JPH07334851A - Optical head and adjusting method therefor - Google Patents
Optical head and adjusting method thereforInfo
- Publication number
- JPH07334851A JPH07334851A JP6127700A JP12770094A JPH07334851A JP H07334851 A JPH07334851 A JP H07334851A JP 6127700 A JP6127700 A JP 6127700A JP 12770094 A JP12770094 A JP 12770094A JP H07334851 A JPH07334851 A JP H07334851A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- cylindrical
- single lens
- optical
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
- Optical Head (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は記録媒体上に光ビームを
照射し、記録再生を行う光学ヘッドおよびその調整方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head for recording and reproducing by irradiating a recording medium with a light beam and a method of adjusting the same.
【0002】[0002]
【従来の技術】以下図面を参照しながら、従来の光学ヘ
ッドについて説明する。図7は従来の光学ヘッドの斜視
図であり、1は半導体レーザー等の光源、2はコリメー
トレンズを一例とするコリメート手段、3はビームスプ
リッターを一例とする光束分離手段、4は対物レンズを
一例とする集光手段、5は記録媒体、7は第1焦点、8
は第2焦点、9は4分割受光素子、9a,9b,9c、
9dは4分割受光素子の受光領域、9e、9f、9gは
4分割受光素子上に結ばれる光スポット、10は光学基
台、10aは光学ヘッドを組み立てる際の基準面、10
dは光学基台に設けられた光束を通す穴部、15は第1
のレンズ面が正のパワーの面で第2のレンズ面がシリン
ドリカル面のレンズ、15aはシリンドリカル軸、16
はレンズホルダである。2. Description of the Related Art A conventional optical head will be described below with reference to the drawings. FIG. 7 is a perspective view of a conventional optical head, 1 is a light source such as a semiconductor laser, 2 is a collimating means exemplifying a collimating lens, 3 is a light beam separating means exemplifying a beam splitter, and 4 is an objective lens. Is a recording medium, 5 is a recording medium, 7 is a first focal point, and 8
Is a second focal point, 9 is a four-division light receiving element, 9a, 9b, 9c,
Reference numeral 9d is a light receiving area of the four-division light receiving element, 9e, 9f and 9g are light spots connected on the four-division light receiving element, 10 is an optical base, and 10a is a reference plane for assembling the optical head.
d is a hole through which a light beam is provided on the optical base, and 15 is a first
A lens surface of which is a positive power surface and a second lens surface of which is a cylindrical surface; 15a is a cylindrical axis;
Is a lens holder.
【0003】このように構成された従来例について、そ
の動作について説明する。光源より発せられた光は、コ
リメート手段2によって平行光束に変換され、光束分離
手段3で反射され、その平行光束の反射成分が対物レン
ズ駆動装置(図示せず)に組み込まれた集光手段4によ
り、記録媒体5の反射面に集光される。記録媒体5から
の反射光束は光束分離手段3を略透過し、レンズ光軸回
りにシリンドリカル軸を45°回転されたフォーカス誤
差検出手段となる第1のレンズ面が正のパワーの面で第
2のレンズ面がシリンドリカル面のレンズ15により非
点収差が発生する。The operation of the conventional example thus constructed will be described. The light emitted from the light source is converted into a parallel light flux by the collimating means 2, is reflected by the light flux separating means 3, and the reflection component of the parallel light flux is integrated into an objective lens driving device (not shown). Thus, the light is condensed on the reflection surface of the recording medium 5. The reflected light beam from the recording medium 5 is substantially transmitted through the light beam separating means 3, and the first lens surface, which serves as the focus error detecting means rotated about the lens optical axis by 45 ° about the cylindrical axis, is the second surface with a positive power. Astigmatism occurs due to the lens 15 whose lens surface is a cylindrical surface.
【0004】すなわち、シリンドリカル軸に垂直でレン
ズ光軸を含む平面内では実線の光路となり4分割受光素
子の前の第1焦点7に収斂し4分割受光素子9上で非点
スポット9eを形成、シリンドリカル軸と一致する平面
内では破線の光路となり4分割受光素子の後ろの第2焦
点8に収斂し4分割受光素子9上で非点スポット9fを
形成する。4分割受光素子9は受光面が第1焦点7と第
2焦点8との略中間に位置し、非点収差法によりフォー
カス誤差信号の検出、プッシュプル法によりトラッキン
グ誤差信号の検出、4分割の和を取ることにより情報信
号の検出を行う。That is, in a plane perpendicular to the cylindrical axis and including the lens optical axis, the optical path becomes a solid line and converges on the first focal point 7 in front of the four-divided light receiving element to form an astigmatic spot 9e on the four-divided light receiving element 9. In the plane that coincides with the cylindrical axis, the optical path becomes a broken line and converges on the second focal point 8 behind the four-divided light receiving element to form an astigmatic spot 9f on the four-divided light receiving element 9. The light receiving surface of the four-division light receiving element 9 is located approximately in the middle between the first focus 7 and the second focus 8, and the focus error signal is detected by the astigmatism method and the tracking error signal is detected by the push-pull method. The information signal is detected by taking the sum.
【0005】そして、第1のレンズ面が正のパワーの面
で第2のレンズ面がシリンドリカル面のレンズ15はレ
ンズホルダ16にシリンドリカル軸15aをレンズ光軸
まわりに45゜回転、固定され、更にレンズホルダ16
が光学基台10に固定される。The lens 15 whose first lens surface has a positive power and whose second lens surface has a cylindrical surface is fixed to the lens holder 16 by rotating the cylindrical axis 15a about the lens optical axis by 45 °. Lens holder 16
Are fixed to the optical base 10.
【0006】ところが、この従来の光学ヘッドは、第1
のレンズ面から4分割受光素子9までの距離をL2とす
ると、対物レンズの焦点距離、フォーカスのS字範囲、
スポット径等の光学定数の関係でL2は長くなるため、
光路長の長い光学ヘッドになり形状が大きくなるという
欠点がある。However, this conventional optical head is
Let L2 be the distance from the lens surface to the four-division light receiving element 9, the focal length of the objective lens, the S-shaped range of the focus,
Since L2 becomes long due to the optical constants such as the spot diameter,
There is a drawback in that the optical head has a long optical path length and its shape becomes large.
【0007】そこで、光路長を短くするためレンズ15
の焦点距離を短くすると、4分割受光素子9上での光ス
ポットが小さくなり、4分割受光素子9の位置ずれおよ
びレンズ15と4分割受光素子9間での温度特性により
距離変動の影響を圧倒的に受けやすいという問題点があ
る。Therefore, in order to shorten the optical path length, the lens 15
If the focal length of is shortened, the light spot on the 4-division light-receiving element 9 becomes smaller, and the influence of the distance variation is overwhelmed by the positional deviation of the 4-division light-receiving element 9 and the temperature characteristics between the lens 15 and the 4-division light-receiving element 9. There is a problem that it is easily received.
【0008】一方、これらを解決するためにレンズ15
を複数枚のレンズとして、例えば、第1のレンズ面が正
のパワーを持ち第2のレンズ面が負のパワーを持つレン
ズとして、第1のレンズ面あるいは第2のレンズ面のい
ずれかの面をシリンドリカル面を含む面としたいわゆる
テレフォーカス系のレンズとした構成も実施されてい
る。On the other hand, in order to solve these problems, the lens 15
As a plurality of lenses, for example, the first lens surface has a positive power and the second lens surface has a negative power, and either the first lens surface or the second lens surface A so-called telefocus lens having a surface including a cylindrical surface is also implemented.
【0009】しかし、レンズ光軸どうしのずれあるいは
レンズ15とレンズホルダ16との取付誤差およびレン
ズホルダ16と光学基台10との取付誤差とによって、
4分割受光素子9の受光面にできる光スポットに球面収
差、コマ収差を発生しやすくなるため、焦点誤差制御を
不安定にする可能性を生じていた。However, due to the deviation between the optical axes of the lenses, the mounting error between the lens 15 and the lens holder 16 and the mounting error between the lens holder 16 and the optical base 10,
Since spherical aberration and coma are likely to occur in the light spot formed on the light receiving surface of the four-division light receiving element 9, there is a possibility of destabilizing the focus error control.
【0010】これに対して、図8は最近提案された光学
ヘッド(特願平4−287334号)の概略図であり、
光束が入射する側から順に正のパワーを持つ第1のレン
ズ面と負のパワーを持つレンズ面からなり、かつ、第1
のレンズ面および第2のレンズ面のいずれか一方のレン
ズ面には入射光束に垂直な平面内にシリンドリカル軸を
有して非点収差を発生させる。筒状単レンズ6以外は図
7の光学ヘッドと同一構成であるので、同一構成部の詳
細な説明は省略する。On the other hand, FIG. 8 is a schematic view of an recently proposed optical head (Japanese Patent Application No. 4-287334),
The first lens surface having positive power and the lens surface having negative power are arranged in this order from the side on which the light beam is incident, and
Either one of the lens surface of the second lens surface and the lens surface of the second lens surface has a cylindrical axis in a plane perpendicular to the incident light beam to generate astigmatism. Except for the cylindrical single lens 6, the optical head has the same configuration as that of the optical head shown in FIG.
【0011】この光学ヘッドは、従来複数枚のレンズで
実現していたテレフォーカス系レンズを筒状単レンズで
実現することにより、複数枚のときのレンズどうしの光
軸ズレを生じさせないで、筒状単レンズ6の入射面から
4分割受光素子9の入射面までの距離L1を大幅に短く
でき、光学ヘッドの小型化をはかることができる。In this optical head, the telefocus system lens, which has been conventionally realized by a plurality of lenses, is realized by a cylindrical single lens, so that the optical axis shift between the lenses when a plurality of lenses are not caused can be realized. The distance L1 from the incident surface of the single lens 6 to the incident surface of the four-division light receiving element 9 can be significantly shortened, and the optical head can be downsized.
【0012】また前記筒状単レンズ6は例えば図9に示
す金型で硝材をプレス成形することにより得られる。1
7は上型、18は胴型、19は下型、20はレンズがモ
ールドされるキャビティである。The cylindrical single lens 6 can be obtained, for example, by press molding a glass material with a mold shown in FIG. 1
Reference numeral 7 is an upper mold, 18 is a barrel mold, 19 is a lower mold, and 20 is a cavity in which a lens is molded.
【0013】[0013]
【発明が解決しようとする課題】しかしながら、上記し
た構成の光学ヘッドでは、筒状単レンズの有するシリン
ドリカル軸を決定するためには4分割受光素子上にでき
る光スポットを観測して第1焦点と第2焦点の非点の傾
斜角が所定の範囲内におさまるように回転調整しなけれ
ばならなく、組立て、調整工数の増加は避けられない。However, in the optical head having the above-described structure, in order to determine the cylindrical axis of the cylindrical single lens, the light spot formed on the four-divided light receiving element is observed and the first focal point is set. The rotation adjustment must be performed so that the astigmatic inclination angle of the second focal point falls within a predetermined range, and an increase in assembly and adjustment man-hours cannot be avoided.
【0014】この発明の目的は、この従来の問題点を鑑
み、筒状単レンズのシリンドリカル軸を容易に決定で
き、しかも筒状単レンズの固定にともなうレンズへの入
射光束とレンズ光軸とのずれを少なくすることができる
光学ヘッド及びその調整方法を提供することである。In view of this conventional problem, an object of the present invention is to easily determine the cylindrical axis of a cylindrical single lens, and to let the incident light beam on the lens and the lens optical axis when the cylindrical single lens is fixed. An object of the present invention is to provide an optical head capable of reducing the deviation and an adjusting method thereof.
【0015】[0015]
【課題を解決するための手段】請求項1の光学ヘッド
は、半導体レーザ等の光源と、光源からの出射光束を平
行光束に変換するコリメート手段と、前記平行光束を記
録媒体上に収斂させる対物レンズ等の集光手段と、前記
平行光束と前記記録媒体からの反射光束を分離する光束
分離手段と、前記光束分離手段からの分離光束が入射す
る受光素子と、前記分離手段と前記光束分離手段の中間
に位置して前記分離光束の光軸に略一致するレンズ光軸
を有するとともに前記分離光束が入射する側から順に正
のパワーを持つ第1のレンズ面と負のパワーを持つ第2
のレンズ面とを有しかつ前記第2のレンズ面の前記レン
ズ光軸に垂直な面内にシリンドリカル軸を有する筒状単
レンズと、基準面と前記分離光束に平行で互いに直交し
て前記筒状単レンズの側面を当接固定する少なくとも2
つのレンズ固定面を有する光学基台とを備えた光学ヘッ
ドであって、前記筒状単レンズのシリンドリカル軸を有
するレンズ面の有効径外に前記光学基台の基準面に対し
て所定の角度に位置決めするためのシリンドリカル軸角
度決定部を有することを特徴とするものでる。An optical head according to the present invention comprises a light source such as a semiconductor laser, a collimating means for converting a light beam emitted from the light source into a parallel light beam, and an objective for converging the parallel light beam on a recording medium. Condensing means such as a lens, luminous flux separating means for separating the parallel luminous flux and reflected luminous flux from the recording medium, a light receiving element on which the separated luminous flux from the luminous flux separating means is incident, the separating means and the luminous flux separating means. A first lens surface having a positive optical power and a second power having a negative power in order from the incident side of the separated light flux.
And a cylindrical single lens having a cylindrical surface in a plane perpendicular to the lens optical axis of the second lens surface, and the cylinder parallel to the reference surface and the separated light beam and orthogonal to each other. At least 2 for abutting and fixing the side surfaces of the single lens
An optical head having an optical base having two lens fixing surfaces, the optical head having a predetermined angle with respect to a reference surface of the optical base outside the effective diameter of the lens surface having the cylindrical axis of the cylindrical single lens. It is characterized by having a cylindrical axis angle determining unit for positioning.
【0016】請求項2の光学ヘッドは、請求項1におい
て、筒状単レンズのシリンドリカル軸角度決定部は少な
くとも1面の略平面状テーパー部で構成されていること
を特徴とするものである。An optical head according to a second aspect is the optical head according to the first aspect, characterized in that the cylindrical axis angle determining portion of the cylindrical single lens is constituted by at least one substantially flat taper portion.
【0017】請求項3の光学ヘッド調整方法は、正のパ
ワーを持つ第1のレンズ面と負のパワーを持つ第2のレ
ンズ面とを有しかつ前記第2のレンズ面の光軸にに垂直
な面内にシリンドリカル軸を有する筒状単レンズと、基
準面と前記分離光束に平行で互いに直交して前記筒状単
レンズの側面を当接固定する少なくとも2つのレンズ固
定面を有する光学基台とを備え前記光学基台の基準面に
対して前記シリンドリカル軸が所定の角度をなす位置に
前記筒状単レンズを位置決めする調整方法であって、前
記筒状単レンズのシリンドリカル軸角度決定部と係合す
る係合手段と、係合手段と係合した筒状単レンズを回転
調整する回転手段とを有することを特徴とするものであ
る。An optical head adjusting method according to a third aspect of the present invention has a first lens surface having a positive power and a second lens surface having a negative power, and the optical axis of the second lens surface is located on the optical axis. An optical base having a cylindrical single lens having a cylindrical axis in a vertical plane, and at least two lens fixing surfaces for abutting and fixing side surfaces of the cylindrical single lens parallel to the reference surface and orthogonal to each other in the separated light flux. A method of adjusting the cylindrical single lens at a position where the cylindrical axis forms a predetermined angle with respect to a reference plane of the optical base, which comprises a table, and a cylindrical axis angle determining unit of the cylindrical single lens. It is characterized in that it has an engaging means for engaging with, and a rotating means for adjusting the rotation of the cylindrical single lens engaged with the engaging means.
【0018】[0018]
【作用】請求項1の光学ヘッドによれば、筒状単レンズ
の第2面側の金型にシリンドリカル軸角度決定部を構成
するので、シリンドリカル軸に対する角度決定部の角度
誤差を非常に小さく抑えることができる。According to the optical head of the first aspect, since the cylindrical axis angle determining unit is formed in the mold on the second surface side of the cylindrical single lens, the angle error of the angle determining unit with respect to the cylindrical axis is suppressed to a very small value. be able to.
【0019】また、筒状単レンズの側面を光学基台の少
なくも2つのレンズ固定面に当接させ、筒状単レンズを
回転してシリンドリカル軸を光学基台の基準面に対して
所定の角度に位置決めし、この状態で筒状単レンズをレ
ンズ固定面に固定することにより筒状単レンズのレンズ
光軸と光学基台の基準面とが平行となり、かつシリンド
リカル軸が基準面に対して所定の角度傾斜するように固
定される。したがって、筒状単レンズを用いて焦点距離
を短くすることにより、筒状単レンズと受光素子との距
離を短縮できるので光学ヘッドを小型化できるととも
に、筒状単レンズのシリンドリカル軸を容易に位置決め
でき、しかも筒状単レンズの固定に伴う筒状単レンズへ
の入射光束とレンズ光軸のずれを少なくすることがで
き、高精度でかつ信頼性を高くできる。Further, the side surface of the cylindrical single lens is brought into contact with at least two lens fixing surfaces of the optical base, and the cylindrical single lens is rotated to set the cylindrical axis to a predetermined plane with respect to the reference surface of the optical base. By positioning the lens at an angle and fixing the cylindrical single lens to the lens fixing surface in this state, the lens optical axis of the cylindrical single lens becomes parallel to the reference surface of the optical base, and the cylindrical axis is relative to the reference surface. It is fixed so that it is inclined at a predetermined angle. Therefore, by shortening the focal length by using the tubular single lens, the distance between the tubular single lens and the light receiving element can be shortened, so that the optical head can be downsized and the cylindrical axis of the tubular single lens can be easily positioned. Moreover, it is possible to reduce the deviation between the light flux incident on the cylindrical single lens and the optical axis of the lens due to the fixing of the cylindrical single lens, and it is possible to achieve high accuracy and high reliability.
【0020】請求項2の光学ヘッドによれば、請求項1
において、筒状単レンズのシリンドリカル軸角度決定部
は略平面状テーパー部で構成されていることを特徴とす
るものである。According to the optical head of claim 2, claim 1
In the above, in the cylindrical single lens, the cylindrical axis angle determining portion is configured by a substantially flat taper portion.
【0021】請求項3の光学ヘッドによれば、筒状単レ
ンズのシリンドリカル軸角度決定部を係合手段と係合さ
せ、その回転手段によって係合手段とともに筒状単レン
ズを回転させ、光学基台の基準面に対して所定の角度に
なるまで筒状単レンズを回転させ固定することにより、
従来、光スポットを観察して調整する場合より早く調整
が可能となる。According to the optical head of the third aspect, the cylindrical axis angle determining portion of the cylindrical single lens is engaged with the engaging means, and the cylindrical single lens is rotated together with the engaging means by the rotating means, and the optical base is rotated. By rotating and fixing the cylindrical single lens until it becomes a predetermined angle with respect to the reference surface of the table,
Conventionally, the adjustment can be performed faster than the case where the light spot is observed and adjusted.
【0022】[0022]
【実施例】この発明の実施例について図1、図2、図
3、図4、図5、図6を参照しながら説明する。図1は
本発明の実施例における光学ヘッドの斜視図、図2は筒
状単レンズの第2面を成形する金型の斜視図、図3はそ
の筒状単レンズ6の断面図、図4は筒状単レンズ6の第
2面側の正面図、図5は本実施例の光学ヘッドの調整方
法を示す正面図、図6は本実施例の光学ヘッドの調整方
法を示す側面図である。Embodiments of the present invention will be described with reference to FIGS. 1, 2, 3, 4, 5, and 6. 1 is a perspective view of an optical head in an embodiment of the present invention, FIG. 2 is a perspective view of a mold for molding the second surface of a tubular single lens, FIG. 3 is a sectional view of the tubular single lens 6, and FIG. Is a front view of the second surface side of the cylindrical single lens 6, FIG. 5 is a front view showing an adjusting method of the optical head of this embodiment, and FIG. 6 is a side view showing an adjusting method of the optical head of this embodiment. .
【0023】図1において、基本的には図7に示した従
来の光学ヘッドの光学系と同じ構成であるので、同一構
成部分には同一番号を付して詳細な説明を省略する。な
お、6aは筒状単レンズ6のシリンドリカル軸、10
a、10bは筒状単レンズを当接固定する面、10eは
筒状単レンズ6の光軸方向の位置規制のための段差、1
1は筒状単レンズ6を光学基台のレンズ固定面10b、
10cに押さえて固定するためのばねである。In FIG. 1, since it has basically the same configuration as the optical system of the conventional optical head shown in FIG. 7, the same components are designated by the same reference numerals and detailed description thereof will be omitted. In addition, 6a is a cylindrical axis of the cylindrical single lens 6,
a and 10b are surfaces for abutting and fixing the tubular single lens, 10e is a step for restricting the position of the tubular single lens 6 in the optical axis direction, 1
1 is a cylindrical single lens 6 which is a lens fixing surface 10b of an optical base,
It is a spring for pressing and fixing to 10c.
【0024】図2において、19は本実施例の筒状単レ
ンズ6を成形する金型の下型、19aは筒状単レンズ6
の第2面の有効径内のシリンドリカル面を含むトーリッ
ク面を成型する転写面、19bは筒状単レンズ6の有効
径外の円錐状テーパー部を成型する転写面、19cはシ
リンドリカル軸19eから角度α回転したシリンドリカ
ル軸角度決定部を成型する転写面、19dは筒状単レン
ズ6のシリンドリカル軸角度決定部の中心線、19eは
金型のシリンドリカル軸である。In FIG. 2, 19 is the lower die of the mold for molding the tubular single lens 6 of this embodiment, and 19a is the tubular single lens 6.
Of the second surface, a transfer surface for molding a toric surface including a cylindrical surface within the effective diameter, 19b for transferring a conical taper portion outside the effective diameter of the cylindrical single lens 6, and 19c for forming an angle from the cylindrical axis 19e. A transfer surface for molding the α-rotated cylindrical axis angle determining section, 19d is a center line of the cylindrical axis angle determining section of the cylindrical single lens 6, and 19e is a cylindrical axis of the mold.
【0025】筒状単レンズ6は従来例の図9の下型16
の代わりに図2に示す下型19を用いて成形される。The cylindrical single lens 6 is a lower mold 16 of the conventional example shown in FIG.
Is molded by using the lower mold 19 shown in FIG.
【0026】図3、図4において、6aはシリンドリカ
ル軸、6bはレンズ光軸、6cは正のパワーを持つレン
ズ第1面、6dは負のパワーを持つレンズ第2面、6e
はレンズ第2面の有効面でシリンドリカル面を含むトー
リック面、6fは第1面に構成されたこば面、6gはシ
リンドリカル軸6aに対して角度α回転したシリンドリ
カル軸角度決定部の中心軸、6hは第2面の有効径外に
形成されたシリンドリカル軸角度決定部であるテーパー
状平面、6iは第2面の有効径外に形成された円錐状テ
ーパー部である。3 and 4, 6a is a cylindrical axis, 6b is a lens optical axis, 6c is a first lens surface having positive power, 6d is a second lens surface having negative power, and 6e.
Is a toric surface that is an effective surface of the lens second surface and includes a cylindrical surface, 6f is a knuckle surface configured as the first surface, 6g is a central axis of a cylindrical axis angle determining unit rotated by an angle α with respect to the cylindrical axis 6a, and 6h Is a tapered flat surface which is a cylindrical axis angle determining portion formed outside the effective diameter of the second surface, and 6i is a conical tapered portion formed outside the effective diameter of the second surface.
【0027】以上のように構成された光学ヘッドにおい
て、集光系から検出系までの光学的動作は図7に示す従
来例と同じであるので省略し、筒状単レンズ6の動作の
み述べる。In the optical head configured as described above, the optical operation from the focusing system to the detection system is the same as that of the conventional example shown in FIG. 7, and therefore its explanation is omitted, and only the operation of the cylindrical single lens 6 will be described.
【0028】筒状単レンズ6はばね11によって、光学
基台10のレンズ固定面10b、10cに押圧固定さ
れ、基準面10aに対してシリンドリカル軸6aが所定
の角度αになるように位置決めされる。筒状単レンズ6
は、光束分離手段3と4分割受光素子9の中間に位置し
て光束分離手段からの光束が筒状単レンズ6の第1面6
cに入射し急激に絞られる。第2面6dのトーリック面
6eに達した光束は広げられるとともに非点収差が与え
られ4分割受光素子9上にスポットが結ばれ信号が検出
される。The cylindrical single lens 6 is pressed and fixed to the lens fixing surfaces 10b and 10c of the optical base 10 by the spring 11, and is positioned so that the cylindrical shaft 6a is at a predetermined angle α with respect to the reference surface 10a. . Cylindrical single lens 6
Is located between the light beam separating means 3 and the four-division light receiving element 9, and the light beam from the light beam separating means is the first surface 6 of the cylindrical single lens 6.
It is incident on c and sharply narrowed down. The light flux that has reached the toric surface 6e of the second surface 6d is widened and given astigmatism, so that a spot is formed on the four-division light receiving element 9 and a signal is detected.
【0029】つぎに、この光学ヘッドの筒状単レンズ6
の光学基台10に対する位置決めの調整方法について図
5、図6を参照しながら説明する。Next, the cylindrical single lens 6 of this optical head
A method of adjusting the positioning with respect to the optical base 10 will be described with reference to FIGS.
【0030】図5、図6において、12は筒状単レンズ
6のテーパー状平面6hと係合する係合手段、13は係
合手段12を支持する支持手段、14は筒状単レンズ6
と係合した係合手段12をレンズ光軸回りに回転を与え
る回転手段である。In FIGS. 5 and 6, 12 is an engaging means for engaging with the tapered flat surface 6h of the cylindrical single lens 6, 13 is a supporting means for supporting the engaging means 12, and 14 is the cylindrical single lens 6.
It is a rotating means for rotating the engaging means 12 engaged with the lens around the optical axis of the lens.
【0031】筒状単レンズ6のシリンドリカル軸角度決
定部であるテーパー状平面6hとトーリック面6eのシ
リンドリカル軸6aは一定角度αをなしている。α=4
5°とするとシリンドリカル軸角度決定部6gを光学基
台の基準面10aと直角になる位置で回転を止めること
によりシリンドリカル軸6aを光学基台10aに対して
45°傾いた角度で固定できる。この結果、記録媒体5
からの反射光束が筒状単レンズ6に入射すると、筒状単
レンズ6の第1焦点7と第2焦点8の略中間に配設され
た4分割受光素子9の受光面で適正に非点に収斂され誤
差信号が得られる。The tapered flat surface 6h, which is the cylindrical axis angle determining portion of the cylindrical single lens 6, and the cylindrical axis 6a of the toric surface 6e form a constant angle α. α = 4
When the angle is 5 °, the cylindrical axis 6a can be fixed at an angle of 45 ° with respect to the optical base 10a by stopping the rotation of the cylindrical axis angle determination unit 6g at a position perpendicular to the reference surface 10a of the optical base. As a result, the recording medium 5
When the reflected light flux from is incident on the cylindrical single lens 6, the light receiving surface of the four-divided light receiving element 9 disposed approximately in the middle of the first focal point 7 and the second focal point 8 of the cylindrical single lens 6 is properly astigmatic. And an error signal is obtained.
【0032】この実施例の光学ヘッドによれば、筒状単
レンズ6の側面を光学基台10の少なくとも2つのレン
ズ固定面10b、10cに当接させ、筒状単レンズ6を
回転してシリンドリカル軸6aを光学基台10の基準面
10aに対して所定の角度αに位置決めし、この状態で
筒状単レンズ6をレンズ固定面10b、10cに固定す
ることにより筒状単レンズ6のレンズ光軸6bと光学基
台10の基準面10aとが平行となり、かつシリンドリ
カル軸6aが基準面10aに対して所定の角度αに傾斜
するように固定できる。したがって、筒状単レンズ6を
用いて焦点距離を短くすることにより、筒状単レンズ6
と4分割受光素子9との距離L1を短くできるので光学
ヘッドを小型化でき、しかも筒状単レンズ6の固定に伴
う筒状単レンズ6への入射光束とレンズ軸6bと光軸の
ずれを少なくすることができ、高精度でかつ信頼性を高
くできる。According to the optical head of this embodiment, the side surface of the cylindrical single lens 6 is brought into contact with at least two lens fixing surfaces 10b and 10c of the optical base 10, and the cylindrical single lens 6 is rotated to rotate the cylindrical lens. The shaft 6a is positioned at a predetermined angle α with respect to the reference surface 10a of the optical base 10, and in this state, the cylindrical single lens 6 is fixed to the lens fixing surfaces 10b and 10c. The shaft 6b and the reference surface 10a of the optical base 10 are parallel to each other, and the cylindrical axis 6a can be fixed so as to be inclined at a predetermined angle α with respect to the reference surface 10a. Therefore, by shortening the focal length by using the tubular single lens 6,
Since the distance L1 between the light receiving element 9 and the four-division light receiving element 9 can be shortened, the optical head can be downsized, and the incident light flux to the cylindrical single lens 6 and the deviation of the optical axis from the lens axis 6b due to the fixation of the cylindrical single lens 6 can be reduced. It is possible to reduce the number, and it is possible to achieve high accuracy and high reliability.
【0033】また、光学ヘッドの調整方法によれば、筒
状単レンズ6のシリンドリカル軸6aとシリンドリカル
軸角度決定部6hの角度αは金型で精度良く製造できる
ので、筒状単レンズ6のシリンドリカル軸角度決定部で
あるテーパー状平面6hと係合手段12を係合させ、回
転手段14の回転角度を規制をするだけで位置決めでき
る。したがって、従来のように受光素子からの信号や受
光素子上の光スポットを見ながら行う位置決めより精度
良くさらに短時間で容易に回転方向の位置決めを行うこ
とができる。Further, according to the method of adjusting the optical head, the cylindrical axis 6a of the cylindrical single lens 6 and the angle α of the cylindrical axis angle determining portion 6h can be accurately manufactured by using a mold, so that the cylindrical single lens 6 has a cylindrical shape. Positioning is possible only by engaging the tapered flat surface 6h, which is the axial angle determining portion, with the engaging means 12, and restricting the rotation angle of the rotating means 14. Therefore, the positioning in the rotational direction can be performed more accurately and in a shorter time and more easily than the conventional positioning that is performed while observing the signal from the light receiving element and the light spot on the light receiving element.
【0034】なお、本実施例ではテーパー状平面部は2
面で構成しているが、1面あるいは3面以上であっても
良い。In this embodiment, the tapered flat surface portion is 2
Although it is composed of one surface, it may be one surface or three or more surfaces.
【0035】また、本実施例は、情報信号がピットによ
り形成された記録媒体5からフォーカス誤差信号の検出
を非点収差法により行い、トラッキング誤差信号をプッ
シュプル法により行い、情報信号の検出を4分割領域の
和で検出するう光学ヘッドであるが、トラッキング誤差
信号の検出を3ビーム法で行う光学ヘッド、あるいは光
磁気信号を検出する光学ヘッドの中でフォーカス誤差検
出を非点収差法により行う光学ヘッドに適用できること
はいうまでもない。Further, in this embodiment, the focus error signal is detected from the recording medium 5 in which the information signal is formed by the pits by the astigmatism method, the tracking error signal is detected by the push-pull method, and the information signal is detected. The optical head detects the sum of four divided areas, but the focus error is detected by the astigmatism method in the optical head that detects the tracking error signal by the three-beam method or the optical head that detects the magneto-optical signal. It goes without saying that it can be applied to an optical head to be used.
【0036】[0036]
【発明の効果】請求項1および請求項2の光学ヘッドに
よれば、筒状単レンズの第2面の有効径外にシリンドリ
カル軸角度決定部をシリンドリカル軸と所定の角度に傾
けて構成することにより、シリンドリカル軸角度決定部
を基準に光学基台に固定することにより、筒状単レンズ
のシリンドリカル軸を容易に位置決めすることができ、
しかも筒状単レンズの固定に伴う筒状単レンズへの入射
光束とレンズ光軸のずれを少なくすることができ、高精
度でかつ信頼性を高くできる効果がある。According to the optical heads of the first and second aspects, the cylindrical axis angle determining portion is formed outside the effective diameter of the second surface of the cylindrical single lens by inclining the cylindrical axis at a predetermined angle with respect to the cylindrical axis. Thus, by fixing the cylindrical axis angle determination unit to the optical base, the cylindrical axis of the cylindrical single lens can be easily positioned,
Moreover, it is possible to reduce the deviation of the light flux incident on the cylindrical single lens and the optical axis of the lens due to the fixation of the cylindrical single lens, and it is possible to achieve high accuracy and high reliability.
【0037】請求項3の光学ヘッドによれば、請求項1
において、筒状単レンズを第2面の有効径外に構成され
ているシリンドリカル軸角度決定部と係合する係合手段
で係合させ筒状単レンズを回転することによりシリンド
リカル軸の検出を行わずにシリンドリカル軸を光学基台
の基準面に対して高精度で回転位置決め、固定すること
ができる。また、筒状単レンズの光軸方向へ力を同時に
加えられ筒状単レンズの光軸方向の位置決めも同時にで
きるのでコストダウンをはかることができる。According to the optical head of claim 3, claim 1
In, the cylindrical single lens is detected by engaging the tubular single lens with engaging means that engages with the cylindrical axis angle determining portion formed outside the effective diameter of the second surface and rotating the tubular single lens. Instead, the cylindrical shaft can be rotationally positioned and fixed with high accuracy with respect to the reference surface of the optical base. Further, a force can be applied to the cylindrical single lens in the optical axis direction at the same time, and the cylindrical single lens can be positioned in the optical axis direction at the same time, so that the cost can be reduced.
【図1】本発明の実施例における光学ヘッドの斜視図FIG. 1 is a perspective view of an optical head according to an embodiment of the present invention.
【図2】本発明の実施例における筒状単レンズの第2面
を成形する金型の斜視図FIG. 2 is a perspective view of a mold for molding the second surface of the cylindrical single lens according to the embodiment of the present invention.
【図3】本発明の実施例における筒状単レンズの断面図FIG. 3 is a sectional view of a cylindrical single lens according to an embodiment of the present invention.
【図4】本発明の実施例における筒状単レンズの第2面
側の正面図FIG. 4 is a front view of the second surface side of the cylindrical single lens in the example of the present invention.
【図5】本発明の実施例における光学ヘッドの調整方法
を示す正面図FIG. 5 is a front view showing an adjusting method of the optical head according to the embodiment of the invention.
【図6】本発明の実施例における光学ヘッドの調整方法
を示す側面図FIG. 6 is a side view showing an adjusting method of the optical head according to the embodiment of the invention.
【図7】従来例の光学ヘッドの斜視図FIG. 7 is a perspective view of a conventional optical head.
【図8】他の従来例の光学ヘッドの概略説明図FIG. 8 is a schematic explanatory view of another conventional optical head.
【図9】他の従来例の光学ヘッドの筒状単レンズの成型
金型を示す図FIG. 9 is a view showing a molding die for a cylindrical single lens of an optical head of another conventional example.
1 光源 2 コリメート手段 3 光束分離手段 4 集光手段 5 記録媒体 6 筒状単レンズ 6a シリンドリカル軸 6b レンズ光軸 6c 正のパワーを持つレンズ第1面 6d 負のパワーを持つレンズ第2面 9 4分割受光素子 10 光学基台 12 係合手段 14 回転手段 DESCRIPTION OF SYMBOLS 1 light source 2 collimating means 3 light flux separating means 4 light collecting means 5 recording medium 6 cylindrical single lens 6a cylindrical axis 6b lens optical axis 6c positive lens 1st surface 6d negative lens 2nd surface 9 4 Split light receiving element 10 Optical base 12 Engaging means 14 Rotating means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 徹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Nakamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (3)
射光束を平行光束に変換するコリメート手段と、前記平
行光束を記録媒体上に収斂させる対物レンズ等の集光手
段と、前記平行光束と前記記録媒体からの反射光束を分
離する光束分離手段と、前記光束分離手段からの分離光
束が入射する受光素子と、前記分離手段と前記光束分離
手段の中間に位置して前記分離光束の光軸に略一致する
レンズ光軸を有するとともに前記分離光束が入射する側
から順に正のパワーを持つ第1のレンズ面と負のパワー
を持つ第2のレンズ面とを有しかつ前記第2のレンズ面
の前記レンズ光軸に垂直な面内にシリンドリカル軸を有
する筒状単レンズと、基準面と前記分離光束に平行で互
いに直交して前記筒状単レンズの側面を当接固定する少
なくとも2つのレンズ固定面を有する光学基台とを備え
た光学ヘッドであって、前記筒状単レンズのシリンドリ
カル軸を有するレンズ面の有効径外に前記光学基台の基
準面に対して所定の角度に位置決めするためのシリンド
リカル軸角度決定部を有する光学ヘッド。1. A light source such as a semiconductor laser, a collimating means for converting a light flux emitted from the light source into a parallel light flux, a condensing means such as an objective lens for converging the parallel light flux on a recording medium, and the parallel light flux. A light beam separating means for separating the light beam reflected from the recording medium, a light receiving element on which the separated light beam from the light beam separating means is incident, and an optical axis of the separated light beam positioned between the separating means and the light beam separating means. And a second lens surface having a positive optical power and a second lens surface having negative power in order from the side on which the separated light flux enters. A cylindrical single lens having a cylindrical axis in a plane perpendicular to the lens optical axis of the surface, and at least two abutting and fixing side surfaces of the cylindrical single lens that are parallel to the reference plane and the separated light flux and are orthogonal to each other. Len An optical head having an optical base having a fixed surface, which is positioned at a predetermined angle with respect to a reference surface of the optical base outside the effective diameter of the lens surface having the cylindrical axis of the cylindrical single lens. An optical head having a cylindrical axis angle determining unit for performing the operation.
定部は少なくとも1面で構成される略平面状テーパー部
であることを特徴とする請求項1記載の光学ヘッド。2. The optical head according to claim 1, wherein the cylindrical axis angle determining portion of the cylindrical single lens is a substantially flat taper portion including at least one surface.
パワーを持つ第2のレンズ面とを有しかつ前記第2のレ
ンズ面の光軸にに垂直な面内にシリンドリカル軸を有す
る筒状単レンズと、基準面と前記分離光束に平行で互い
に直交して前記筒状単レンズの側面を当接固定する少な
くとも2つのレンズ固定面を有する光学基台とを備え前
記光学基台の基準面に対して前記シリンドリカル軸が所
定の角度をなす位置に前記筒状単レンズを位置決めする
調整方法であって、 前記筒状単レンズのシリンドリカル軸角度決定部と係合
する係合手段と、係合手段と係合した筒状単レンズを回
転調整する回転手段とを有することを特徴とする光学ヘ
ッドの調整方法。3. A cylindrical axis having a first lens surface having a positive power and a second lens surface having a negative power and having a cylindrical axis in a plane perpendicular to the optical axis of the second lens surface. An optical base having a cylindrical single lens having the same, and an optical base having at least two lens fixing surfaces for abutting and fixing a side surface of the cylindrical single lens parallel to the reference surface and orthogonal to each other to the separated light flux. Is an adjusting method for positioning the cylindrical single lens at a position where the cylindrical axis forms a predetermined angle with respect to the reference surface, and engaging means for engaging with the cylindrical axis angle determining unit of the cylindrical single lens. An adjusting method for an optical head, comprising: an engaging means and a rotating means for adjusting the rotation of the cylindrical single lens engaged with the engaging means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6127700A JPH07334851A (en) | 1994-06-09 | 1994-06-09 | Optical head and adjusting method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6127700A JPH07334851A (en) | 1994-06-09 | 1994-06-09 | Optical head and adjusting method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07334851A true JPH07334851A (en) | 1995-12-22 |
Family
ID=14966548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6127700A Pending JPH07334851A (en) | 1994-06-09 | 1994-06-09 | Optical head and adjusting method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07334851A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002350608A (en) * | 2001-05-23 | 2002-12-04 | Konica Corp | Image pickup lens, image pickup device, metallic mold and method for molding image pickup lens |
EP1592001A2 (en) * | 2004-04-27 | 2005-11-02 | Matsushita Electric Industrial Co., Ltd. | Beam shaping lens, lens part, mounting plate, optical head, optical information recording and reproducing apparatus, computer, image recording and reproducing apparatus, image reproducing apparatus, server and car navigation system |
JP2006294185A (en) * | 2005-04-14 | 2006-10-26 | Konica Minolta Opto Inc | Manufacturing method of beam shaping element and beam shaping element obtained by the method |
-
1994
- 1994-06-09 JP JP6127700A patent/JPH07334851A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002350608A (en) * | 2001-05-23 | 2002-12-04 | Konica Corp | Image pickup lens, image pickup device, metallic mold and method for molding image pickup lens |
EP1592001A2 (en) * | 2004-04-27 | 2005-11-02 | Matsushita Electric Industrial Co., Ltd. | Beam shaping lens, lens part, mounting plate, optical head, optical information recording and reproducing apparatus, computer, image recording and reproducing apparatus, image reproducing apparatus, server and car navigation system |
EP1592001A3 (en) * | 2004-04-27 | 2006-11-02 | Matsushita Electric Industrial Co., Ltd. | Beam shaping lens, lens part, mounting plate, optical head, optical information recording and reproducing apparatus, computer, image recording and reproducing apparatus, image reproducing apparatus, server and car navigation system |
US7450308B2 (en) | 2004-04-27 | 2008-11-11 | Panasonic Corporation | Beam shaping lens, lens part, mounting plate, optical head, optical information recording and reproducing apparatus, computer, image recording and reproducing apparatus, image reproducing apparatus, server and car navigation system |
JP2006294185A (en) * | 2005-04-14 | 2006-10-26 | Konica Minolta Opto Inc | Manufacturing method of beam shaping element and beam shaping element obtained by the method |
JP4569365B2 (en) * | 2005-04-14 | 2010-10-27 | コニカミノルタオプト株式会社 | Manufacturing method of beam shaping element and beam shaping element obtained by the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100382332B1 (en) | Aberration detector and optical pickup device | |
US6111842A (en) | Optical head | |
JPH10134400A (en) | Optical head | |
JPH07334851A (en) | Optical head and adjusting method therefor | |
US6730896B1 (en) | Optical pickup device | |
EP0333511B1 (en) | Optical pickup device | |
JP2877044B2 (en) | Optical head device | |
CN101064134B (en) | Objective lens holding device and optical pickup apparatus | |
JP3523457B2 (en) | Optical system for adjusting the tilt of the objective lens | |
US5337302A (en) | Optical data recording/reproduction apparatus for use with semiconductor lasers as a light source | |
JPH0737270A (en) | Optical head and adjustment thereof | |
JP2662941B2 (en) | Optical device | |
JPH1139697A (en) | Optical head device | |
JP3545361B2 (en) | Optical pickup device | |
JP3545362B2 (en) | Spherical aberration detection device and optical pickup device | |
US20040184366A1 (en) | Optical head device | |
JP2001160239A (en) | Method for manufacturing optical pickup | |
JP3545360B2 (en) | Optical pickup device | |
KR20020004818A (en) | Method for adjusting astigmatism of an optical pickup unit and a system thereof | |
JP2795963B2 (en) | Optical pickup device | |
JPH10334472A (en) | Optical pickup | |
JP3071013B2 (en) | Optical pickup device | |
JPS60105905A (en) | Optical disc evaluating apparatus | |
JPH0528570Y2 (en) | ||
JPH10289473A (en) | Optical head and light driving device |