefficient room type coke oven by indirect heating,
High-temperature carbonization required for coke quality is an efficient method for producing coke for a blast furnace, where it is directly heated in the CDQ prechamber. This significantly reduced the amount of dry distillation heat (heat consumption reduced by about 80 Kcal / kg), and increased productivity by shortening the dry distillation time (reduced by about 15% in dry distillation time) (that is, to produce the same amount of coke) The coke oven with 85% of the number of carbonization chambers in
Was achieved. The low-temperature kiln provided coke of the same quality as the regular dry-distilled coke that had been completely dry-distilled until the end, even though the coke was extruded during the dry-distillation, and at the same time, the cost of producing coke was significantly reduced. The reduction of heat consumption is due to the reduction of CO 2 and C
By controlling the emission of O X and NO X , it will make a great contribution to global environmental problems. Furthermore, since the present invention is based on effectively utilizing the existing room-type coke oven and CDQ equipment, it is extremely practical and has great social significance, such as curtailment of investment in replacement of the coke oven. To have.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−103987(JP,A) 特開 昭61−37893(JP,A) 特開 昭52−85203(JP,A) 特公 昭57−15788(JP,B2) 材料とプロセス,1〔4〕(1988), 1004 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-61-103987 (JP, A) JP-A-61-37893 (JP, A) JP-A-52-85203 (JP, A) JP-B 57- 15788 (JP, B2) Materials and Processes, 1 [4] (1988), 1004

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】室式コークス炉のフリュー温度を1150℃か
ら1350℃の範囲に設定し、炭化室中心部のコークス温度
が700℃から900℃の範囲に到達した時点でコークスの窯
出しを行い、次いで該コークスを乾式消火設備のプレチ
ャンバー内に装入し、その直後に該プレチャンバー内に
空気を導入し、プレチャンバー内で主にコークスから発
生するガスを燃焼させることにより、少なくとも900℃
以上の温度にコークスを加熱して焼成することを特徴と
する高炉用コークスの製造方法。
1. The flue temperature of the chamber type coke oven is set in the range of 1150 ° C to 1350 ° C, and when the coke temperature in the center of the coking chamber reaches the range of 700 ° C to 900 ° C, the coke is kiln-fired. Then, the coke is charged into a pre-chamber of a dry fire extinguishing facility, air is introduced into the pre-chamber immediately after that, and gas generated mainly from the coke is burned in the pre-chamber so that at least 900 ° C.
A method for producing coke for a blast furnace, which comprises heating the coke to the above temperature and firing it.
JP1313889A 1989-01-24 1989-01-24 Blast furnace coke manufacturing method Expired - Lifetime JPH0733511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313889A JPH0733511B2 (en) 1989-01-24 1989-01-24 Blast furnace coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313889A JPH0733511B2 (en) 1989-01-24 1989-01-24 Blast furnace coke manufacturing method

Publications (2)

Publication Number Publication Date
JPH02194087A JPH02194087A (en) 1990-07-31
JPH0733511B2 true JPH0733511B2 (en) 1995-04-12

Family

ID=11824802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313889A Expired - Lifetime JPH0733511B2 (en) 1989-01-24 1989-01-24 Blast furnace coke manufacturing method

Country Status (1)

Country Link
JP (1) JPH0733511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692131B (en) * 2011-03-23 2014-12-17 五冶集团上海有限公司 Method for overhauling fire-resistant material for annular air duct and chute in coke dry quenching furnace

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
材料とプロセス,1〔4〕(1988),1004

Also Published As

Publication number Publication date
JPH02194087A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
CA1150014A (en) Process for baking carbon electrodes
CN106916599A (en) A kind of iron coke process units and method
CN101353579B (en) 7.63m coke oven negative pressure in-furnace furnace drying method
CN104593015A (en) Formcoke refining method and device thereof
CN102374773B (en) Modification method for carbon rotary kiln settling chamber
JPS5825392B2 (en) Coke firing method
JPH0733511B2 (en) Blast furnace coke manufacturing method
CA1260868A (en) Process for calcining green coke
JP2006124561A (en) Silica brick for coke oven
JP2003003172A (en) Method for improving coke
JP3179263B2 (en) Coke production method
JPH07113083A (en) Coking process and oven door of coke oven
JP2715858B2 (en) Manufacturing method of coke for metallurgy
JPH07126655A (en) Method for producing coke for blast furnace
JP4246355B2 (en) Coke oven operation method
JPH04359088A (en) Production of molded coke for metallurgy
CN204529731U (en) A kind of formed coke refining equipment
JPH07126647A (en) Production of coke for blast furnace
JPH07268336A (en) Production of blast furnace coke
Achinovich et al. Coke Production for Blast Furnace Ironmaking
SU734292A1 (en) Method of kilning lining of steel smelting convertor
JPH07113079A (en) Carbonization promoting method for coking, coking process and oven door of coke oven
CN109780564A (en) A method of it is burnt low-quality gaseous fuel using tubular heater
JPH07118661A (en) Production of coke for blast furnace
JPH07109468A (en) Method for thermally baking semicoke

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080412

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090412

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14