JPH07333598A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH07333598A
JPH07333598A JP12756794A JP12756794A JPH07333598A JP H07333598 A JPH07333598 A JP H07333598A JP 12756794 A JP12756794 A JP 12756794A JP 12756794 A JP12756794 A JP 12756794A JP H07333598 A JPH07333598 A JP H07333598A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal cell
display
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12756794A
Other languages
Japanese (ja)
Other versions
JP3301219B2 (en
Inventor
Shinichi Shimomaki
Tetsushi Yoshida
伸一 下牧
哲志 吉田
Original Assignee
Casio Comput Co Ltd
カシオ計算機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by Casio Comput Co Ltd, カシオ計算機株式会社 filed Critical Casio Comput Co Ltd
Priority to JP12756794A priority Critical patent/JP3301219B2/en
Priority claimed from US08/455,898 external-priority patent/US5753937A/en
Publication of JPH07333598A publication Critical patent/JPH07333598A/en
Application granted granted Critical
Publication of JP3301219B2 publication Critical patent/JP3301219B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14963242&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07333598(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Abstract

PURPOSE:To provide a liquid crystal display device which colors light without using color filters and is capable of lessening light quantity loss by light absorption at polarizing plates and the substrates of a liquid crystal cell at the time of reflection type display as a liquid crystal display device which has a reflection type display function utilizing external light and a transmission type display function utilizing the light from a light source and is formed by using the liquid crystal cell having MIMs as active elements for the liquid crystal cell. CONSTITUTION:The polarizing plates 31, 32 are arranged on the front surface side and rear surface side, respectively, of the liquid crystal cell 10 having the MIMs 14 as the active elements. A phase difference plate 40 is arranged between the front surface side polarizing plate 31 and the liquid crystal cell 10. The light is colored by utilizing the double refractive effect of this phase difference plate 40 and the liquid crystal layer of the liquid crystal cell 10 and the polarization and analysis effect of the front surface side polarizing plate 31 at the time of the reflection type display. The light is colored by utilizing the double refractive effect, the polarization effect of the rear surface side polarizing plate 31 and the analysis effect of the front surface side polarizing plate 31 at the time of transmission type display. Further, the pixel electrodes 13 formed on the inside surface of the rear surface side polarizing plate 11 of the liquid crystal cell 10 are commonly used as translucent reflection films M.

Description

【発明の詳細な説明】 Detailed Description of the Invention

【0001】 [0001]

【産業上の利用分野】本発明は、反射型表示機能と透過型表示機能とを有し、かつ液晶セルに、2端子の非線形抵抗素子を能動素子とするアクティブマトリックス型液晶セルを用いた液晶表示装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal which has a reflective display function and a transmissive display function and which uses an active matrix type liquid crystal cell having a two-terminal nonlinear resistance element as an active element. The present invention relates to a display device.

【0002】 [0002]

【従来の技術】液晶表示装置として、自然光や室内照明
光等の外光を利用し表面側から入射する光を反射させて
表示する反射型表示機能と、光源からの光を裏面側から
入射させて表示する透過型表示機能とを有するものがあ
る。
2. Description of the Related Art As a liquid crystal display device, there is provided a reflective display function of displaying the light incident from the front surface side by utilizing the external light such as natural light or indoor illumination light, and the light from the light source incident from the rear surface side. Some have a transmissive display function for displaying the same.

【0003】上記反射型表示機能と透過型表示機能とを
有する液晶表示装置は、従来、図17に示すような構成
となっている。この液晶表示装置は、液晶セル1をはさ
んでその表面側と裏面側とにそれぞれ偏光板5,6を配
置するとともに、液晶セル1の裏面側に設けた偏光板6
の裏面側に、入射光をある反射率と透過率で反射および透過させるハーフミラー7を配置したものであり、光源8は、前記ハーフミラー7の背後に設けられている。 A half mirror 7 that reflects and transmits incident light with a certain reflectance and transmittance is arranged on the back surface side of the light source 8, and the light source 8 is provided behind the half mirror 7. A conventional liquid crystal display device having the reflection type display function and the transmission type display function has a structure as shown in FIG. In this liquid crystal display device, polarizing plates 5 and 6 are arranged on the front surface side and the back surface side of the liquid crystal cell 1, respectively, and a polarizing plate 6 provided on the back surface side of the liquid crystal cell 1. A conventional liquid crystal display device having the reflection type display function and the transmission type display function has a structure as shown in FIG. In this liquid crystal display device, grating plates 5 and 6 are arranged on the front surface side and the back surface side of the liquid crystal cell 1, respectively, and a liquid crystal plate 6 provided on the back surface side of the liquid crystal cell 1.
A half mirror 7 for reflecting and transmitting incident light with a certain reflectance and a certain transmittance is arranged on the back surface side of the light source 8, and the light source 8 is provided behind the half mirror 7. A half mirror 7 for reflecting and transmitting incident light with a certain reflectance and a certain transmittance is arranged on the back surface side of the light source 8, and the light source 8 is provided behind the half mirror 7.

【0004】上記液晶セル1は、透明な電極を設けると
ともにその上に配向膜を形成した一対の透明基板2,3
をそれぞれの電極形成面を互いに対向させて枠状のシー
ル材4を介して接合し、この両基板2,3間に液晶を挟
持させたものであり、液晶の分子は、それぞれの基板
2,3上における配向方向を前記配向膜で規制されて所
定の配向状態に配向されている。
The liquid crystal cell 1 has a pair of transparent substrates 2 and 3 each having a transparent electrode and an alignment film formed thereon.
Liquid crystal is sandwiched between the two substrates 2 and 3 with their electrode forming surfaces facing each other through a frame-shaped sealing material 4, and the molecules of the liquid crystal have the respective substrates 2 and 3. The orientation direction on 3 is regulated by the orientation film and oriented in a predetermined orientation state. Liquid crystal is sandwiched between the two substantially 2 and 3 with their electrode forming surfaces facing each other through a frame-shaped sealing material 4, and the molecules of the liquid crystal have the respective appropriately 2 and 3. The orientation direction on 3 is regulated by the orientation film and oriented in a predetermined orientation state.

【0005】また、上記光源8は、一般に、上記ハーフミラー7の裏面ほぼ全体に対向する導光板9と、この導光板9の一端面に向けて配置された光源ランプ10とからなっている。前記導光板9は、アクリル樹脂等からなる透明板の裏面全体にAl (アルミニウム)等の蒸着膜からなる反射膜9aを形成したもので、光源ランプ10
からの照明光は、導光板9にその一端面から入射して導光板9内を導かれ、この導光板9の表面全体から液晶セル1に向かって出射する。 The illumination light from the light guide plate 9 enters the light guide plate 9 from one end surface thereof, is guided in the light guide plate 9, and is emitted from the entire surface of the light guide plate 9 toward the liquid crystal cell 1. The light source 8 is generally composed of a light guide plate 9 facing almost the entire back surface of the half mirror 7, and a light source lamp 10 arranged toward one end surface of the light guide plate 9. The light guide plate 9 is formed by forming a reflective film 9a made of a vapor deposition film of Al (aluminum) or the like on the entire back surface of a transparent plate made of acrylic resin or the like. The light source 8 is generally composed of a light guide plate 9 facing almost the entire back surface of the half mirror 7, and a light source lamp 10 arranged toward one end surface of the light guide plate 9. The light guide plate 9 is formed by forming a reflective film 9a made of a vapor deposition film of Al (aluminum) or the like on the entire back surface of a transparent plate made of acrylic resin or the like.
The illumination light from is incident on the light guide plate 9 from one end face thereof, guided inside the light guide plate 9, and emitted from the entire surface of the light guide plate 9 toward the liquid crystal cell 1. The illumination light from is incident on the light guide plate 9 from one end face thereof, guided inside the light guide plate 9, and emitted from the entire surface of the light guide plate 9 toward the liquid crystal cell 1.

【0006】この液晶表示装置は、一般にTN(ツイス
テッド・ネマティック)方式とされており、液晶セル1
の液晶の分子は両基板2,3間において90°のツイス
ト角でツイスト配向され、表面側の偏光板5はその透過
軸を液晶セル1の表面側基板3上(基板内面)における
液晶分子の配向方向とほぼ平行またはほぼ直交させて配
置され、裏面側の偏光板6はその透過軸を液晶セル1の
裏面側基板2上における液晶分子の配向方向とほぼ平行
またはほぼ直交させて配置されている。
This liquid crystal display device is generally of the TN (twisted nematic) type, and the liquid crystal cell 1
The liquid crystal molecules are twist-aligned between the substrates 2 and 3 at a twist angle of 90 °, and the front surface side polarizing plate 5 has the transmission axis of the liquid crystal molecules on the front surface side substrate 3 (inner surface of the substrate) of the liquid crystal cell 1. The polarizing plate 6 on the rear surface side is arranged substantially parallel or substantially orthogonal to the alignment direction, and its transmission axis is arranged substantially parallel or substantially orthogonal to the alignment direction of the liquid crystal molecules on the rear surface side substrate 2 of the liquid crystal cell 1. There is. The liquid crystal molecules are twist-aligned between the similarly 2 and 3 at a twist angle of 90 °, and the front surface side polarizing plate 5 has the transmission axis of the liquid crystal molecules on the front surface side substrate 3 (inner surface of the substrate) of the liquid crystal cell 1. The polarizing plate 6 on the rear surface side is arranged substantially parallel or substantially aligned to the alignment direction, and its transmission axis is arranged substantially parallel or substantially orthogonal to the alignment direction of the liquid crystal molecules on the rear surface side substrate 2 of the liquid crystal cell 1. There is.

【0007】上記液晶表示装置は、外光の光量が十分な
明るい場所では外光を利用する反射型表示を行なうもの
であり、このときは、図17に実線矢印で示したよう
に、液晶表示装置にその表面側から入射する外光が、表
面側偏光板5の偏光作用により直線偏光となって液晶セ
ル10に入射する。
The above-mentioned liquid crystal display device performs a reflection type display utilizing outside light in a bright place where the amount of outside light is sufficient. At this time, as shown by a solid arrow in FIG. External light that enters the device from its front surface side becomes linearly polarized light by the polarization action of the front surface side polarizing plate 5 and enters the liquid crystal cell 10.

【0008】一方、液晶セル1の液晶分子は、両基板
2,3の電極間に電圧を印加していない状態では初期の
ツイスト配向状態にあり、電極間への電圧の印加によっ
て基板2,3面に対しほぼ垂直に立上がり配向するた
め、液晶セル1に入射した直線偏光のうち、オン電圧が
印加されていない領域に入射した光は、液晶層の複屈折
効果によりほぼ90°旋光された直線偏光となって液晶
セル1を出射し、また電圧印加領域に入射した光は、液
晶層による複屈折効果をほとんど受けずに入射時と同じ
直線偏光のまま液晶セル1を出射する。
On the other hand, the liquid crystal molecules of the liquid crystal cell 1 are in the initial twist alignment state when a voltage is not applied between the electrodes of the substrates 2 and 3, and the application of the voltage between the electrodes causes the substrates 2 and 3 to have the same orientation. Since the light is vertically oriented almost vertically to the plane, the linearly polarized light that is incident on the liquid crystal cell 1 is incident on a region to which the on-voltage is not applied, and is linearly rotated by 90 ° due to the birefringence effect of the liquid crystal layer. Light that has become polarized light and exits the liquid crystal cell 1 and that is incident on the voltage application region is substantially unaffected by the birefringence effect of the liquid crystal layer, and exits the liquid crystal cell 1 with the same linearly polarized light as at the time of incidence.

【0009】そして、液晶セル1を出射した光は、裏面
側偏光板6に入射してこの偏光板6の検光作用により画
像光となってハーフミラー7に入射し、その光のうち、
ハーフミラー7で反射された光が、前記裏面側偏光板6
と、液晶セル1と、表面側偏光板5とを通って液晶表示
装置の表面側に出射する。
Then, the light emitted from the liquid crystal cell 1 is incident on the rear surface side polarizing plate 6 and becomes an image light by the detecting function of the polarizing plate 6, and then is incident on the half mirror 7. Of the light,
The light reflected by the half mirror 7 is applied to the back side polarizing plate 6
Then, the light is emitted to the front surface side of the liquid crystal display device through the liquid crystal cell 1 and the front surface side polarizing plate 5. Then, the light is emitted to the front surface side of the liquid crystal display device through the liquid crystal cell 1 and the front surface side polarizing plate 5.

【0010】また、上記液晶表示装置は、外光の光量が少ない暗い場所でも、光源ランプ10を点灯させることによって表示を行なえるものであり、その場合は図17
に破線矢印で示すように、光源8からの照明光がまずハーフミラー7に入射し、このハーフミラー7を透過した光が裏面側偏光板6の偏光作用により直線偏光となって液晶セル10に入射するとともに、この液晶セル10を通った光が、表面側偏光板5の検光作用により画像光となって液晶表示装置の表面側に出射する。 As shown by the broken arrow, the illumination light from the light source 8 first enters the half mirror 7, and the light transmitted through the half mirror 7 becomes linearly polarized light due to the polarization action of the backside polarizing plate 6 and becomes linearly polarized light in the liquid crystal cell 10. Upon incident, the light that has passed through the liquid crystal cell 10 becomes image light due to the light detection action of the surface side polarizing plate 5, and is emitted to the surface side of the liquid crystal display device. Further, the liquid crystal display device can display even in a dark place where the amount of external light is small by turning on the light source lamp 10. In that case, FIG. Further, the liquid crystal display device can display even in a dark place where the amount of external light is small by turning on the light source lamp 10. In that case, FIG.
As indicated by the broken line arrow, the illumination light from the light source 8 first enters the half mirror 7, and the light transmitted through this half mirror 7 becomes linearly polarized light by the polarization action of the back-side polarizing plate 6 and enters the liquid crystal cell 10. When incident, the light passing through the liquid crystal cell 10 becomes image light due to the light-analyzing function of the front-side polarizing plate 5, and is emitted to the front side of the liquid crystal display device. As indicated by the broken line arrow, the illumination light from the light source 8 first enters the half mirror 7, and the light transmitted through this half mirror 7 becomes linearly polarized light by the polarization action of the back-side liquid crystal plate 6 and enters the liquid crystal cell 10. When incident, the light passing through the liquid crystal cell 10 becomes image light due to the light-analyzing function of the front-side polarizing plate 5, and is emitted to the front side of the liquid crystal display device ..

【0011】ところで、上記液晶表示装置の液晶セル1
には、一般に、液晶層をはさんで対向する一対の透明基板2,3のうち、一方の基板の内面(液晶層との対向面)に複数の画素電極とこれら各画素電極にそれぞれ対応する複数の能動素子とを配設し、他方の基板の内面に前記各画素電極と対向する対向電極を設けたアクティブマトリックス型液晶セルが用いられている。 In general, among a pair of transparent substrates 2 and 3 facing each other with a liquid crystal layer sandwiched between them, a plurality of pixel electrodes and each of these pixel electrodes correspond to the inner surface (opposing surface to the liquid crystal layer) of one of the substrates. An active matrix type liquid crystal cell is used in which a plurality of active elements are arranged and a counter electrode facing each pixel electrode is provided on the inner surface of the other substrate. By the way, the liquid crystal cell 1 of the above liquid crystal display device. By the way, the liquid crystal cell 1 of the above liquid crystal display device.
In general, among a pair of transparent substrates 2 and 3 facing each other across a liquid crystal layer, a plurality of pixel electrodes are provided on the inner surface of one substrate (a surface facing the liquid crystal layer) and the pixel electrodes respectively correspond to these pixel electrodes. An active matrix type liquid crystal cell is used in which a plurality of active elements are arranged and a counter electrode facing the pixel electrodes is provided on the inner surface of the other substrate. In general, among a pair of transparent substantially 2 and 3 facing each other across a liquid crystal layer, a plurality of pixel electrodes are provided on the inner surface of one substrate (a surface facing the liquid crystal layer) and the pixel electrodes respectively correspond An active matrix type liquid crystal cell is used in which a plurality of active elements are arranged and a counter electrode facing the pixel electrodes is provided on the inner surface of the other substrate.

【0012】このアクティブマトリックス型液晶セルと
しては、主に、TFT(薄膜トランジスタ)を能動素子
とするものが用いられているが、最近では、液晶セルの
製造コストを低減して液晶表示装置の低価格化をはかる
ため、TFTに比べて構造が簡単な、MIMや薄膜ダイ
オード等の2端子の非線形抵抗素子を能動素子とするア
クティブマトリックス型液晶セルを用いることが考えら
れている。
As the active matrix type liquid crystal cell, one using a TFT (thin film transistor) as an active element is mainly used. Recently, however, the manufacturing cost of the liquid crystal cell is reduced and the price of the liquid crystal display device is reduced. For this reason, it has been considered to use an active matrix type liquid crystal cell having a two-terminal nonlinear resistance element such as an MIM or a thin film diode as an active element, which has a simpler structure than a TFT.

【0013】すなわち、MIMは、第1の電極と絶縁膜
と第2の電極とを積層したものであり、また薄膜ダイオ
ードは、第1の電極とn型半導体膜とp型半導体膜と第
2の電極とを積層したものであって、いずれも、TFT
に比べて構造が簡単で容易に製造できるから、能動素子
の製造工程を簡略化し、液晶セルの製造コストを低減す
ることができる。
That is, the MIM is a laminate of the first electrode, the insulating film and the second electrode, and the thin film diode is the first electrode, the n-type semiconductor film, the p-type semiconductor film and the second electrode. And the electrodes of
Since the structure is simpler and easier to manufacture, the manufacturing process of the active element can be simplified and the manufacturing cost of the liquid crystal cell can be reduced. Since the structure is simpler and easier to manufacture, the manufacturing process of the active element can be simplified and the manufacturing cost of the liquid crystal cell can be reduced.

【0014】 [0014]

【発明が解決しようとする課題】しかし、上記従来の液
晶表示装置は、外光を利用する反射型表示の際の光のロ
スが大きく、そのため、反射型表示での表示が暗いとい
う問題をもっていた。これは、液晶表示装置にその表面
側から入射した光が、表面側偏光板5と液晶セル1と裏
面側偏光板6とを通ってハーフミラー7に入射し、この
ハーフミラー7で反射された光が、前記裏面側基板6と
液晶セル1と表面側偏光板5とを通って液晶表示装置の
表面側に出射するためであり、したがって、表面側から
入射した光が、再び表面側に出射するまでの間に、表裏
の偏光板5,6をそれぞれ2回ずつ計4回通るととも
に、液晶セル1の両方の基板2,3もそれぞれ2回ずつ
計4回通るから、偏光板5,6および液晶セル1の基板
2,3での光吸収による光量ロスが大きくて、表示が暗
くなってしまう。
However, the above-mentioned conventional liquid crystal display device has a problem that a large amount of light is lost in the reflection type display utilizing external light, and therefore the display in the reflection type display is dark. . This is because light incident on the liquid crystal display device from its front surface side passes through the front surface side polarizing plate 5, the liquid crystal cell 1 and the rear surface side polarizing plate 6 and enters the half mirror 7, which is reflected by the half mirror 7. This is because light is emitted to the front surface side of the liquid crystal display device through the rear surface side substrate 6, the liquid crystal cell 1 and the front surface side polarizing plate 5, and therefore the light incident from the front surface side is emitted to the front surface side again. In the meantime, since the polarizing plates 5 and 6 on the front and back sides respectively pass through two times for a total of four times and both substrates 2 and 3 of the liquid crystal cell 1 pass through a total of four times for each two times, the polarizing plates 5, 6 Also, the light amount loss due to the light absorption by the substrates 2 and 3 of the liquid crystal cell 1 is large, and the display becomes dark.

【0015】また、アクティブマトリックス型液晶セル
を用いる液晶表示装置にカラー画像を表示させる場合、
従来は、前記液晶セルの一方の基板に、複数の色、例え
ば赤、緑、青の三色のカラーフィルタを各画素電極に対
応させて設けているが、図17に示した反射型表示機能
と透過型表示機能とを有する液晶表示装置では、液晶セ
ルにカラーフィルタを設けると、表示がさらに暗くなっ
てしまうため、カラー画像の表示を実現することがほと
んど不可能であった。
When a color image is displayed on a liquid crystal display device using an active matrix type liquid crystal cell,
Conventionally, on one substrate of the liquid crystal cell, color filters of a plurality of colors, for example, three colors of red, green, and blue are provided corresponding to each pixel electrode. However, the reflective display function shown in FIG. In a liquid crystal display device having a transmission type display function and a color filter provided in the liquid crystal cell, the display is further darkened, so that it is almost impossible to display a color image. Conventionally, on one substrate of the liquid crystal cell, color filters of a plurality of colors, for example, three colors of red, green, and blue are provided corresponding to each pixel electrode. However, the reflective display function shown in FIG. In a liquid crystal display device having a transmission type display function and a color filter provided in the liquid crystal cell, the display is further darkened, so that it is almost impossible to display a color image.

【0016】これは、カラーフィルタでの光の吸収によ
るものであり、カラーフィルタは、その色に対応する波
長帯域以外の光を吸収するだけでなく、前記波長帯域の
光もかなり高い吸収率で吸収するため、カラーフィルタ
で着色された光が、カラーフィルタに入射する前の前記
波長帯域の光に比べて大幅に光量を減じた光になってし
まう。
This is due to the absorption of light by the color filter. The color filter not only absorbs light other than the wavelength band corresponding to the color, but also absorbs light in the wavelength band at a considerably high absorption rate. Since the light is absorbed, the light colored by the color filter becomes light in which the amount of light is significantly reduced as compared with the light in the wavelength band before entering the color filter.

【0017】そして、透過型表示だけを行なう液晶表示
装置の場合は、カラーフィルタでの光の吸収を見込んで
大光量の光源を使用することによって表示を明るくする
ことができるが、図17に示した液晶表示装置では、液
晶セルにカラーフィルタを設けると、透過型表示の場合
でも表示がかなり暗くなり、さらに反射型表示の場合
は、表示がほとんど視認できないほどに暗くなってしま
う。
In the case of a liquid crystal display device which performs only a transmissive display, the display can be brightened by using a light source with a large amount of light in anticipation of light absorption by the color filter, as shown in FIG. Further, in the liquid crystal display device, if a color filter is provided in the liquid crystal cell, the display becomes considerably dark even in the transmissive display, and further, in the reflective display, the display becomes so dark that it is hardly visible.

【0018】すなわち、図17に示した液晶表示装置で
は、透過型表示の場合でも、光源8からの照明光のう
ち、ハーフミラー7を透過した光しか利用できないた
め、液晶セル1にカラーフィルタを設けたのでは、表示
がかなり暗くなってしまう。
That is, in the liquid crystal display device shown in FIG. 17, even in the case of the transmissive display, only the light that has passed through the half mirror 7 of the illumination light from the light source 8 can be used, so that a color filter is provided in the liquid crystal cell 1. If it is provided, the display will be quite dark.

【0019】また、反射型表示の場合は、自然光や室内
照明光等の外光を利用するため、入射光量が限られるだ
けでなく、ハーフミラー7の反射率に対応した量の反射
光しか得られないし、さらに、カラーフィルタで着色さ
れた光が、前記ハーフミラー7で反射されて液晶表示装
置の表面側に出射する過程で再び前記カラーフィルタを
通るため、カラーフィルタでの光の吸収がさらに大きく
なって、表示がほとんど視認できない程度に暗くなって
しまう。
Further, in the case of the reflection type display, since external light such as natural light or indoor illumination light is used, not only the amount of incident light is limited, but also only the amount of reflected light corresponding to the reflectance of the half mirror 7 is obtained. Further, since the light colored by the color filter passes through the color filter again in the process of being reflected by the half mirror 7 and emitted to the surface side of the liquid crystal display device, the absorption of the light by the color filter is further increased. It becomes so large that the display becomes so dark that it is almost invisible.

【0020】本発明は、外光を利用する反射型表示機能
と光源からの光を利用する透過型表示機能とを有し、か
つ液晶セルに、2端子の非線形抵抗素子を能動素子とす
るアクティブマトリックス型液晶セルを用いた液晶表示
装置として、カラーフィルタを用いずに光を着色して明
るいカラー画像を表示することができ、しかも、外光を
利用する反射型表示の際の偏光板および液晶セルの基板
での光吸収による光量ロスを少なくして、反射型表示で
の表示を十分明るくすることができるものを提供するこ
とを目的としたものである。
The present invention has a reflective display function using external light and a transmissive display function using light from a light source, and an active liquid crystal cell having a two-terminal nonlinear resistance element as an active element. As a liquid crystal display device using a matrix type liquid crystal cell, light can be colored without using a color filter to display a bright color image, and a polarizing plate and a liquid crystal for reflection type display utilizing external light. An object of the present invention is to provide a device capable of sufficiently brightening a display in a reflective display by reducing a light amount loss due to light absorption in a cell substrate.

【0021】[0021]

【課題を解決するための手段】本発明の液晶表示装置
は、2端子の非線形抵抗素子を能動素子とするアクティ
ブマトリックス型液晶セルと、この液晶セルの表面側に
配置された第1の偏光板と、前記液晶セルの裏面側に配
置された第2の偏光板とからなり、かつ、前記液晶セル
の裏面側基板の内面に、入射光をある反射率と透過率で
反射および透過させる半透過反射膜が設けられていると
ともに、前記第1の偏光板の透過軸が、前記液晶セルの
表面側の基板上における液晶分子の配向方向に対して斜
めずれ、前記第2の偏光板の透過軸が、前記液晶セルの
裏面側の基板上における液晶分子の配向方向に対して斜
めずれていることを特徴とするものである。
A liquid crystal display device of the present invention includes an active matrix type liquid crystal cell having a two-terminal non-linear resistance element as an active element, and a first polarizing plate disposed on the surface side of the liquid crystal cell. And a second polarizing plate disposed on the back surface side of the liquid crystal cell, and semi-transmissive for reflecting and transmitting incident light at a certain reflectance and transmittance on the inner surface of the back surface side substrate of the liquid crystal cell. A reflection film is provided, and the transmission axis of the first polarizing plate is slanted with respect to the alignment direction of liquid crystal molecules on the substrate on the front surface side of the liquid crystal cell, and the transmission axis of the second polarizing plate. Is obliquely displaced from the alignment direction of the liquid crystal molecules on the substrate on the back surface side of the liquid crystal cell.

【0022】なお、本発明の液晶表示装置において、前記半透過反射膜は、液晶セルの両基板の内面にそれぞれ設けられている電極のうちの裏面側基板の内面に設けられている電極で兼用させてもよい。 In the liquid crystal display device of the present invention, the semi-transmissive reflective film also serves as an electrode provided on the inner surface of the back side substrate among electrodes provided on the inner surfaces of both substrates of the liquid crystal cell. You may let me.

【0023】さらに、本発明の液晶表示装置において、
前記液晶セルとその表面側に配置した第1の偏光板との間に位相差板を配置してもよく、その場合は、この位相差板を、その遅相軸を前記第1の偏光板および第2の偏光板の透過軸に対してそれぞれ斜めにずらして設ければよい。 A retardation plate may be arranged between the liquid crystal cell and the first polarizing plate arranged on the surface side thereof. In that case, the retardation plate may be used with its slow axis as the first polarizing plate. And may be provided so as to be obliquely offset with respect to the transmission axis of the second polarizing plate. Further, in the liquid crystal display device of the present invention, Further, in the liquid crystal display device of the present invention,
A retardation plate may be disposed between the liquid crystal cell and the first polarizing plate disposed on the surface side thereof, and in this case, the retardation plate is provided with the slow axis of the first polarizing plate. And the second polarizing plate may be obliquely displaced with respect to the transmission axis. A retardation plate may be disposed between the liquid crystal cells and the first polarizing plate disposed on the surface side thereof, and in this case, the retardation plate is provided with the slow axis of the first polarizing plate. And the second polarizing plate may be obliquely displaced with respect to the transmission axis.

【0024】また、本発明の液晶表示装置においては、
液晶セルの裏面側基板の内面に設けた半透過反射膜の反射面がほぼ鏡面であり、かつ、前記第1の偏光板の一面、好ましくは表面が、光散乱面となっているのが望ましい。 It is desirable that the reflective surface of the transflective reflective film provided on the inner surface of the back surface side substrate of the liquid crystal cell is substantially a mirror surface, and one surface, preferably the surface of the first polarizing plate, is a light scattering surface. .. In the liquid crystal display device of the present invention, In the liquid crystal display device of the present invention,
It is desirable that the reflective surface of the semi-transmissive reflective film provided on the inner surface of the back surface side substrate of the liquid crystal cell is substantially a mirror surface, and one surface, preferably the surface, of the first polarizing plate is a light scattering surface. . It is desirable that the reflective surface of the semi-transmissive reflective film provided on the inner surface of the back surface side substrate of the liquid crystal cell is substantially a mirror surface, and one surface, preferably the surface, of the first waveguide is a light scattering surface ..

【0025】 [0025]

【作用】本発明の液晶表示装置は、外光の光量が十分な
明るい場所では外光を利用する反射型表示を行なうもの
であり、このときは、液晶表示装置にその表面側から入
射する外光が、液晶セルの表面側に配置されている第1
の偏光板の偏光作用により直線偏光となって液晶セルに入射するとともに、その液晶層を通った光が液晶セルの裏面側基板の内面に設けられている半透過反射膜に入射し、この半透過反射膜で反射された光が再び液晶層を通って前記第1の偏光板に入射して、この偏光板を透過する光が画像光となって液晶表示装置の表面側に出射する。 Due to the polarization action of the polarizing plate of the above, it becomes linearly polarized light and is incident on the liquid crystal cell, and the light passing through the liquid crystal layer is incident on the semitransparent reflective film provided on the inner surface of the back surface side substrate of the liquid crystal cell. The light reflected by the transmissive reflective film passes through the liquid crystal layer again and enters the first polarizing plate, and the light transmitted through the polarizing plate becomes image light and is emitted to the surface side of the liquid crystal display device. The liquid crystal display device of the present invention performs reflection type display utilizing external light in a bright place where the amount of external light is sufficient. At this time, the liquid crystal display device receives the external light incident from the front side thereof. The first light is arranged on the front side of the liquid crystal cell. The liquid crystal display device of the present invention performs reflection type display utilizing external light in a bright place where the amount of external light is sufficient. At this time, the liquid crystal display device receives the external light incident from the front side thereof. The first light is arranged on the front side of the liquid crystal cell.
The polarizing action of the polarizing plate makes it linearly polarized and enters the liquid crystal cell, and the light passing through the liquid crystal layer also enters the semi-transmissive reflective film provided on the inner surface of the back side substrate of the liquid crystal cell. The light reflected by the transflective film again enters the first polarizing plate through the liquid crystal layer, and the light transmitted through this polarizing plate becomes image light and is emitted to the front surface side of the liquid crystal display device. The liquid crystal action of the grating plate makes it linearly polarized and enters the liquid crystal cell, and the light passing through the liquid crystal layer also enters the semi-transmissive reflective film provided on the inner surface of the back side substrate of the liquid crystal cell The light reflected by the transflective film again enters the first polarizing plate through the liquid crystal layer, and the light transmitted through this polarizing plate becomes image light and is emitted to the front surface side of the liquid crystal display device.

【0026】また、この液晶表示装置は、外光の光量が
少ない暗い場所でも、光源からの光を利用して表示を行
なえるものであり、そのときは、光源からの光が、液晶
セルの裏面側に配置されている第2の偏光板の偏光作用
により直線偏光となって液晶セルにその裏面側から入射
し、前記半透過反射膜を透過した光が液晶層通って上記
第1の偏光板に入射して、この偏光板を透過する光が画
像光となって液晶表示装置の表面側に出射する。
Further, this liquid crystal display device can display by utilizing the light from the light source even in a dark place where the amount of external light is small, and in that case, the light from the light source is emitted from the liquid crystal cell. By the polarization action of the second polarizing plate disposed on the back side, linearly polarized light is made incident on the liquid crystal cell from the back side thereof, and the light transmitted through the semi-transmissive reflection film passes through the liquid crystal layer to pass the first polarized light. Light incident on the plate and transmitted through the polarizing plate becomes image light and is emitted to the front surface side of the liquid crystal display device.

【0027】そして、この液晶表示装置においては、前
記第1の偏光板の透過軸が、液晶セルの表面側の基板上
における液晶分子の配向方向に対して斜めずれ、前記第
2の偏光板の透過軸が、前記液晶セルの裏面側の基板上
における液晶分子の配向方向に対して斜めずれているた
め、外光を利用する反射型表示の際は、前記第1の偏光
板を通って入射した直線偏光が、液晶セルの液晶層を通
る過程でその複屈折効果により波長ごとに偏光状態が異
なる楕円偏光となるとともに、その光のうち、前記半透
過反射膜で反射された光が、再び液晶層を通る過程でさ
らに偏光状態を変えられて前記第1の偏光板に入射し、
この第1の偏光板を透過する偏光成分の光が着色光となる。 The light of the polarizing component transmitted through the first polarizing plate becomes the colored light. In this liquid crystal display device, the transmission axis of the first polarizing plate is slanted with respect to the alignment direction of liquid crystal molecules on the substrate on the front surface side of the liquid crystal cell, and the transmission axis of the second polarizing plate is changed. Since the transmission axis is deviated obliquely with respect to the alignment direction of the liquid crystal molecules on the substrate on the back surface side of the liquid crystal cell, the incident light passes through the first polarizing plate in the case of reflective display utilizing external light. The linearly polarized light becomes elliptically polarized light having a different polarization state for each wavelength due to its birefringence effect in the process of passing through the liquid crystal layer of the liquid crystal cell, and among the light, the light reflected by the semi-transmissive reflection film is In the process of passing through the liquid crys In this liquid crystal display device, the transmission axis of the first polarizing plate is slanted with respect to the alignment direction of liquid crystal molecules on the substrate on the front surface side of the liquid crystal cell, and the transmission axis of the second polarizing plate is changed. Since the transmission axis is deviated obliquely with respect to the alignment direction of the liquid crystal molecules on the substrate on the back surface side of the liquid crystal cell, the incident light passes through the first polarizing plate in the case of reflective display utilizing external light. The linearly polarized light becomes elliptically polarized light having a different polarization state for each wavelength due to its birefringence effect in the process of passing through the liquid crystal layer of the liquid crystal cell, and among the light, the light reflected by the semi-transmissive reflection film is In the process of passing through the liquid crys tal layer, the polarization state is further changed and the light enters the first polarizing plate, tal layer, the polarization state is further changed and the light enters the first polarizing plate,
The light of the polarization component that passes through the first polarizing plate becomes the colored light. The light of the polarization component that passes through the first polarizing plate becomes the colored light.

【0028】また、光源からの光を利用する透過型表示の際は、前記第2の偏光板を通って入射した直線偏光のうち、前記半透過反射膜を透過した光が、液晶セルを通る過程で液晶層の複屈折効果により波長ごとに偏光状態が異なる楕円偏光となって前記第1の偏光板に入射し、
この第1の偏光板を透過する偏光成分の光が着色光となる。 The light of the polarizing component transmitted through the first polarizing plate becomes the colored light. In the case of a transmissive display using light from a light source, of the linearly polarized light that has entered through the second polarizing plate, the light that has passed through the semi-transmissive reflective film passes through the liquid crystal cell. In the process, due to the birefringence effect of the liquid crystal layer, it becomes elliptically polarized light having a different polarization state for each wavelength and enters the first polarizing plate, In the case of a transmissive display using light from a light source, of the linearly polarized light that has entered through the second polarizing plate, the light that has passed through the semi-transmissive reflective film passes through the liquid crystal cell. In the process , due to the birefringence effect of the liquid crystal layer, it becomes elliptically polarized light having a different polarization state for each wavelength and enters the first liquid crystal plate,
The light of the polarization component that passes through the first polarizing plate becomes the colored light. The light of the polarization component that passes through the first polarizing plate becomes the colored light.

【0029】すなわち、この液晶表示装置は、反射型表
示の際には、液晶セルの液晶層の複屈折効果と第1の偏
光板の偏光および検光作用とを利用して光を着色し、透
過型表示の際には、前記液晶セルの液晶層の複屈折効果
と第2の偏光板の偏光作用および第1の偏光板の検光作
用とを利用して光を着色するものである。
That is, in the liquid crystal display device, at the time of reflection type display, light is colored by utilizing the birefringence effect of the liquid crystal layer of the liquid crystal cell and the polarization and analysis function of the first polarizing plate. In the transmissive display, light is colored by utilizing the birefringence effect of the liquid crystal layer of the liquid crystal cell, the polarization effect of the second polarizing plate and the light analyzing function of the first polarizing plate.

【0030】この液晶表示装置は、カラーフィルタを用
いずに光を着色するものであるから、カラーフィルタを
透過させる場合に比べて透過光量のロスを大幅に低減し
て高輝度の着色光を得ることができ、したがって、明る
いカラー画像を表示することができる。
Since this liquid crystal display device colors light without using a color filter, the loss of the amount of transmitted light is greatly reduced as compared with the case of transmitting light through the color filter to obtain colored light of high brightness. Therefore, a bright color image can be displayed.

【0031】しかも、この液晶表示装置においては、液
晶セルの液晶層に印加する電圧の大きさに応じて液晶分
子の配向状態が変化し、それに応じて液晶層の複屈折効
果が変化するため、液晶セルへの印加電圧を制御するこ
とによって前記着色光の色を変化させ、1つの画素で複
数の色を表示することができる。
Moreover, in this liquid crystal display device, the alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied to the liquid crystal layer of the liquid crystal cell, and the birefringence effect of the liquid crystal layer changes accordingly. The color of the colored light can be changed by controlling the voltage applied to the liquid crystal cell, and one pixel can display a plurality of colors.

【0032】また、この液晶表示装置は、液晶セルの裏
面側基板の内面に半透過反射膜を設けることにより、外
光を利用する反射型表示の際には、液晶セルの表面側に
配置した第1の偏光板に入射光を直線偏光とする偏光作
用と液晶セルの液晶層を通った光を画像光とする検光作
用との両方の作用をもたせて、液晶セルの裏面側に配置
した第2の偏光板は用いずに表示するものであるから、
反射型表示を、液晶セルの裏面側に配置した第2の偏光板および前記液晶セルの裏面側基板によって出射光量をロスすることなく行なうことができ、したがって、外光を利用する反射型表示の際の偏光板および液晶セルの基板での光吸収による光量ロスを少なくし、反射型表示での表示を十分明るくすることができる。 The reflective display can be performed without loss of the amount of emitted light by the second polarizing plate arranged on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell. Therefore, the reflective display using external light can be performed. It is possible to reduce the loss of light amount due to light absorption by the polarizing plate and the substrate of the liquid crystal cell, and to sufficiently brighten the display in the reflective display. In addition, in this liquid crystal display device, a semi-transmissive reflective film is provided on the inner surface of the substrate on the back surface side of the liquid crystal cell, so that it is arranged on the front surface side of the liquid crystal cell in the case of reflective display utilizing external light. The first polarizing plate is provided on the back surface side of the liquid crystal cell so as to have both the polarizing function of making the incident light linearly polarized light and the analyzing function of making the light passing through the liquid crystal layer of the liquid crystal cell the image light. Since the display is performed without using the second polarizing plate, In addition, in this liquid crystal display device, a semi-transmissive reflective film is provided on the inner surface of the substrate on the back surface side of the liquid crystal cell, so that it is arranged on the front surface side of the liquid crystal The first liquid crystal plate is provided on the back surface side of the liquid crystal cell so as to have both the waveguide function of making the incident light linearly polarized light and the analyzing function of making the cell in the case of reflective display utilizing external light. Since the display is performed without using the second liquid crystal plate, light passing through the liquid crystal layer of the liquid crystal cell the image light.
Reflective display can be performed by the second polarizing plate disposed on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell without loss of the emitted light amount. At this time, it is possible to reduce the loss of light amount due to the absorption of light in the polarizing plate and the substrate of the liquid crystal cell, and to make the display in the reflective display sufficiently bright. Reflective display can be performed by the second polarizing plate disposed on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell without loss of the emitted light amount. At this time, it is possible to reduce the loss of light amount due to the absorption of light in the polarizing plate and the substrate of the liquid crystal cell, and to make the display in the reflective display sufficiently bright.

【0033】また、本発明の液晶表示装置において、前
記液晶セルの両基板の内面にそれぞれ設けられている電
極のうち、裏面側基板の内面に設けられている電極に前
記半透過反射膜を兼ねさせれば、この電極と半透過反射
膜とを同時に形成できるから、液晶セルの構造を簡素化
するとともにその製造を容易にすることができる。
In the liquid crystal display device of the present invention, among the electrodes provided on the inner surfaces of both substrates of the liquid crystal cell, the electrode provided on the inner surface of the back side substrate also serves as the semi-transmissive reflective film. By doing so, since this electrode and the semi-transmissive reflective film can be formed at the same time, the structure of the liquid crystal cell can be simplified and its manufacture can be facilitated.

【0034】さらに、本発明の液晶表示装置において、
液晶セルとその表面側に配置した第1の偏光板との間に位相差板を配置し、この位相差板の遅相軸を前記第1の偏光板および第2の偏光板の透過軸に対してそれぞれ斜めにずらしておけば、反射型表示の際も透過型表示の際も、入射光が前記位相差板の複屈折効果と液晶セルの液晶層の複屈折効果とを受けて偏光状態を大きく変えるため、波長ごとの偏光状態が大きく異なる楕円偏光を前記第1の偏光板に入射させて鮮明な色の着色光を得ることができるし、また、液晶セルに液晶分子が基板面に対してほぼ垂直に立上がり配向する電圧を印加したとき、つまり液晶層の複屈折効果が見掛上ほとんどなくなったときでも、位相差板の複屈折効果によって入射光を楕円偏光とし、この楕円偏光を前記第1の偏光板に入射させて着色光を得ることができる。 A retardation plate is arranged between the liquid crystal cell and the first polarizing plate arranged on the surface side thereof, and the slow axis of the retardation plate is set as the transmission axis of the first polarizing plate and the second polarizing plate. On the other hand, if they are shifted diagonally, the incident light is polarized by the double-reflecting effect of the retardation plate and the double-reflecting effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. It is possible to obtain colored light of a clear color by incidenting elliptically polarized light having a greatly different polarization state for each wavelength on the first polarizing plate, and liquid crystal molecules are placed on the substrate surface in the liquid crystal cell. On the other hand, even when a voltage that rises and orients almost vertically is applied, that is, when the double refraction effect of the liquid crystal layer seems to disappear, the incident light is elliptically polarized by the double polarization effect of the retardation plate, and this elliptically polarized light is used. Colored light can be obtained by incidenting on the first polarizing plate. Furthermore, in the liquid crystal display device of the present invention, Furthermore, in the liquid crystal display device of the present invention,
A retardation plate is disposed between the liquid crystal cell and the first polarizing plate disposed on the surface side of the liquid crystal cell, and the slow axis of this retardation plate is used as the transmission axes of the first polarizing plate and the second polarizing plate. If they are slanted, the incident light receives the birefringence effect of the retardation plate and the birefringence effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. In order to significantly change the wavelength, elliptically polarized light whose polarization states are greatly different for each wavelength can be made incident on the first polarizing plate to obtain a colored light of a clear color, and liquid crystal molecules can be attached to the substrate surface in the liquid crystal cell. On the other hand, when a voltage that rises and aligns almost vertically is applied, that is, even when the birefringence ef A retardation plate is disposed between the liquid crystal cell and the first polarizing plate disposed on the surface side of the liquid crystal cell, and the slow axis of this retardation plate is used as the transmission axes of the first polarizing plate and the second polarizing plate In order to significantly change the wavelength, elliptically. If they are slanted, the incident light receives the birefringence effect of the retardation plate and the birefringence effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. polarized light whose polarization states are greatly different for each wavelength can be made incident on the first liquid crystal plate to obtain a colored light of a clear color, and liquid crystal molecules can be attached to the substrate surface in the liquid crystal cell. On the other hand, when a voltage that rises and aligns almost vertically is applied, that is, even when the birefringence ef fect of the liquid crystal layer is virtually eliminated, the birefringence effect of the retardation plate makes the incident light elliptically polarized light. Obtaining colored light by making it enter the first polarizing plate It can be. fect of the liquid crystal layer is virtually eliminated, the birefringence effect of the retardation plate makes the incident light elliptically polarized light. Obtaining colored light by making it enter the first grating plate It can be.

【0035】また、本発明の液晶表示装置においは、液
晶セルの裏面側基板の内面に半透過反射膜を設けている
ため、この半透過反射膜を拡散反射膜とすることは難し
いが、液晶セルの表面側に配置した第1の偏光板の一面
が光散乱面となっていれば、前記半透過反射膜の反射面
がほぼ鏡面であっても、表示観察者の顔やその背景等の
外部像が前記反射面に写って見えることはない。
Further, in the liquid crystal display device of the present invention, since the semi-transmissive reflective film is provided on the inner surface of the back side substrate of the liquid crystal cell, it is difficult to use this semi-transmissive reflective film as a diffuse reflective film, but the liquid crystal If one surface of the first polarizing plate arranged on the front surface side of the cell is a light scattering surface, even if the reflecting surface of the semi-transmissive reflecting film is almost a mirror surface, the face of the display observer or the background thereof, etc. The external image never appears on the reflecting surface.

【0036】そして、前記半透過反射膜の反射面がほぼ
鏡面であれば、反射型表示において液晶セルの液晶層に
より偏光状態を変えられた光を半透過反射膜によって散
乱させてしまうことはなく、また透過型表示において
も、第2の偏光板を通って液晶セルにその裏面側から入
射する光を半透過反射膜によって散乱させてしまうこと
はない。
If the reflecting surface of the semi-transmissive reflective film is almost mirror-finished, the light whose polarization state is changed by the liquid crystal layer of the liquid crystal cell in the reflective display is not scattered by the semi-transmissive reflective film. Further, also in the transmissive display, light that enters the liquid crystal cell from the back side thereof through the second polarizing plate is not scattered by the semi-transmissive reflective film.

【0037】また、この場合、前記第1の偏光板の表面
が光散乱面であれば、反射型表示の際に液晶表示装置に
その表面側から入射する光が散乱されてから第1の偏光
板の偏光作用により直線偏光になるし、また反射型表示
においても透過型表示においても、液晶セルの液晶層を
通った光が前記第1の偏光板の検光作用により画像光と
なってから散乱されるため、入射光が前記第1の偏光板
を通って画像光となるまでは光が散乱されることはな
く、したがって、品質の良い画像を表示することができ
る。
Further, in this case, if the surface of the first polarizing plate is a light-scattering surface, the first polarized light is scattered after the light incident on the liquid crystal display device from the surface side in the reflection type display is scattered. After the light is transmitted through the liquid crystal layer of the liquid crystal cell into the image light due to the analyzing function of the first polarizing plate in both the reflective display and the transmissive display, the light becomes a linearly polarized light by the polarizing action of the plate. Since the light is scattered, the light is not scattered until the incident light passes through the first polarizing plate to become the image light, and therefore a high quality image can be displayed.

【0038】 [0038]

【実施例】以下、本発明の第1の実施例を図1〜図15
を参照して説明する。図10は液晶表示装置の基本構成図であり、この液晶表示装置は、液晶セル10の表面側(図において上側)に第1の偏光板(以下、表面側偏光板という)31を配置し、前記液晶セル10の裏面側(図において下側)に第2の偏光板(以下、裏面側偏光板という)32を配置するとともに、前記液晶セル10

と前記表面側偏光板31との間に位相差板40を配置し、さらに前記裏面側偏光板32の背後に光源50を配置して構成されている。 A retardation plate 40 is arranged between the surface side polarizing plate 31 and the front surface side polarizing plate 31, and a light source 50 is arranged behind the back surface side polarizing plate 32. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A first embodiment of the present invention will be described below with reference to FIGS. VDD DESCRIPTION OF THE PLL similarly A first embodiment of the present invention will be described below with reference to FIGS.
Will be described with reference to. FIG. 10 is a basic configuration diagram of a liquid crystal display device. In this liquid crystal display device, a first polarizing plate (hereinafter referred to as a front surface side polarizing plate) 31 is arranged on the front surface side (upper side in the drawing) of a liquid crystal cell 10, A second polarizing plate (hereinafter referred to as a back surface side polarizing plate) 32 is arranged on the back surface side (lower side in the drawing) of the liquid crystal cell 10, and the liquid crystal cell 10 Will be described with reference to. FIG. 10 is a basic configuration diagram of a liquid crystal display device. In this liquid crystal display device, a first grating plate (hereinafter referred to as a front surface side liquid crystal plate) 31 is arranged on the front surface side (upper side in the drawing) of a liquid crystal cell 10, A second grating plate (hereinafter referred to as a back surface side grating plate) 32 is arranged on the back surface side (lower side in the drawing) of the liquid crystal cell 10, and the liquid crystal cell 10
The retardation plate 40 is disposed between the front side polarizing plate 31 and the front side polarizing plate 31, and the light source 50 is disposed behind the back side polarizing plate 32. The retardation plate 40 is disposed between the front side polarizing plate 31 and the front side polarizing plate 31, and the light source 50 is disposed behind the back side polarizing plate 32.

【0039】この液晶表示装置の具体的な構成を説明す
ると、図1は液晶表示装置の一部分の断面図、図2は液
晶セル10の一部分の平面図である。まず、上記液晶セ
ル10について説明すると、この液晶セル10は、2端
子の非線形抵抗素子を能動素子とするアクティブマトリ
ックス液晶セルであり、この実施例では、MIMを能動
素子としたものを用いている。
The specific structure of this liquid crystal display device will be described. FIG. 1 is a sectional view of a part of the liquid crystal display device, and FIG. 2 is a plan view of a part of the liquid crystal cell 10. First, the liquid crystal cell 10 will be described. The liquid crystal cell 10 is an active matrix liquid crystal cell in which a two-terminal nonlinear resistance element is used as an active element. In this embodiment, an MIM is used as an active element. .

【0040】この液晶セル10は、ガラス等からなる一
対の透明基板11,12間に液晶LCを挟持させたもの
であり、一対の基板11,12のうち、裏面側の基板1
1の内面つまり液晶層との対向面には、複数の画素電極
13とこれら各画素電極13にそれぞれ対応する複数の
MIM14とが、行方向(図2において横方向)および
列方向(図2において縦方向)にマトリックス状に配設
されており、その上に透明な配向膜19が設けられてい
る。
The liquid crystal cell 10 is one in which a liquid crystal LC is sandwiched between a pair of transparent substrates 11 and 12 made of glass or the like.
A plurality of pixel electrodes 13 and a plurality of MIMs 14 respectively corresponding to the respective pixel electrodes 13 are provided on the inner surface of 1 (that is, on the surface facing the liquid crystal layer) in the row direction (horizontal direction in FIG. 2) and the column direction (in FIG. 2). They are arranged in a matrix in the (vertical direction), and a transparent alignment film 19 is provided thereon. A plurality of pixel electrodes 13 and a plurality of MIMs 14 respectively corresponding to the respective pixel electrodes 13 are provided on the inner surface of 1 (that is, on the surface facing the liquid crystal layer) in the row direction (horizontal direction in FIG. . 2) and the column direction (in FIG. 2). They are arranged in a matrix in the (vertical direction), and a transparent alignment film 19 is provided horizontally.

【0041】上記MIM14は、上記裏面側基板11の上に形成された下部電極15と、この下部電極15を覆う絶縁膜16と、この絶縁膜16の上に形成された上部電極17とからなっており、各行のMIM14の下部電極15は、前記基板11上に各画素電極行ごとに配線した駆動信号供給ライン18につながり、また、各MIM
14の上部電極17はそれぞれ、そのMIM14が対応する画素電極13につながっている。 Each of the upper electrodes 17 of 14 is connected to the pixel electrode 13 to which the MIM 14 corresponds. The MIM 14 comprises a lower electrode 15 formed on the backside substrate 11, an insulating film 16 covering the lower electrode 15, and an upper electrode 17 formed on the insulating film 16. The lower electrode 15 of the MIM 14 in each row is connected to the drive signal supply line 18 wired on the substrate 11 for each pixel electrode row. The MIM 14 a lower electrode 15 formed on the backside substrate 11, an insulating film 16 covering the lower electrode 15, and an upper electrode 17 formed on the insulating film 16. The lower electrode 15 of the MIM 14 in each row is connected to the drive signal supply line 18 wired on the substrate 11 for each pixel electrode row.
Each of the 14 upper electrodes 17 is connected to the pixel electrode 13 to which the MIM 14 corresponds. Each of the 14 upper electrodes 17 is connected to the pixel electrode 13 to which the MIM 14 corresponds.

【0042】なお、この実施例では、MIM14の下部電極15と前記信号供給ライン18とを一体に形成し、
上部電極17は前記画素電極13と一体に形成している。 The upper electrode 17 is integrally formed with the pixel electrode 13. また、この実施例では、前記下部電極15および信号供給ライン18をAl またはAl 系合金等の金属膜で形成し、その表面を陽極酸化処理して前記絶縁膜16を形成しており、したがって、信号供給ライン18の表面も、その端子部(図示せず)を除いて絶縁膜(陽極酸化膜)16で覆われている。 Further, in this embodiment, the lower electrode 15 and the signal supply line 18 are formed of a metal film such as Al or an Al-based alloy, and the surface thereof is anodized to form the insulating film 16. Therefore. The surface of the signal supply line 18 is also covered with an insulating film (anodized film) 16 except for its terminal portion (not shown). In this embodiment, the lower electrode 15 of the MIM 14 and the signal supply line 18 are integrally formed, In this embodiment, the lower electrode 15 of the MIM 14 and the signal supply line 18 are formed,
The upper electrode 17 is formed integrally with the pixel electrode 13. Further, in this embodiment, the lower electrode 15 and the signal supply line 18 are formed of a metal film such as Al or an Al-based alloy, and the surface thereof is anodized to form the insulating film 16. The surface of the signal supply line 18 is also covered with an insulating film (anodic oxide film) 16 except for its terminal portion (not shown). The upper electrode 17 is formed with the pixel electrode 13. Further, in this embodiment, the lower electrode 15 and the signal supply line 18 are formed of a metal film such as Al or an Al-based alloy, and the surface thereof is anodized to form the insulating film 16. The surface of the signal supply line 18 is also covered with an insulating film (anodic oxide film) 16 except for its terminal portion (not shown).

【0043】また、上記各画素電極13は、半透過反射
膜Mを兼ねており、その反射面はほぼ鏡面となってい
る。この半透過反射膜Mは、市販のハーフミラーと同様
に、入射光をある反射率と透過率で反射および透過させ
るものであり、この実施例では、画素電極13を、透過
率が5〜20%の半透過反射膜Mとしている。なお、反
射率は約14%以上であればよい。
Each pixel electrode 13 also serves as a semi-transmissive reflection film M, and its reflection surface is almost a mirror surface. This semi-transmissive reflective film M reflects and transmits incident light at a certain reflectance and a certain transmittance, as in a commercially available half mirror. In this embodiment, the pixel electrode 13 has a transmittance of 5 to 20. % Of the semi-transmissive reflective film M. The reflectance may be about 14% or more.

【0044】この半透過反射膜M(画素電極13)は、
Al またはAl 系合金等の金属膜で形成されるか、ある
いは、ITO膜等の透明導電膜と金属膜との積層膜とさ
れている。
The semi-transmissive reflective film M (pixel electrode 13) is
It is formed of a metal film such as Al or an Al-based alloy, or is a laminated film of a transparent conductive film such as an ITO film and a metal film.

【0045】図3および図4は半透過反射膜Mの第1の
例を示すその一部分の断面図および平面図であり、この
半透過反射膜Mは、スパッタ装置によって成膜した極く
薄い金属薄膜13aからなっている。
3 and 4 are a sectional view and a plan view of a part of the first example of the semi-transmissive reflective film M. The semi-transmissive reflective film M is an extremely thin metal film formed by a sputtering apparatus. It is composed of a thin film 13a.

【0046】すなわち、この半透過反射膜Mは、その下
地面(ここでは裏面側基板11面)の上に、スパッタ装
置によって金属粒子を極く薄く堆積させて形成されたも
のであり、図に示した半透過反射膜Mは、金属粒子が堆
積していない孔欠陥や、金属粒子の堆積厚さが薄い凹入
欠陥等の微小な欠陥部kが点在する金属薄膜13aから
なっている。なお、前記欠陥部kは不規則な形状であ
り、またその大きさおよび分布状態は金属薄膜13aの
成膜厚さに応じて変化する。
That is, the semi-transmissive reflective film M is formed by depositing metal particles on the underlying surface (here, the surface of the rear substrate 11 in this case) of a metal particle very thinly by a sputtering apparatus. The illustrated semi-transmissive reflective film M is composed of a metal thin film 13a in which minute defects k such as hole defects in which metal particles are not deposited and recessed defects in which metal particles are thinly deposited are scattered. The defective portion k has an irregular shape, and its size and distribution state change depending on the film thickness of the metal thin film 13a.

【0047】この半透過反射膜Mは、図3に実線矢印で
示した表面側からの入射光も、また破線矢印で示した裏
面側からの入射光も、ある反射率と透過率で反射および
透過させるものであり、上記金属薄膜13aの膜部分
(欠陥部k以外の部分)に入射した光の一部は金属薄膜
13aの膜面で反射され、またある量の光は金属薄膜1
3aを透過し、残りの光は金属薄膜13aに吸収される。 It passes through 3a and the remaining light is absorbed by the metal thin film 13a. The semi-transmissive reflection film M reflects and reflects both incident light from the front side indicated by the solid arrow in FIG. 3 and incident light from the rear side indicated by the broken arrow at a certain reflectance and transmittance. A part of the light that is transmitted and is incident on the film portion of the metal thin film 13a (the portion other than the defect portion k) is reflected by the film surface of the metal thin film 13a, and a certain amount of light is emitted by the metal thin film 1a. The semi-transmissive reflection film M reflects and reflects both incident light from the front side indicated by the solid arrow in FIG. 3 and incident light from the rear side indicated by the broken arrow at a certain reflectance and transmittance. A part of the light that is transmitted and is incident on the film portion of the metal thin film 13a (the portion other than the defect portion k) is reflected by the film surface of the metal thin film 13a, and a certain amount of light is emitted by the metal thin film 1a.
The remaining light passes through 3a and is absorbed by the metal thin film 13a. The remaining light passes through 3a and is absorbed by the metal thin film 13a.

【0048】一方、上記金属薄膜13aの欠陥部kのう
ち、金属粒子の堆積厚さが薄い凹入欠陥部分は、金属膜
厚が非常に薄いため、この凹入欠陥部分での反射および
吸収量は極く僅かであり、したがって、この凹入欠陥部
分に入射した光はその大部分が透過する。また、金属粒
子が堆積していない孔欠陥部分に入射した光はその全て
が透過光となる。
On the other hand, of the defective portion k of the metal thin film 13a, the recessed defect portion where the deposition thickness of the metal particles is thin has a very thin metal film thickness, so the amount of reflection and absorption at this recessed defect portion. Therefore, most of the light incident on the recessed defect portion is transmitted. Further, all of the light incident on the hole defect portion where the metal particles are not deposited becomes the transmitted light.

【0049】ただし、上記金属薄膜13aの単位面積当
りの欠陥部kの総面積は、前記単位面積当りの膜部分の
面積に比べて極く僅かであり、したがって、半透過反射
膜Mの透過率は、金属薄膜13aの膜部分の透過率によ
ってほとんど支配される。
However, the total area of the defective portion k per unit area of the metal thin film 13a is extremely small compared to the area of the film portion per unit area, and therefore the transmittance of the semi-transmissive reflective film M is small. Is almost dominated by the transmittance of the film portion of the metal thin film 13a.

【0050】そして、前記金属薄膜13aの膜部分の透
過率は、その材料である金属の光学定数と膜厚とによっ
て決まるため、この金属薄膜13a成膜厚さを選べば、
上述した透過率が5〜20%の半透過反射膜Mを得るこ
とができる。
Since the transmittance of the film portion of the metal thin film 13a is determined by the optical constant and the film thickness of the material metal, if the film thickness of the metal thin film 13a is selected,
It is possible to obtain the transflective film M having the above-mentioned transmittance of 5 to 20%.

【0051】なお、図3および図4に示した半透過反射
膜Mは、孔欠陥や凹入欠陥等の微小な欠陥部kが点在す
る金属薄膜13aからなるものであるが、この半透過反
射膜Mは、前記孔欠陥や凹入欠陥等がほとんどない金属
薄膜であってもよく、その場合でも、前記金属薄膜の厚
さが約20nm以下であれば、この金属薄膜を半透過反
射膜Mとして使用することができる。
The semi-transmissive reflective film M shown in FIGS. 3 and 4 is made of a metal thin film 13a having minute defects k such as hole defects and recessed defects scattered therein. The reflective film M may be a metal thin film having few hole defects, recessed defects, etc. Even in that case, if the thickness of the metal thin film is about 20 nm or less, this metal thin film is used as a semi-transmissive reflective film. It can be used as M.

【0052】すなわち、スパッタ装置による金属薄膜の
成膜においては、その成膜厚さが約10nm以下である
と、成膜された金属薄膜が孔欠陥や凹入欠陥のある膜と
なるが、成膜厚さを約10nm以上に厚くしてゆくと、
それにともなって前記孔欠陥や凹入欠陥の大きさが小さ
くなるとともにその分布数も少なくなり、ある程度以上
の膜厚になると、孔欠陥や凹入欠陥がほとんど塞がっ
て、表面がほぼ平坦な膜となる。
That is, in forming a metal thin film by a sputtering apparatus, if the film thickness is about 10 nm or less, the formed metal thin film becomes a film having a hole defect or a recess defect. When the film thickness is increased to about 10 nm or more,
Along with this, the size of the hole defects and recessed defects becomes smaller and the number of distributions thereof also decreases, and when the film thickness exceeds a certain level, most of the hole defects and recessed defects are closed, and a film with a substantially flat surface is obtained. Become. Along with this, the size of the hole defects and recessed defects becomes smaller and the number of distributions thereof also decreases, and when the film thickness exceeds a certain level, most of the hole defects and recessed defects are closed, and a film with a substantially flat surface is obtained. Become.

【0053】その例をあげると、前記金属薄膜をAl またはAl −Ti (チタン)合金で形成する場合、例えば8.5nmの厚さに成膜した金属薄膜は、図3および図4に示したような微小な欠陥部kのある膜であり、この金属薄膜の透過率は約10〜20%、シート抵抗は53
Ωである。 It is Ω. As an example, when the metal thin film is formed of Al or Al-Ti (titanium) alloy, the metal thin film formed to a thickness of 8.5 nm is shown in FIGS. 3 and 4. The film has such a minute defect portion k. The transmittance of this metal thin film is about 10 to 20%, and the sheet resistance is 53. As an example, when the metal thin film is formed of Al or Al-Ti (titanium) alloy, the metal thin film formed to a thickness of 8.5 nm is shown in FIGS. 3 and 4. The film has such a minute defect portion. k. The transmittance of this metal thin film is about 10 to 20%, and the sheet resistance is 53.
Ω. Ω.

【0054】また、前記Al またはAl −Ti 合金を1
7.0nmの厚さに成膜した金属薄膜は、上記孔欠陥や凹入欠陥がほとんどない表面がほぼ平坦な膜であり、この金属薄膜の透過率は約5%以下、シート抵抗は14Ω
である。
Further, the Al or Al-Ti alloy is

The metal thin film formed to a thickness of 7.0 nm is a film having a substantially flat surface with almost no hole defects or pitting defects, and the metal thin film has a transmittance of about 5% or less and a sheet resistance of 14Ω. The metal thin film formed to a thickness of 7.0 nm is a film having a substantially flat surface with almost no hole defects or pitting defects, and the metal thin film has a transmittance of about 5% or less and a sheet resistance of 14 Ω.
Is. Is.

【0055】なお、上記半透過反射膜Mの透過率は、上述した5〜20%の範囲であればよいが、光源50からの光をより有効に利用するためには、前記透過率を6%
以上、さらに好ましくは7%以上にするのが望ましい。
The transmissivity of the semi-transmissive reflective film M may be in the range of 5 to 20% described above, but in order to use the light from the light source 50 more effectively, the transmissivity is set to 6%. %
The above is more preferable, and it is more preferable to be 7% or more.

【0056】ただし、このように半透過反射膜Mの透過
率を高くするには、前記金属薄膜の膜厚をある程度薄く
しなければならないため、そのシート抵抗が高くなって
しまうが、前記半透過反射膜Mを、ITO膜等の透明導
電膜と高反射率金属膜との積層膜とすれば、前記シート
抵抗を低くすることができる。
However, in order to increase the transmissivity of the semi-transmissive reflective film M as described above, the film resistance of the metal thin film has to be reduced to some extent, so that the sheet resistance becomes high. If the reflective film M is a laminated film of a transparent conductive film such as an ITO film and a high-reflectance metal film, the sheet resistance can be lowered.

【0057】すなわち、図5および図6はそれぞれ半透
過反射膜Mの第2および第3の例を示すその一部分の断
面図であり、図5に示した半透過反射膜Mは、その下地
面(裏面側基板11面)の上にITO膜13bをスパッ
タ装置により成膜し、その上に、図3および図4に示し
た金属薄膜13aを成膜したものである。
That is, FIGS. 5 and 6 are cross-sectional views of a part of the second and third examples of the semi-transmissive reflective film M, respectively, and the semi-transmissive reflective film M shown in FIG. The ITO film 13b is formed on the (back surface side substrate 11 surface) by a sputtering device, and the metal thin film 13a shown in FIGS. 3 and 4 is formed thereon.

【0058】また、図6に示した半透過反射膜Mは、その下地面(裏面側基板11面)の上に図3および図4に示した金属薄膜13aを成膜し、その上に、ITO膜1
3bをスパッタ装置により成膜したものである。
The semi-transmissive reflective film M shown in FIG. 6 has the metal thin film 13a shown in FIGS. 3 and 4 formed on the underlying surface (the surface of the backside substrate 11), and the metal thin film 13a shown in FIG. ITO film 1
3b is formed by a sputtering device.

【0059】これら図5および図6に示した半透過反射膜MのITO膜13bのシート抵抗は、このITO膜1
3bの膜厚を50nmとした場合で40Ωであり、したがって、前記金属薄膜13aのシート抵抗がある程度高くても、半透過反射膜Mの見掛上のシート抵抗を低くすることができる。 When the film thickness of 3b is 50 nm, it is 40 Ω. Therefore, even if the sheet resistance of the metal thin film 13a is high to some extent, the apparent sheet resistance of the semitransparent reflective film M can be lowered. The sheet resistance of the ITO film 13b of the transflective film M shown in FIG. 5 and FIG. The sheet resistance of the ITO film 13b of the transflective film M shown in FIG. 5 and FIG.
When the film thickness of 3b is 50 nm, it is 40Ω. Therefore, even if the sheet resistance of the metal thin film 13a is high to some extent, the apparent sheet resistance of the semi-transmissive reflective film M can be lowered. When the film thickness of 3b is 50 nm, it is 40 Ω. Therefore, even if the sheet resistance of the metal thin film 13a is high to some extent, the apparent sheet resistance of the semi-transmissive reflective film M can be lowered.

【0060】なお、図5および図6に示した半透過反射
膜Mの金属薄膜13aは、孔欠陥や凹入欠陥等の微小な
欠陥部kが点在する金属薄膜であるが、この金属薄膜
は、前記欠陥部kがほとんどない表面がほぼ平坦な金属
薄膜であってもよい。
The metal thin film 13a of the semi-transmissive reflective film M shown in FIGS. 5 and 6 is a metal thin film having minute defects k such as hole defects and recessed defects scattered therein. May be a thin metal film having a substantially flat surface with almost no defect portion k.

【0061】さらに、図7および図8は、半透過反射膜
Mの第4の例を示すその一部分の断面図および平面図で
あり、この半透過反射膜Mは、微小な開口mを点在させ
て設けた光不透過金属膜13cからなっている。
7 and 8 are a sectional view and a plan view of a part of the semi-transmissive reflective film M, showing a fourth example thereof. The semi-transmissive reflective film M is dotted with minute openings m. It is composed of a light-impervious metal film 13c provided by being provided.

【0062】すなわち、この半透過反射膜Mは、その下
地面(裏面側基板11面)の上に、スパッタ装置によっ
て、Al またはAl 系合金等からなる金属膜13cを光
を透過させない厚さ(300nm程度)に成膜し、この
金属膜13cにフォトリソグラフィ法によって多数の微
小開口mを設けたものである。
That is, the thickness of the semi-transmissive reflective film M is such that the metal film 13c made of Al or an Al-based alloy or the like does not transmit light on the underlying surface (the surface of the rear surface side substrate 11) by the sputtering device ( A film having a thickness of about 300 nm is formed, and a large number of minute openings m are provided in the metal film 13c by a photolithography method.

【0063】この半透過反射膜Mは、前記金属膜13c
の膜部分(開口m以外の部分)に入射した光を金属面で
反射させ、開口m部分に入射した光を透過させるもので
あり、図7に実線矢印で示した表面側からの入射光も、
また破線矢印で示した裏面側からの入射光も、ある反射
率と透過率で反射および透過される。
The semi-transmissive reflective film M is the metal film 13c.
The light incident on the film portion (portion other than the opening m) is reflected by the metal surface and the light incident on the opening m portion is transmitted, and the incident light from the surface side indicated by the solid arrow in FIG. ,
Further, the incident light from the back surface side indicated by the dashed arrow is also reflected and transmitted with a certain reflectance and transmittance. Further, the incident light from the back surface side indicated by the dashed arrow is also reflected and transmitted with a certain reflectance and transmittance.

【0064】この半透過反射膜Mは、光を透過させない厚さに成膜した比較的厚い金属膜13cからなっているため、シート抵抗が低いという利点をもっている。また、この半透過反射膜Mの透過率は、上記金属膜13c
の単位面積内に分布する開口mの総面積によって決まる。
Since the semi-transmissive reflective film M is composed of a relatively thick metal film 13c formed to a thickness that does not transmit light, it has an advantage of low sheet resistance. The transmissivity of the semi-transmissive reflective film M is the same as that of the metal film 13c.

Is determined by the total area of the openings m distributed within the unit area of. Is determined by the total area of ​​the openings m distributed within the unit area of.

【0065】ただし、この半透過反射膜Mにおいては、
1つ1つの開口mの面積が大きいと、表面側から光を入射させてその反射光を観察したときに開口m部分が黒点となって見え、裏面側から光を入射させてその透過光を観察したときに前記開口m部分が輝点となって見えるため、このような黒点や輝点を目立たなくするには、1つ1つの開口mの幅を約3μm以下にし、その数によって所望の透過率を得るのが望ましい。
However, in this semi-transmissive reflective film M,

When the area of each opening m is large, when the light is made incident from the front surface side and the reflected light is observed, the opening m portion appears as a black spot, and the light is made incident from the back surface side to transmit the transmitted light. When observed, the opening m portion appears as a bright spot. Therefore, in order to make such black spots and bright spots inconspicuous, the width of each opening m is set to about 3 μm or less, and the desired number is set according to the number. It is desirable to obtain transmittance. When the area of ​​each opening m is large, when the light is made incident from the front surface side and the reflected light is observed, the opening m portion appears as a black spot, and the light is made incident from the back surface side to When observed, the opening m portion appears as a bright spot. Therefore, in order to make such black spots and bright spots inconspicuous, the width of each opening m is set to about 3 μm or less, and the desired number is set according to the number. It is desirable to obtain reflectance.

【0066】そして、上記画素電極13は、上述した第
1〜第4の例のいずれかの半透過反射膜Mを裏面側基板
11の上に形成し、この半透過反射膜Mをフォトリソグ
ラフィ法によりパターニングして形成されている。な
お、図6および図7に示した半透過反射膜Mで画素電極
を形成する場合は、その金属膜13cへの開口mの形成
と画素電極13へのパターニングとを同時に行なうこと
ができる。
The pixel electrode 13 is formed by forming the semi-transmissive reflective film M according to any one of the above-mentioned first to fourth examples on the back side substrate 11, and the semi-transmissive reflective film M is formed by the photolithography method. Is formed by patterning. When the pixel electrode is formed of the semi-transmissive reflective film M shown in FIGS. 6 and 7, formation of the opening m in the metal film 13c and patterning of the pixel electrode 13 can be performed at the same time.

【0067】また、図1および図2に示したように、液
晶セル10の表面側基板12の内面つまり液晶層との対
向面には、上記裏面側基板11に配設した各列の画素電
極13にぞれぞれ対向する複数本の透明な対向電極20
が設けられ、その上に透明な配向膜21が設けられてい
る。なお、前記対向電極20は、ITO等の透明導電膜
で形成されている。
Further, as shown in FIGS. 1 and 2, on the inner surface of the front surface side substrate 12 of the liquid crystal cell 10, that is, the surface facing the liquid crystal layer, the pixel electrodes of each column disposed on the back surface side substrate 11 are arranged. A plurality of transparent counter electrodes 20 facing each other
Is provided, and the transparent alignment film 21 is provided thereon. The counter electrode 20 is formed of a transparent conductive film such as ITO. Is provided, and the transparent alignment film 21 is provided electrically. The counter electrode 20 is formed of a transparent conductive film such as ITO.

【0068】さらに、この表面側基板12の内面には、
上記裏面側基板11に配設した各画素電極13間の間隙に対応するブラックマスク22が設けられており、このブラックマスク22も前記配向膜21で覆われている。
Furthermore, on the inner surface of the front surface side substrate 12,
A black mask 22 corresponding to the gap between the pixel electrodes 13 arranged on the back substrate 11 is provided, and the black mask 22 is also covered with the alignment film 21.

【0069】このブラックマスク22は、図2に示した
ように、裏面側基板11に配設した各画素電極13の行
間および列間に対応する格子状パターンに形成されてお
り、その縦横の各辺部は、その両側縁がそれぞれ、隣り
合う画素電極13の縁部に僅かな重なり幅で対向する幅
に形成されている。
As shown in FIG. 2, the black mask 22 is formed in a grid-like pattern corresponding to the rows and columns of the pixel electrodes 13 arranged on the back surface side substrate 11, and each of the vertical and horizontal directions. The side portions are formed such that both side edges thereof face the edge portions of the adjacent pixel electrodes 13 with a slight overlapping width.

【0070】なお、裏面側基板11に配設したMIM1
4は、図2に示したように各画素電極13の間の部分に
あり、したがって、前記ブラックマスク22は、前記M
IM14にもその全体を覆うように対向している。
The MIM 1 provided on the rear substrate 11
4 is in a portion between the pixel electrodes 13 as shown in FIG.
It also faces the IM 14 so as to cover the entire IM14.

【0071】上記ブラックマスク22は、黒色系樹脂か
らなる絶縁性マスクであり、このブラックマスク22の
縦辺部(画素電極13の列間に対応する辺部)は、各対
向電極20の間の部分(基板12の内面)に、その両側
縁をそれぞれ隣り合う対向電極20の縁部に僅かな重な
り幅でラップさせて形成され、横辺部(画素電極13の
行間に対応する辺部)は、対向電極20の上にこの電極
20を横切るように形成されている。
The black mask 22 is an insulating mask made of a black resin, and the vertical side portions (side portions corresponding to the columns of the pixel electrodes 13) of the black mask 22 are provided between the counter electrodes 20. It is formed on a portion (inner surface of the substrate 12) by overlapping both side edges thereof with the edge portions of the opposing electrodes 20 adjacent to each other with a slight overlapping width, and the horizontal side portions (side portions corresponding to the rows of the pixel electrodes 13) are , Is formed on the counter electrode 20 so as to cross the electrode 20.

【0072】なお、このブラックマスク22は、例え
ば、対向電極20を形成した表面側基板12面に黒色系
の感光性樹脂を塗布して所定パターンの露光マスクを用
いて露光処理し、その後この感光性樹脂を現像処理して
焼成する方法で形成されたものである。
The black mask 22 is, for example, coated with a black photosensitive resin on the surface of the front surface side substrate 12 on which the counter electrode 20 is formed, is exposed using an exposure mask having a predetermined pattern, and then is exposed to light. It is formed by a method of developing a photosensitive resin and baking it.

【0073】そして、上記裏面側基板11と表面側基板12とは、その外周縁部において枠状のシール材25
(図10参照)を介して接合されており、液晶LCは両基板11,12間の前記シール材25で囲まれた領域に充填されている。
The back-side substrate 11 and the front-side substrate 12 have a frame-shaped sealing material 25 at their outer peripheral edges.
(See FIG. 10) and the liquid crystal LC is filled in a region surrounded by the sealing material 25 between the substrates 11 and 12.

【0074】この液晶LCは、誘電異方性が正のネマティック液晶であり、この液晶LCの分子は、両基板1
1,12に設けた配向膜19,21によってそれぞれの基板11,12上での配向方向を規制され、両基板1 The orientation film 19 and 21 provided on the substrates 1 and 12 regulate the orientation direction on the substrates 11 and 12, respectively, and both substrates 1
1,12間においてほぼ90°のツイスト角でツイスト配向されている。 It is twist-oriented with a twist angle of approximately 90 ° between 1 and 12. なお、上記配向膜19,21は、ポリイミド等からなる水平配向膜であり、その膜面にはラビングによる配向処理が施されている。 The alignment films 19 and 21 are horizontal alignment films made of polyimide or the like, and the film surface is subjected to alignment treatment by rubbing. This liquid crystal LC is a nematic liquid crystal having a positive dielectric anisotropy, and the molecules of this liquid crystal LC have This liquid crystal LC is a nematic liquid crystal having a positive dielectric anisotropy, and the molecules of this liquid crystal LC have
Alignment directions on the substrates 11 and 12 are regulated by the alignment films 19 and 21 provided on the substrates 1 and 12, respectively. Alignment directions on the similarly 11 and 12 are regulated by the alignment films 19 and 21 provided on the similarly 1 and 12, respectively.
A twist angle of approximately 90 ° is provided between 1 and 12. The alignment films 19 and 21 are horizontal alignment films made of polyimide or the like, and the film surfaces thereof are subjected to an alignment treatment by rubbing. A twist angle of approximately 90 ° is provided between 1 and 12. The alignment films 19 and 21 are horizontal alignment films made of polyimide or the like, and the film surfaces thereof are subjected to an alignment treatment by rubbing.

【0075】一方、上記表裏の偏光板31,32のう
ち、裏面側偏光板32は通常の偏光板、表面側偏光板3
1は、その一面、例えば表面が光散乱面Aとなっている
偏光板であり、この表面側偏光板31の光散乱面Aは、
図9にその一部分の断面を拡大して示したように、偏光
板31の表面に微小な凹凸をもつ透明膜33を形成して
構成されている。
On the other hand, of the front and back polarizing plates 31 and 32, the back side polarizing plate 32 is an ordinary polarizing plate and the front side polarizing plate 3
Reference numeral 1 denotes a polarizing plate whose one surface, for example, the surface is a light scattering surface A, and the light scattering surface A of the surface side polarizing plate 31 is
As shown in an enlarged view of a cross section of a part thereof in FIG. 9, a transparent film 33 having minute irregularities is formed on the surface of the polarizing plate 31. As shown in an enlarged view of a cross section of a part thereof in FIG. 9, a transparent film 33 having minute irregularities is formed on the surface of the polarizing plate 31.

【0076】上記透明膜33は、アクリル樹脂等の光透
過率の高い樹脂からなっており、この透明膜33は、樹
脂材料を微小な凹凸をもつ印刷版を用いて偏光板31面
に転写印刷して硬化させる方法、前記樹脂材料を偏光板
31面に均一厚さに塗布して型押しにより凹凸を付けた
後に硬化させる方法、あるいは、前記樹脂材料にシリカ
等からなる透明な微粒子を混入したものを偏光板31面
に塗布して硬化させる方法のいずれかによって形成され
ている。
The transparent film 33 is made of a resin having a high light transmittance such as an acrylic resin, and the transparent film 33 is transferred and printed on the surface of the polarizing plate 31 by using a printing plate having a minute unevenness made of a resin material. Curing, a method of applying the resin material on the surface of the polarizing plate 31 to a uniform thickness and making unevenness by embossing, and then curing, or mixing transparent fine particles such as silica into the resin material. It is formed by any of the methods of applying a material to the surface of the polarizing plate 31 and curing it.

【0077】この透明膜33の凹凸の平均高さ(凹面と凸面との高さの差)hは1〜5μm、凹凸の平均ピッチpは5〜40μmであり、上記光散乱面Aのヘイズ値は、9〜14%である。 The average height (height difference between the concave surface and the convex surface) of the unevenness of the transparent film 33 is 1 to 5 μm, the average pitch p of the unevenness is 5 to 40 μm, and the haze value of the light scattering surface A is Is 9 to 14%.

【0078】なお、上記ヘイズ値は、JIS K 67
14に準ずる積分球式光線透過率測定装置(ヘイズメータ)による測定値である。このヘイズ値は次式により算出される。
The haze value is based on JIS K 67.

It is a value measured by an integrating sphere type light transmittance measuring device (haze meter) according to 14. This haze value is calculated by the following formula. It is a value measured by an integrating sphere type light transmittance measuring device (haze meter) according to 14. This haze value is calculated by the following formula.

【0079】全光線透過率;Tt(%)=T2 /T1 平行光線透過率;Tp(%)=Tt −Td 拡散透過率;Td(%)=[T4 −T3 ×(T2 /T1 )]
/T1 ヘイズ値;H(%) =(Td /Tt )×100 T1 ;入射光線量 T2 ;全光線透過光量 T3 ;測定装置の拡散光量 T4 ;試験片(透明膜31)と測定装置による拡散光量 また、上記位相差板40は、ポリカーボネート等の一軸延伸フィルムからなっており、この位相差板40は、上記液晶セル10の表面側に配置された表面側偏光板31

と前記液晶セル10との間に、位相差板40の遅相軸(延伸軸)と表面側偏光板31の透過軸とを所定角度斜めにずらした状態で配置されている。 The slow axis (stretching axis) of the retardation plate 40 and the transmission axis of the surface side polarizing plate 31 are arranged between the liquid crystal cell 10 and the liquid crystal cell 10 in a state of being obliquely displaced by a predetermined angle. Total light transmittance; Tt (%) = T2 / T1 parallel light transmittance; Tp (%) = Tt-Td diffuse transmittance; Td (%) = [T4-T3 * (T2 / T1)] Total light transmittance; Tt (%) = T2 / T1 parallel light transmittance; Tp (%) = Tt-Td diffuse transmittance; Td (%) = [T4-T3 * (T2 / T1)]
/ T1 haze value; H (%) = (Td / Tt) x 100 T1; Incident light amount T2; Total light transmitted light amount T3; Measuring device diffused light amount T4; Test piece (transparent film 31) and diffused light amount by measuring device Further, the retardation plate 40 is made of a uniaxially stretched film such as polycarbonate, and the retardation plate 40 is disposed on the front surface side of the liquid crystal cell 10 and is a front surface side polarizing plate 31. / T1 haze value; H (%) = (Td / Tt) x 100 T1; Incident light amount T2; Total light transmitted light amount T3; Measuring device diffused light amount T4; Test piece (transparent film 31) and diffused light amount by measuring device Further, the retardation plate 40 is made of a uniaxially stretched film such as polarizing, and the retardation plate 40 is disposed on the front surface side of the liquid crystal cell 10 and is a front surface side polarizing plate 31.
Between the liquid crystal cell 10 and the liquid crystal cell 10, the slow axis (stretching axis) of the retardation plate 40 and the transmission axis of the front-side polarizing plate 31 are obliquely displaced by a predetermined angle. Between the liquid crystal cell 10 and the liquid crystal cell 10, the slow axis (stretching axis) of the retardation plate 40 and the transmission axis of the front-side polarizing plate 31 are obliquely displaced by a predetermined angle.

【0080】なお、前記位相差板40は液晶セル10の
表面(表面側基板12の外面)に接着され、表面側偏光
板31は前記位相差板40の表面に接着されており、ま
た裏面側偏光板32は液晶セル10の裏面(裏面側基板
11の外面)に接着されている。
The retardation plate 40 is adhered to the surface of the liquid crystal cell 10 (the outer surface of the front surface side substrate 12), and the front surface side polarizing plate 31 is adhered to the surface of the retardation plate 40. The polarizing plate 32 is adhered to the back surface of the liquid crystal cell 10 (the outer surface of the back surface side substrate 11).

【0081】また、上記光源50は、従来の液晶表示装置に用いられている光源と同様なものであり、図10のように、上記裏面側偏光板32の裏面ほぼ全体に対向する導光板51と、この導光板51の一端面に向けて配置された白色光を発する光源ランプ52とからなっている。 The light source 50 is the same as the light source used in the conventional liquid crystal display device, and as shown in FIG. 10, the light guide plate 51 facing almost the entire back surface of the back side polarizing plate 32. And a light source lamp 52 that emits white light and is arranged toward one end surface of the light guide plate 51.

【0082】前記導光板51は、図1に示したように、
アクリル樹脂等からなる透明板の裏面全体にAl 等の蒸着膜からなる反射膜51aを形成したもので、光源ランプ52からの照明光は、導光板51にその一端面から入射して導光板51内を導かれ、この導光板51の表面全体から液晶セル10に向かって出射する。 A reflective film 51a made of a vapor-deposited film such as Al is formed on the entire back surface of a transparent plate made of acrylic resin or the like, and the illumination light from the light source lamp 52 enters the light guide plate 51 from one end surface thereof and is incident on the light guide plate 51. It is guided inside and emits light from the entire surface of the light guide plate 51 toward the liquid crystal cell 10. The light guide plate 51, as shown in FIG. The light guide plate 51, as shown in FIG.
A transparent plate made of acrylic resin or the like is formed with a reflective film 51a made of a vapor deposition film of Al or the like on the entire back surface. Illumination light from the light source lamp 52 enters the light guide plate 51 from one end surface thereof and enters the light guide plate 51. The light is guided through the inside and emitted toward the liquid crystal cell 10 from the entire surface of the light guide plate 51. A transparent plate made of acrylic resin or the like is formed with a reflective film 51a made of a vapor deposition film of Al or the like on the entire back surface. Illumination light from the light source lamp 52 enters the light guide plate 51 from one the end surface thereof and enters the light guide plate 51. The light is guided through the inside and emitted toward the liquid crystal cell 10 from the entire surface of the light guide plate 51.

【0083】そして、この実施例の液晶表示装置では、
上記表面側偏光板31を、その透過軸を液晶セル10の
表面側基板12上における液晶分子の配向方向(配向膜
21のラビング方向)に対して所定角度斜めにずらして
配置するとともに、上記位相差板40をその遅相軸(延
伸軸)を前記表面側偏光板31の透過軸に対して所定角
度斜めにずらして配置し、さらに裏面側偏光板32を、
その透過軸を液晶セル10の裏面側基板11上における
液晶分子の配向方向(配向膜19のラビング方向)に対
して所定角度斜めにずらして配置している。
In the liquid crystal display device of this embodiment,
The front-side polarizing plate 31 is arranged such that its transmission axis is slanted at a predetermined angle with respect to the alignment direction of the liquid crystal molecules on the front-side substrate 12 of the liquid crystal cell 10 (the rubbing direction of the alignment film 21), and The retardation plate 40 is arranged such that its slow axis (stretching axis) is slanted by a predetermined angle with respect to the transmission axis of the front surface side polarizing plate 31, and the back surface side polarizing plate 32 is further arranged. The front-side polarizing plate 31 is arranged such that its transmission axis is slanted at a predetermined angle with respect to the alignment direction of the liquid crystal molecules on the front-side substrate 12 of the liquid crystal cell 10 (the rubbing direction of the) alignment film 21), and The retardation plate 40 is arranged such that its slow axis (stretching axis) is slanted by a predetermined angle with respect to the transmission axis of the front surface side polarizing plate 31, and the back surface side polarizing plate 32 is further arranged.
The transmission axis is arranged so as to be slanted at a predetermined angle with respect to the alignment direction of the liquid crystal molecules (the rubbing direction of the alignment film 19) on the rear substrate 11 of the liquid crystal cell 10. The transmission axis is arranged so as to be slanted at a predetermined angle with respect to the alignment direction of the liquid crystal molecules (the rubbing direction of the alignment film 19) on the rear substrate 11 of the liquid crystal cells 10.

【0084】なお、この実施例では、液晶セル10の裏
面側基板11上における液晶分子配向方向を方位角0°
の方向とし、この方向を基準として、液晶セル10の表
面側基板12上における液晶分子配向方向と偏光板3
1,32の透過軸方向および位相差板40の遅相軸方向
を設定している。
In this embodiment, the orientation direction of the liquid crystal molecules on the back side substrate 11 of the liquid crystal cell 10 is 0 °.
Direction, and with this direction as a reference, the alignment direction of the liquid crystal molecules on the front substrate 12 of the liquid crystal cell 10 and the polarizing plate 3
The transmission axis directions of 1 and 32 and the slow axis direction of the retardation plate 40 are set.

【0085】すなわち、図11は、上記液晶表示装置に
おける液晶セル10の液晶分子配向方向と、位相差板4
0の遅相軸と、偏光板31,32の透過軸とを示す平面
図であり、図において11aは液晶セル10の裏面側基
板11上における液晶分子の配向方向、12aは液晶セ
ル10の表面側基板12上における液晶分子の配向方向
を示している。
That is, FIG. 11 shows the alignment direction of liquid crystal molecules of the liquid crystal cell 10 and the retardation plate 4 in the liquid crystal display device.
3 is a plan view showing the slow axis of 0 and the transmission axes of the polarizing plates 31 and 32, where 11a is the alignment direction of the liquid crystal molecules on the rear substrate 11 of the liquid crystal cell 10, and 12a is the surface of the liquid crystal cell 10. FIG. The alignment direction of the liquid crystal molecules on the side substrate 12 is shown. 3 is a plan view showing the slow axis of 0 and the transmission axes of the polarizing plates 31 and 32, where 11a is the alignment direction of the liquid crystal molecules on the rear substrate 11 of the liquid crystal cells 10, and 12a is the surface of the liquid crystal cells 10. FIG. The alignment direction of the liquid crystal molecules on the side substrate 12 is shown.

【0086】この図11のように、液晶セル10の表面側基板12上における液晶分子配向方向12aは、裏面側基板11上における液晶分子配向方向11a、つまり方位角0°の方向に対し、表面側から見て左回りにほぼ90°ずれており、液晶LCの分子は両基板11,12
間においてほぼ90°のツイスト角でツイスト配向されている。 It is twist-oriented with a twist angle of approximately 90 ° between them. As shown in FIG. 11, the liquid crystal molecule alignment direction 12a on the front surface side substrate 12 of the liquid crystal cell 10 is the surface with respect to the liquid crystal molecule alignment direction 11a on the back surface side substrate 11, that is, the azimuth angle of 0 °. The molecules of the liquid crystal LC are shifted by 90 ° counterclockwise when viewed from the side, and the molecules of the liquid crystal LC are As shown in FIG. 11, the liquid crystal molecule alignment direction 12a on the front surface side substrate 12 of the liquid crystal cell 10 is the surface with respect to the liquid crystal molecule alignment direction 11a on the back surface side substrate 11, that is , the azimuth angle of 0 °. The molecules of the liquid crystal LC are examined by 90 ° counterclockwise when viewed from the side, and the molecules of the liquid crystal LC are
In the meantime, the twist orientation is made at a twist angle of about 90 °. In the meantime, the twist orientation is made at a twist angle of about 90 °.

【0087】また、図11において、31aは表面側偏
光板31の透過軸、40aは位相差板40の遅相軸を示
しており、表面側偏光板31の透過軸31aは上記方位
角0°の方向に対し表面側から見て左回りにほぼ170
°の方向、位相差板40の遅相軸40aは方位角0°の
方向に対し表面側から見て左回りにほぼ150°の方向
にあり、したがって、位相差板40の遅相軸40aは、
表面側偏光板31の透過軸31aに対し、表面側から見て右回りにほぼ20°斜めにずれている。 With respect to the transmission axis 31a of the surface-side polarizing plate 31, it is displaced clockwise by approximately 20 ° when viewed from the surface side. Further, in FIG. 11, 31a indicates the transmission axis of the front surface side polarizing plate 31, 40a indicates the slow axis of the retardation plate 40, and the transmission axis 31a of the front surface side polarizing plate 31 is the azimuth angle 0 °. Approximately 170 counterclockwise when viewed from the surface side with respect to Further, in FIG. 11, 31a indicates the transmission axis of the front surface side polarizing plate 31, 40a indicates the slow axis of the retardation plate 40, and the transmission axis 31a of the front surface side polarizing plate 31 is the azimuth angle 0 °. Approximately 170 counterclockwise when viewed from the surface side with respect to
Direction, the slow axis 40a of the retardation plate 40 is in the direction of approximately 150 ° counterclockwise when viewed from the surface side with respect to the direction of the azimuth angle of 0 °. Therefore, the slow axis 40a of the retardation plate 40 is , Direction, the slow axis 40a of the retardation plate 40 is in the direction of approximately 150 ° counterclockwise when viewed from the surface side with respect to the direction of the azimuth angle of 0 °. Therefore, the slow axis 40a of the retardation plate 40 is,
With respect to the transmission axis 31a of the front surface side polarizing plate 31, it is deviated by about 20 ° in a clockwise direction when viewed from the front surface side. With respect to the transmission axis 31a of the front surface side polarizing plate 31, it is deviated by about 20 ° in a clockwise direction when viewed from the front surface side.

【0088】さらに、図11において、32aは裏面側
偏光板32の透過軸を示しており、この裏面側偏光板3
2の透過軸32aは上記方位角0°の方向に対し表面側
から見て左回りにほぼ150°の方向にある。
Further, in FIG. 11, reference numeral 32a denotes the transmission axis of the back surface side polarizing plate 32, and the back surface side polarizing plate 3
The transmission axis 32a of No. 2 is in the direction of approximately 150 ° counterclockwise when viewed from the surface side with respect to the direction of the above azimuth angle of 0 °.

【0089】この液晶表示装置は、外光(自然光または
室内照明光等)の光量が十分な明るい場所では前記外光
を利用する反射型表示を行なうものであり、このときは
図1および図10に実線矢印で示すように、液晶表示装
置にその表面側から入射する外光が、表面側偏光板31
の偏光作用により直線偏光となって液晶セル10に入射
するとともに、その液晶層を通った光が液晶セル10の
裏面側基板11の内面に設けられている半透過反射膜M
(画素電極13)に入射し、この半透過反射膜Mで反射された光が再び液晶層を通って前記表面側偏光板31に入射して、この偏光板31を透過する光が画像光となって液晶表示装置の表面側に出射する。 The light incident on (pixel electrode 13) and reflected by the semitransparent reflective film M again passes through the liquid crystal layer and enters the surface-side polarizing plate 31, and the light transmitted through the polarizing plate 31 is referred to as image light. It emits light to the surface side of the liquid crystal display device. This liquid crystal display device performs reflection type display utilizing the outside light in a bright place where the amount of the outside light (natural light, indoor illumination light, etc.) is sufficient, and at this time, FIGS. As indicated by a solid arrow in FIG. This liquid crystal display device performs reflection type display utilizing the outside light in a bright place where the amount of the outside light (natural light, indoor illumination light, etc.) is sufficient, and at this time, FIGS. As indicated by a solid arrow in FIG.
Of the semi-transmissive reflective film M provided on the inner surface of the rear substrate 11 of the liquid crystal cell 10. Of the semi-transmissive reflective film M provided on the inner surface of the rear substrate 11 of the liquid crystal cell 10.
The light that enters the (pixel electrode 13) and is reflected by the semi-transmissive reflective film M again passes through the liquid crystal layer and enters the front-side polarizing plate 31, and the light that passes through the polarizing plate 31 becomes the image light. Then, the light is emitted to the front surface side of the liquid crystal display device. The light that enters the (pixel electrode 13) and is reflected by the semi-transmissive reflective film M again passes through the liquid crystal layer and enters the front-side polarizing plate 31, and the light that passes through the polarizing plate 31 becomes the image light. Then, the light is emitted to the front surface side of the liquid crystal display device.

【0090】また、この液晶表示装置は、外光の光量が少ない暗い場所でも、光源50からの光を利用して表示を行なえるものであり、そのときは図1および図10に破線矢印で示すように、光源50からの光が裏面側偏光板32の偏光作用により直線偏光となって液晶セル10
に入射し、その裏面側基板11の内面に設けられている半透過反射膜M(画素電極13)を透過した光が液晶層を通って上記表面側偏光板31に入射して、この偏光板31を透過する光が画像光となって液晶表示装置の表面側に出射する。 Light that has been incident on the surface and has passed through the semitransparent reflective film M (pixel electrode 13) provided on the inner surface of the back surface side substrate 11 passes through the liquid crystal layer and is incident on the front surface side polarizing plate 31. The light transmitted through 31 becomes image light and is emitted to the surface side of the liquid crystal display device. Further, this liquid crystal display device can perform display by utilizing the light from the light source 50 even in a dark place where the amount of external light is small, and in that case, the broken line arrow in FIGS. As shown, the light from the light source 50 is converted into linearly polarized light by the polarization effect of the back side polarizing plate 32, and the liquid crystal cell 10 is shown. Further, this liquid crystal display device can perform display by utilizing the light from the light source 50 even in a dark place where the amount of external light is small, and in that case, the broken line arrow in FIGS. As shown, the light from the light source 50 is converted into linearly polarized light by the polarization effect of the back side liquid crystal plate 32, and the liquid crystal cell 10 is shown.
To the front side polarizing plate 31 through the liquid crystal layer and the light transmitted through the semi-transmissive reflective film M (pixel electrode 13) provided on the inner surface of the back side substrate 11 is incident on the front side polarizing plate 31. The light passing through 31 becomes image light and is emitted to the front surface side of the liquid crystal display device. To the front side polarizing plate 31 through the liquid crystal layer and the light transmitted through the semi-transmissive reflective film M (pixel electrode 13) provided on the inner surface of the back side substrate 11 is incident on the front side polarizing plate 31. The light passing through 31 becomes image light and is emitted to the front surface side of the liquid crystal display device.

【0091】すなわち、上記液晶表示装置は、液晶セル
10の裏面側基板11の内面に半透過反射膜Mを設ける
ことにより、外光を利用する反射型表示の際は、液晶セ
ル10の表面側に配置した表面側偏光板31に入射光を
直線偏光とする偏光作用と液晶セル10の液晶層を通っ
た光を画像光とする検光作用との両方の作用をもたせ
て、液晶セル10の裏面側に配置した裏面側偏光板32
は用いずに表示し、光源50からの光を利用する透過型表示の際は、前記裏面側偏光板32を偏光子とし、前記表面側偏光板31を検光子として表示するものである。 Is displayed without using, and in the transmission type display using the light from the light source 50, the back surface side polarizing plate 32 is used as a polarizer and the front surface side polarizing plate 31 is displayed as an analyzer. That is, in the above-mentioned liquid crystal display device, the semi-transmissive reflective film M is provided on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10 so that the surface side of the liquid crystal cell 10 is used in the reflective display utilizing external light. The front-side polarizing plate 31 disposed at the position of the liquid crystal cell 10 is caused to have both a polarization action of making incident light linearly polarized light and an analysis action of making light passing through the liquid crystal layer of the liquid crystal cell 10 into image light. Back side polarizing plate 32 arranged on the back side That is, in the above-mentioned liquid crystal display device, the semi-transmissive reflective film M is provided on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10 so that the surface side of the liquid crystal cell 10 Is used in the reflective display utilizing external light. The front-side liquid crystal plate 31 disposed at the position of the liquid crystal cell 10 is caused to have both a polarization action of making incident light linearly polarized light and an analysis action of making light passing through the liquid crystal layer of the liquid crystal cell 10 into image light. Back side liquid crystal plate 32 arranged on the back side
In the case of a transmissive display in which light from the light source 50 is used, the back surface side polarizing plate 32 serves as a polarizer and the front surface side polarizing plate 31 serves as an analyzer. In the case of a transmissive display in which light from the light source 50 is used, the back surface side polarizing plate 32 serves as a polarizing and the front surface side polarizing plate 31 serves as an analyzer.

【0092】上記液晶表示装置の表示動作を、まず外光を利用する反射型表示について説明すると、この液晶表示装置においては、前記表面側偏光板31の透過軸31
aが液晶セル10の表面側基板12上における液晶分子配向方向12aに対して斜めずれており、位相差板40
の遅相軸40aが前記表面側偏光板31の透過軸31a

に対して位相差板40の遅相軸40aが斜めにずれているため、表面側偏光板31を通って入射した直線偏光が、位相差板40を通る過程でその複屈折効果により波長ごとに偏光状態が異なる楕円偏光となり、この楕円偏光が、液晶セル10の液晶層を通る過程でその複屈折効果によりさらに偏光状態を変えられるとともに、その光のうち、前記半透過反射膜で反射された光が、再び液晶層および位相差板40を通る過程でこれらの複屈折効果によりさらに偏光状態を変えられて前記表面側偏光板3 Since the slow axis 40a of the retardation plate 40 is obliquely deviated from the above, the linearly polarized light incident through the surface side polarizing plate 31 passes through the retardation plate 40 for each wavelength due to its double refraction effect. The polarization state becomes elliptically polarized light, and the elliptically polarized light can be further changed in the polarization state by the compound refraction effect in the process of passing through the liquid crystal layer of the liquid crystal cell 10, and the light is reflected by the semi-transmissive reflective film. In the process of light passing through the liquid crystal layer and the retardation plate 40 again, the polarization state is further changed by these double refractive effects, and the surface side polarizing plate 3
1に入射する。 It is incident on 1. The display operation of the above liquid crystal display device will be described first with respect to the reflection type display utilizing external light. In this liquid crystal display device, the transmission axis 31 of the front side polarizing plate 31 will be described. The display operation of the above liquid crystal display device will be described first with respect to the reflection type display utilizing external light. In this liquid crystal display device, the transmission axis 31 of the front side waveguide plate 31 will be described.
a is obliquely displaced with respect to the liquid crystal molecule alignment direction 12a on the front surface side substrate 12 of the liquid crystal cell 10, and the retardation plate 40 a is obliquely displaced with respect to the liquid crystal molecule alignment direction 12a on the front surface side substrate 12 of the liquid crystal cell 10, and the retardation plate 40
Is the slow axis 40a of the transmission axis 31a of the front side polarizing plate 31. Is the slow axis 40a of the transmission axis 31a of the front side polarizing plate 31.
On the other hand, since the slow axis 40a of the retardation plate 40 is deviated obliquely, the linearly polarized light that has entered through the front-side polarizing plate 31 passes through the retardation plate 40, and due to its birefringence effect It becomes elliptically polarized light having a different polarization state, and this elliptically polarized light is further changed in polarization state by the birefringence effect in the process of passing through the liquid crystal layer of the liquid crystal cell 10, and is reflected by the semi-transmissive reflection film among the light. When the light passes through the liquid crystal layer and the retardation plate 40 again, the polarization state is further changed by the birefringence effect of the light and the front side polarizing plate 3 On the other hand, since the slow axis 40a of the retardation plate 40 is deviated obliquely, the linearly polarized light that has entered through the front-side grating plate 31 passes through the retardation plate 40, and due to its birefringence effect It becomes elliptically polarized light having a different polarization state, and this elliptically polarized light is further changed in polarization state by the birefringence effect in the process of passing through the liquid crystal layer of the liquid crystal cell 10, and is reflected by the semi-transmissive reflection film among the light. When the light passes through the liquid crystal layer and the retardation plate 40 again, the polarization state is further changed by the birefringence effect of the light and the front side liquid crystal plate 3
Incident on 1. Incident on 1.

【0093】そして、この表面側偏光板31に入射する
反射光は、上記位相差板40と液晶セル10の液晶層の
複屈折効果により偏光状態を変えられた非直線偏光であ
るため、その光のうち、表面側偏光板31を透過する偏
光成分の波長光だけがこの偏光板31を透過して出射
し、その出射光中の各波長光の比率に対応した着色光と
なる。
The reflected light incident on the front-side polarizing plate 31 is non-linearly polarized light whose polarization state is changed by the birefringence effect of the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10. Among these, only the wavelength light of the polarization component that passes through the front-side polarizing plate 31 passes through the polarizing plate 31 and is emitted, and becomes colored light corresponding to the ratio of each wavelength light in the emitted light.

【0094】次に、光源50からの光を利用するときの
表示について説明すると、このときは、光源50からの
光が裏面側偏光板32を通って直線偏光となり、この直
線偏光が液晶セル10にその裏面側から入射して、その
光のうち液晶セル10の裏面側基板11の内面に設けら
れている半透過反射膜Mを透過した光が液晶層に入射す
るが、上記液晶表示装置においては、前記裏面側偏光板
32の透過軸32aが液晶セル10の裏面側基板11上
における液晶分子の配向方向11aに対して斜めにずれ
ているため、液晶セル10にその裏面側から入射した直
線偏光が、この液晶セル10の液晶層を通る過程でその
複屈折効果により波長ごとに偏光状態が異なる楕円偏光
となり、この楕円偏光が、位相差板40を通る過程でそ
の複屈折効果によりさらに偏光状態を変えられて表面側
偏光板31に入射する。
Next, the display when using the light from the light source 50 will be described. At this time, the light from the light source 50 passes through the rear side polarizing plate 32 to become linearly polarized light, and this linearly polarized light is the liquid crystal cell 10. Light incident on the back surface of the liquid crystal cell 10 and transmitted through the semi-transmissive reflective film M provided on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10 is incident on the liquid crystal layer. Since the transmission axis 32a of the back side polarizing plate 32 is obliquely displaced with respect to the alignment direction 11a of the liquid crystal molecules on the back side substrate 11 of the liquid crystal cell 10, the straight line incident on the back side of the liquid crystal cell 10 is While the polarized light passes through the liquid crystal layer of the liquid crystal cell 10, it becomes elliptically polarized light having a different polarization state depending on the wavelength due to its birefringence effect, and this elliptically polarized light is caused by the birefringence effect as it passes through the retardation plate 40. Furthermore incident on the surface side polarizing plate 31 is changing its polarization state.

【0095】そして、このときも、表面側偏光板31に
入射する光は、液晶セル10の液晶層と位相差板40の
複屈折効果により偏光状態を変えられた非直線偏光であ
るため、その光のうち、表面側偏光板31を透過する偏
光成分の波長光だけがこの偏光板31を透過して出射
し、その出射光中の各波長光の比率に対応した着色光と
なる。
Also at this time, the light incident on the front-side polarizing plate 31 is non-linearly polarized light whose polarization state is changed by the birefringence effect of the liquid crystal layer of the liquid crystal cell 10 and the retardation plate 40. Of the light, only the wavelength light of the polarization component that passes through the front-side polarizing plate 31 passes through the polarizing plate 31 and is emitted, and becomes colored light corresponding to the ratio of each wavelength light in the emitted light.

【0096】つまり、上記液晶表示装置は、反射型表示
の際には、位相差板40と液晶セル10の液晶層との複
屈折効果と表面側偏光板31の偏光および検光作用とを
利用して光を着色し、透過型表示の際には、前記液晶セ
ル10の液晶層と位相差板40との複屈折効果と裏面側
偏光板32の偏光作用および表面側偏光板31の検光作
用とを利用して光を着色するものである。
That is, the above-mentioned liquid crystal display device utilizes the birefringence effect of the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10 and the polarization and analysis function of the front side polarizing plate 31 in the reflection type display. In the transmission type display, the birefringence effect between the liquid crystal layer of the liquid crystal cell 10 and the retardation plate 40, the polarization effect of the back side polarizing plate 32, and the analysis of the front side polarizing plate 31 are performed. The action is used to color light.

【0097】そして、この液晶表示装置は、カラーフィ
ルタを用いずに光を着色するものであるから、カラーフ
ィルタを透過させる場合に比べて透過光量のロスを大幅
に低減して高輝度の着色光を得ることができ、したがっ
て、明るいカラー画像を表示することができる。
Since this liquid crystal display device colors the light without using the color filter, the loss of the amount of transmitted light is greatly reduced as compared with the case of transmitting the color filter, and the colored light of high brightness is obtained. Therefore, a bright color image can be displayed.

【0098】すなわち、カラーフィルタは、その色に対
応する波長域以外の波長光を吸収して光を着色するが、
このカラーフィルタは、その色に対応する波長域の光も
かなり高い吸収率で吸収するため、カラーフィルタによ
って光を着色する液晶表示装置では、表示装置に入射す
る光のうちの着色光となる波長帯域の光量に比べて、カ
ラーフィルタを通った着色光の光量がかなり減少する。
That is, the color filter absorbs light having a wavelength other than the wavelength range corresponding to the color and colors the light.
Since this color filter also absorbs light in the wavelength range corresponding to that color with a considerably high absorptivity, in a liquid crystal display device that colors light with the color filter, the wavelength that becomes colored light of the light that enters the display device. The amount of colored light passing through the color filter is considerably reduced as compared with the amount of light in the band. Since this color filter also absorbs light in the wavelength range corresponding to that color with a considerably high absorptivity, in a liquid crystal display device that colors light with the color filter, the wavelength that becomes colored light of the light that enters the display device. The amount of colored light passing through the color filter is considerably reduced as compared with the amount of light in the band.

【0099】この点、上記液晶表示装置は、カラーフィ
ルタを用いずに光を着色するものであるため、カラーフ
ィルタによる光吸収はなく、また位相差板40と液晶セ
ル10の液晶LCも、透過光の偏光状態を変えるだけで
ほとんど光を吸収しない。
In this respect, since the liquid crystal display device colors light without using a color filter, there is no light absorption by the color filter, and the retardation plate 40 and the liquid crystal LC of the liquid crystal cell 10 are also transmitted. It only changes the polarization state of light and absorbs almost no light.

【0100】このため、これらの複屈折効果により偏光
状態を変えられ、表面側偏光板31を透過して出射する
着色光の光量は、反射型表示の際の表面側偏光板31を
通って入射して上記半透過反射膜Mで反射された光のう
ちの前記着色光となる波長帯域の光の量、あるいは、反
射型表示の際の裏面側偏光板32を通って入射して前記
半透過反射膜Mを透過した光のうちの前記着色光となる
波長帯域の光の量とほとんど変わらず、したがって、高
輝度の着色光が得られるから、明るいカラー画像を表示
することができる。
Therefore, the polarization state is changed by these birefringence effects, and the amount of colored light that passes through and is emitted from the front-side polarizing plate 31 is incident through the front-side polarizing plate 31 in the reflective display. Then, of the light reflected by the semi-transmissive reflective film M, the amount of light in the wavelength band that becomes the colored light, or the semi-transmissive light incident through the back-side polarizing plate 32 in the case of reflective display. The amount of light in the wavelength band, which is the colored light, of the light transmitted through the reflective film M is almost the same, and therefore, colored light with high brightness is obtained, so that a bright color image can be displayed.

【0101】また、カラーフィルタによって光を着色す
る液晶表示装置では、その表示色がカラーフィルタの色
によって決まるため、1つの画素で複数の色を表示する
ことはできなかったが、この実施例の液晶表示装置によ
れば、液晶セル10の液晶層に印加する電圧の大きさに
応じて液晶分子の配向状態が変化し、それに応じて液晶
層の複屈折効果が変化するため、液晶セル10への印加
電圧を制御することによって前記着色光の色を変化さ
せ、1つの画素で複数の色を表示することができる。
Further, in the liquid crystal display device in which light is colored by the color filter, the display color is determined by the color of the color filter, so that one pixel cannot display a plurality of colors. According to the liquid crystal display device, the alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied to the liquid crystal layer of the liquid crystal cell 10, and the birefringence effect of the liquid crystal layer changes accordingly. It is possible to change the color of the colored light by controlling the applied voltage of, and display a plurality of colors with one pixel.

【0102】すなわち、この液晶表示装置においては、
位相差板40の複屈折効果は変化しないが、液晶セル1
0の液晶層の複屈折効果は、その両基板11,12の電極13,20間に印加される電圧に応じて液晶分子の配向状態が変化するのにともなって変化する。
That is, in this liquid crystal display device,
The birefringence effect of the retardation plate 40 does not change, but the liquid crystal cell 1
The birefringence effect of the 0 liquid crystal layer changes as the alignment state of the liquid crystal molecules changes according to the voltage applied between the electrodes 13 and 20 of both substrates 11 and 12.

【0103】なお、液晶セル10に液晶分子が基板1
1,12面に対してほぼ垂直に立上がり配向する電圧を印加すると、液晶層の複屈折効果が見掛上ほとんどなくなるが、そのときも、入射光は位相差板40の複屈折効果によって楕円偏光となる。 When a voltage that rises and orients substantially perpendicular to the 1st and 12th planes is applied, the birefringence effect of the liquid crystal layer apparently disappears, but even at that time, the incident light is elliptically polarized by the birefringence effect of the retardation plate 40. It becomes. The liquid crystal cell 10 has liquid crystal molecules on the substrate 1. The liquid crystal cells 10 has liquid crystal molecules on the substrate 1.
When a voltage that rises and is oriented almost perpendicularly to the 1st and 12th planes is applied, the birefringence effect of the liquid crystal layer virtually disappears, but even then, the incident light is elliptically polarized due to the birefringence effect of the retardation plate 40. Becomes When a voltage that rises and is oriented almost perpendicularly to the 1st and 12th planes is applied, the birefringence effect of the liquid crystal layer virtually disappears, but even then, the incident light is elliptically polarized due to the birefringence effect of the retardation plate 40 .Becomes

【0104】このため、液晶セル10への印加電圧を制御して、位相差板40と液晶セル10の液晶層とを通った光の偏光状態を変化させてやれば、表面側偏光板31
を透過して出射する着色光の色を変化させることができ、したがって、1つの画素で複数の色を表示することができる。 The color of the colored light that is transmitted through and emitted from the light can be changed, and therefore, a plurality of colors can be displayed by one pixel. Therefore, if the voltage applied to the liquid crystal cell 10 is controlled to change the polarization state of the light passing through the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10, the surface side polarizing plate 31 Therefore, if the voltage applied to the liquid crystal cell 10 is controlled to change the polarization state of the light passing through the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10, the surface side liquid crystal plate 31
It is possible to change the color of the colored light that passes through and is emitted, and therefore, one pixel can display a plurality of colors. It is possible to change the color of the colored light that passes through and is emitted, and therefore, one pixel can display a plurality of colors.

【0105】なお、この液晶表示装置の表示駆動は、基
本的には、一般に知られているアクティブマトリックス
型液晶表示装置(TFTを能動素子とするもの)の表示
駆動と同様に、液晶セル10の対向電極20に同期信号
に同期した波形の基準信号を供給し、各ゲートラインに
前記同期信号に同期させて順次ゲート信号を供給すると
ともに、それに同期させて各データラインに画像データ
に応じた電位のデータ信号を供給することによって行な
えばよく、前記データ信号の電位を画像データに応じて
制御すれば、各行の画素の選択期間に前記画像データに
応じた電位のデータ信号がTFT14を介して画素電極
13に供給され、このデータ信号に応じた電圧が画素電
極13と対向電極20との間に印加される。
The display drive of this liquid crystal display device is basically the same as the display drive of a generally known active matrix type liquid crystal display device (those using TFTs as active elements). A reference signal having a waveform synchronized with the synchronizing signal is supplied to the counter electrode 20, a gate signal is sequentially supplied to each gate line in synchronization with the synchronizing signal, and a potential corresponding to image data is supplied to each data line in synchronization with the reference signal. Of the data signal is controlled by controlling the potential of the data signal in accordance with the image data, the data signal of the potential corresponding to the image data is supplied to the pixel through the TFT 14 during the selection period of the pixel in each row. The voltage supplied to the electrode 13 and applied to the data signal is applied between the pixel electrode 13 and the counter electrode 20.

【0106】上記液晶表示装置の表示色について説明す
ると、例えば上述したように、液晶セル10が液晶分子
を両基板11,12間においてほぼ90°のツイスト角
でツイスト配向させたものであって、その両基板11,
12上における液晶分子の配向方向11a,12aと、
偏光板31,32の透過軸31a,32aと、位相差板
40の遅相軸40aとがそれぞれ図11に示した方向に
あり、かつ、液晶セル10のΔn・d(液晶LCの屈折
率異方性Δnと液晶層厚dとの積)の値が約980nm
(例えば、Δn=0.204,d=4.8μm)、位相差板40のリタデーションの値が約370nmである場合、外光を利用する反射型表示では、各画素の表示色が液晶セル10への印加電圧に応じて赤、青、緑、黒、白に変化し、また光源50からの光を利用する透過型表示では、各画素の表示色が液晶セル10への印加電圧に応じて赤,緑,青,白に変化する。 (For example, Δn = 0.204, d = 4.8 μm), when the retardation value of the retardation plate 40 is about 370 nm, in the reflection type display using external light, the display color of each pixel is the liquid crystal cell 10. In a transmissive display that changes to red, blue, green, black, and white according to the applied voltage to the light source 50 and uses the light from the light source 50, the display color of each pixel changes according to the applied voltage to the liquid crystal cell 10. It changes to red, green, blue, and white. The display color of the liquid crystal display device will be described. For example, as described above, the liquid crystal cell 10 is one in which liquid crystal molecules are twist-aligned between the substrates 11 and 12 at a twist angle of about 90 °. Both substrates 11, The display color of the liquid crystal display device will be described. For example, as described above, the liquid crystal cell 10 is one in which liquid crystal molecules are twist-aligned between the similarly 11 and 12 at a twist angle of about 90 ° . Both displaying 11,
Alignment directions 11a and 12a of liquid crystal molecules on 12; Alignment directions 11a and 12a of liquid crystal molecules on 12;
The transmission axes 31a and 32a of the polarizing plates 31 and 32 and the slow axis 40a of the retardation plate 40 are in the directions shown in FIG. 11, and Δn · d of the liquid crystal cell 10 (refractive index difference of the liquid crystal LC is different. The product of the anisotropic Δn and the liquid crystal layer thickness d) is about 980 nm. The transmission axes 31a and 32a of the polarizing plates 31 and 32 and the slow axis 40a of the retardation plate 40 are in the directions shown in FIG. 11, and Δn · d of the liquid crystal cell 10 (refractive index difference of the liquid) crystal LC is different. The product of the anisotropic Δn and the liquid crystal layer thickness d) is about 980 nm.
(For example, Δn = 0.204, d = 4.8 μm), and when the retardation value of the retardation plate 40 is about 370 nm, the display color of each pixel is the liquid crystal cell 10 in the reflection type display using external light. In a transmissive display that changes to red, blue, green, black, and white according to the applied voltage to the liquid crystal display device, and the light from the light source 50 is used, the display color of each pixel depends on the applied voltage to the liquid crystal cell 10. It changes to red, green, blue, and white. (For example, Δn = 0.204, d = 4.8 μm), and when the retardation value of the retardation plate 40 is about 370 nm, the display color of each pixel is the liquid crystal cell 10 in the reflection type display using external light. In a transmissive display that changes to red, blue, green, black, and white according to the applied voltage to the liquid crystal display device, and the light from the light source 50 is used, the display color of each pixel depends on the applied voltage to the liquid crystal cell 10. It changes to red, green, blue, and white.

【0107】図12および図13は、上記液晶表示装置
の反射型表示における表示色の変化を示しており、図1
2は印加電圧に対する出射光の色変化を示すCIE色度
図、図13は電圧−出射率特性図である。なお、ここで
は、液晶表示装置にその法線に対して30°の方向(方
位は任意でよい)から白色光を入射させ、液晶表示装置
の法線方向から出射光を観察した結果を示している。
12 and 13 show changes in display color in the reflective display of the above liquid crystal display device.
2 is a CIE chromaticity diagram showing a color change of emitted light with respect to an applied voltage, and FIG. 13 is a voltage-emission rate characteristic diagram. In addition, here, the result of observing the emitted light from the normal direction of the liquid crystal display device is shown by injecting white light into the liquid crystal display device from a direction of 30 ° with respect to the normal line (the azimuth may be arbitrary). There is. 2 is a CIE chromaticity diagram showing a color change of emitted light with respect to an applied voltage, and FIG. 13 is a voltage-emission rate characteristic diagram. In addition, here, the result of observing the emitted light from the normal direction of the liquid crystal display device is shown by injecting white light into the liquid crystal display device from a direction of 30 ° with respect to the normal line (the azimuth may be arbitrary). There is.

【0108】この反射型表示においては、液晶セル10
の電極13,20間に印加する電圧値を大きくしてゆくのにともなって、出射光の色が図12に示すように矢印方向に変化してゆき、その途中で出射光が、図13に示すように、光強度が高くかつ色純度もよい、赤、青、

緑、黒、白の色になる。 It becomes green, black, and white. なお、この場合の赤の出射光は、紫色を帯びた赤色光である。 The red emitted light in this case is purple-tinged red light. In this reflective display, the liquid crystal cell 10 In this reflective display, the liquid crystal cell 10
As the voltage value applied between the electrodes 13 and 20 of the output light is increased, the color of the emitted light changes in the direction of the arrow as shown in FIG. As shown, red, blue, with high light intensity and good color purity As the voltage value applied between the electrodes 13 and 20 of the output light is increased, the color of the emitted light changes in the direction of the arrow as shown in FIG. As shown, red, blue, with high light intensity and good color purity
It comes in green, black and white colors. The red emitted light in this case is purple-red light. It comes in green, black and white colors. The red emitted light in this case is purple-red light.

【0109】このように、上記液晶表示装置は、外光を利用する反射型表示の場合で1つの画素で前記赤、青、
緑、黒、白の色を表示することができるし、また隣接する複数の画素に異なる色を表示させることにより、前記赤、青、緑、黒、白のうちの複数の色による混色を表示させることもできる。 The colors of green, black, and white can be displayed, and by displaying different colors on a plurality of adjacent pixels, a mixed color of the plurality of colors of red, blue, green, black, and white can be displayed. You can also let it. As described above, in the liquid crystal display device, in the case of the reflection type display utilizing external light, the red, blue, and As described above, in the liquid crystal display device, in the case of the reflection type display utilizing external light, the red, blue, and
It is possible to display green, black, and white colors, and by displaying different colors on a plurality of adjacent pixels, a mixed color of a plurality of the red, blue, green, black, and white colors is displayed. You can also let it. It is possible to display green, black, and white colors, and by displaying different colors on a plurality of adjacent pixels, a mixed color of a plurality of the red, blue, green, black, and white colors is displayed. You can also let it.

【0110】また、図14および図15は、上記液晶表示装置の透過型表示における表示色の変化を示しており、図14は印加電圧に対する出射光の色変化を示すC
IE色度図、図15は電圧−出射率特性図である。 The IE chromaticity diagram and FIG. 15 are voltage-exit rate characteristic diagrams. なお、図14および図15も、液晶表示装置にその法線に対して30°の方向(方位は任意でよい)から白色光を入射させ、液晶表示装置の法線方向から出射光を観察した結果を示している。 In FIGS. 14 and 15, white light was incident on the liquid crystal display device from a direction of 30 ° with respect to the normal line (the orientation may be arbitrary), and the emitted light was observed from the normal direction of the liquid crystal display device. The result is shown. 14 and 15 show the change in display color in the transmissive display of the liquid crystal display device, and FIG. 14 shows the change in the color of the emitted light with respect to the applied voltage. 14 and 15 show the change in display color in the transmissive display of the liquid crystal display device, and FIG. 14 shows the change in the color of the emitted light with respect to the applied voltage.
The IE chromaticity diagram and FIG. 15 are voltage-emission rate characteristic diagrams. 14 and 15, white light was made incident on the liquid crystal display device from the direction of 30 ° with respect to the normal line (the azimuth may be arbitrary), and the emitted light was observed from the normal line direction of the liquid crystal display device. The results are shown. The IE chromaticity diagram and FIG. 15 are voltage-emission rate characteristic diagrams. 14 and 15, white light was made incident on the liquid crystal display device from the direction of 30 ° with respect to the normal line (the azimuth may be arbitrary) , and the emitted light was observed from the normal line direction of the liquid crystal display device. The results are shown.

【0111】この反射型表示においては、液晶セル10
の電極13,23間に印加する電圧値を大きくしてゆくのにともなって、出射光の色が図14に示すように矢印方向に変化してゆき、その途中で出射光が、図15に示すように、光強度が高くかつ色純度もよい、赤、緑、
青、白の色になる。
In this reflective display, the liquid crystal cell 10
As the voltage value applied between the electrodes 13 and 23 of the output light is increased, the color of the emitted light changes in the direction of the arrow as shown in FIG. As shown, red, green, with high light intensity and good color purity,
Blue and white colors.

【0112】このように、上記液晶表示装置は、光源5
0からの光を利用する反射型表示でも、1つの画素で前記赤、緑、青、白の色を表示することができるし、また隣接する複数の画素に異なる色を表示させることにより、前記赤、緑、青、白のうちの複数の色による混色を表示させることもできる。 Even in a reflective display using light from 0, the red, green, blue, and white colors can be displayed with one pixel, and by displaying different colors on a plurality of adjacent pixels, the above-mentioned It is also possible to display a mixture of multiple colors of red, green, blue, and white. As described above, the liquid crystal display device includes the light source 5 As described above, the liquid crystal display device includes the light source 5
Even in the reflective display using light from 0, one pixel can display the red, green, blue, and white colors, and by displaying different colors in a plurality of adjacent pixels, It is also possible to display a mixed color of a plurality of colors of red, green, blue, and white. Even in the reflective display using light from 0, one pixel can display the red, green, blue, and white colors, and by displaying different colors in a plurality of adjacent pixels, It is also possible to display a mixed color of a plurality of colors of red, green, blue, and white.

【0113】なお、この反射型表示における印加電圧に
対応した表示色および色数は上記透過型表示の場合とは
異なるため、反射型表示の際にも透過型表示の場合と同
様に液晶セル10を駆動すると、透過型表示の場合とは
異なる色のカラー画像が表示されるが、反射型表示の際
に液晶セル10の駆動条件(画像データに対応するデー
タ信号の電位等)を制御すれば、反射型表示において
も、透過型表示に近い色のカラー画像を表示することが
できる。
Since the display color and the number of colors corresponding to the applied voltage in the reflective display are different from those in the transmissive display, the liquid crystal cell 10 is also used in the reflective display as in the transmissive display. Is driven, a color image of a color different from that in the transmissive display is displayed. However, if the drive condition of the liquid crystal cell 10 (potential of a data signal corresponding to image data, etc.) is controlled in the reflective display. Even in the reflective display, it is possible to display a color image having a color close to that of the transmissive display.

【0114】ただし、上記液晶表示装置は、ほとんどの
場合は外光を利用する反射型表示装置として使用され、
外光の光量が少ない暗い場所で一時的に表示情報を見た
いときに光源50を点灯させて反射型表示装置として使
用されるため、反射型表示における表示画像の色の違い
はあまり問題にはならないから、液晶セル10の駆動条
件を透過型表示を基準として設計し、反射型表示も透過
型表示と同じ駆動条件で液晶セル10の駆動して行なっ
てもよい。
However, the above liquid crystal display device is used as a reflection type display device utilizing external light in most cases,
Since it is used as a reflection type display device by turning on the light source 50 when it is desired to see display information temporarily in a dark place where the amount of external light is small, the difference in the color of the display image in the reflection type display is not so problematic. Therefore, the driving condition of the liquid crystal cell 10 may be designed based on the transmissive display, and the liquid crystal cell 10 may be driven under the same driving condition as the transmissive display in the reflective display. Since it is used as a reflection type display device by turning on the light source 50 when it is desired to see display information temporarily in a dark place where the amount of external light is small, the difference in the color of the display image in the reflection type display is not so problematic. Therefore, the driving condition of the liquid crystal cell 10 may be designed based on the transmissive display, and the liquid crystal cell 10 may be driven under the same driving condition as the transmissive display in the reflective display. ..

【0115】また、上記実施例の液晶表示装置は、反射
型表示において赤、青、緑、黒、白の色を表示し、透過
型表示において赤、緑、青、白の色を表示するものであ
るが、この液晶表示装置の表示色は、印加電圧と、液晶
セル10の両基板11,12上における液晶分子の配向
方向11a,12aおよび液晶分子のツイスト角と、偏
光板31,32の透過軸31a,32aの方向および位
相差板40の遅相軸40aの方向とによって決まるか
ら、これらの条件を選択すれば、前記表示色を任意に選
ぶことができる。
The liquid crystal display device of the above embodiment displays red, blue, green, black, and white colors in the reflective display and displays red, green, blue, and white colors in the transmissive display. However, the display color of this liquid crystal display device depends on the applied voltage, the alignment directions 11a and 12a of the liquid crystal molecules on both substrates 11 and 12 of the liquid crystal cell 10, the twist angle of the liquid crystal molecules, and the polarization plates 31 and 32. Since it depends on the directions of the transmission axes 31a and 32a and the direction of the slow axis 40a of the retardation plate 40, the display color can be arbitrarily selected by selecting these conditions.

【0116】そして、上記液晶表示装置は、液晶セル1
0の裏面側基板11の内面に半透過反射膜Mを設けるこ
とにより、外光を利用する反射型表示時には、表面側偏
光板31に偏光作用と検光作用との両方の作用をもたせ
て、裏面側偏光板32は用いずに表示するものであるた
め、反射型表示を、裏面側偏光板32および液晶セル1
0の裏面側基板11によって出射光量をロスすることな
く行なうことができ、したがって、外光を利用する反射
型表示の際の偏光板および液晶セルの基板での光吸収に
よる光量ロスを少なくし、反射型表示での表示を十分明
るくすることができる。
The liquid crystal display device has the liquid crystal cell 1
By providing the semi-transmissive reflection film M on the inner surface of the back surface side substrate 11 of 0, the front surface side polarizing plate 31 is caused to have both a polarization effect and an analysis effect at the time of a reflective display utilizing external light. Since the display is performed without using the back side polarizing plate 32, the reflective display is used for the back side polarizing plate 32 and the liquid crystal cell 1. By providing the semi-transmissive reflection film M on the inner surface of the back surface side substrate 11 of 0, the front surface side polarizing plate 31 is caused to have both a polarization effect and an analysis effect at the time of a reflective display utilizing external light. Since the display is performed without using the back side polarizing plate 32, the reflective display is used for the back side polarizing plate 32 and the liquid crystal cell 1.
With the back side substrate 11 of 0, the amount of emitted light can be performed without loss, and therefore, the loss of light amount due to light absorption in the polarizing plate and the substrate of the liquid crystal cell at the time of reflection type display utilizing external light can be reduced, The display in the reflective display can be made sufficiently bright. With the back side substrate 11 of 0, the amount of emitted light can be performed without loss, and therefore, the loss of light amount due to light absorption in the polarizing plate and the substrate of the liquid crystal cell at the time of reflection type display utilizing external light can be reduced, The display in the reflective display can be made sufficiently bright.

【0117】なお、上記液晶表示装置においては、光
が、位相差板40と液晶セル10の液晶層も通るが、こ
の位相差板40と液晶層は前述したようにほとんど光を
吸収しないため、これらによる光量ロスはほとんどな
い。
In the above liquid crystal display device, light also passes through the phase difference plate 40 and the liquid crystal layer of the liquid crystal cell 10, but since the phase difference plate 40 and the liquid crystal layer absorb little light as described above, There is almost no light loss due to these.

【0118】また、上記液晶表示装置においては、液晶
セル10の両基板11,12の内面にそれぞれ設けられ
ている画素電極13と対向電極20とのうち、裏面側基
板11の内面に設けられている画素電極13に前記半透
過反射膜Mを兼ねさせているため、この画素電極13と
半透過反射膜Mとを同時に形成できるから、液晶セル1
0の構造を簡素化するとともにその製造を容易にすることができる。 The structure of 0 can be simplified and its production can be facilitated. In the liquid crystal display device, the pixel electrode 13 and the counter electrode 20 provided on the inner surfaces of the substrates 11 and 12 of the liquid crystal cell 10 are provided on the inner surface of the back side substrate 11. Since the existing pixel electrode 13 also serves as the semi-transmissive reflective film M, the pixel electrode 13 and the semi-transmissive reflective film M can be simultaneously formed. In the liquid crystal display device, the pixel electrode 13 and the counter electrode 20 provided on the inner surfaces of the similarly 11 and 12 of the liquid crystal cell 10 are provided on the inner surface of the back side substrate 11. Since the existing pixel electrode 13 also serves as the semi-transmissive reflective film M, the pixel electrode 13 and the semi-transmissive reflective film M can be simultaneously formed.
The structure of 0 can be simplified and its manufacture can be facilitated. The structure of 0 can be simplified and its manufacture can be facilitated.

【0119】さらに、上記液晶表示装置においは、液晶
セル10の裏面側基板11の内面に半透過反射膜Mを設
けているため、この半透過反射膜Mを拡散反射膜とする
ことは難しいが、上述したように、液晶セル10の表面
側に配置した表面側偏光板31の一面が光散乱面Aとな
っていれば、液晶表示装置への入射光および出射光を前
記光散乱面Aで散乱させることができるため、前記半透
過反射膜Mの反射面がほぼ鏡面であっても、表示観察者
の顔やその背景等の外部像が前記反射面に写って見える
ことはない。
Further, in the above liquid crystal display device, since the semi-transmissive reflective film M is provided on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10, it is difficult to use this semi-transmissive reflective film M as a diffuse reflective film. As described above, if one surface of the front-side polarizing plate 31 arranged on the front surface side of the liquid crystal cell 10 is the light-scattering surface A, the light incident on and the light emitted from the liquid crystal display device can be detected by the light-scattering surface A. Since the light can be scattered, even if the reflective surface of the semi-transmissive reflective film M is almost a mirror surface, an external image such as the face of the display observer or its background is not visible on the reflective surface.

【0120】すなわち、上記液晶表示装置は、光の透過
率が非常に高いため、半透過反射膜Mの反射面が鏡面で
あると、表示観察者の顔やその背景等の外部像が半透過
反射膜Mの反射面に写り、その像が表示画像と重なって
見えるが、液晶表示装置の表面にある偏光板31の一面
が光散乱面Aであれば、外部像に対応する光も前記光散
乱面Aで散乱されるから、前記外部像の写り込みは生じ
ない。
That is, since the liquid crystal display device has a very high light transmittance, if the reflection surface of the semi-transmissive reflective film M is a mirror surface, an external image such as the face of the display observer or its background is semi-transmissive. Although the image appears on the reflection surface of the reflection film M and overlaps with the display image, if one surface of the polarizing plate 31 on the surface of the liquid crystal display device is the light scattering surface A, the light corresponding to the external image is also the light. Since the light is scattered on the scattering surface A, the external image is not reflected.

【0121】そして、上記半透過反射膜Mの反射面がほ
ぼ鏡面であれば、反射型表示に際して、液晶セル10の
液晶層により偏光状態を変えられた光を半透過反射膜M
によって散乱させてしまうことはなく、また透過型表示
に際しても、裏面側偏光板32を通って液晶セル10に
その裏面側から入射する光を半透過反射膜Mによって散
乱させてしまうことはない。
If the reflective surface of the semi-transmissive reflective film M is almost a mirror surface, the light whose polarization state is changed by the liquid crystal layer of the liquid crystal cell 10 is used for the transmissive reflective film M in the reflective display.
The light is not scattered by the semi-transmissive reflective film M, and the light that enters the liquid crystal cell 10 from the rear surface side through the rear surface side polarizing plate 32 is not scattered by the semi-transmissive reflective film M also in the transmissive display. The light is not scattered by the semi-transmissive reflective film M, and the light that enters the liquid crystal cell 10 from the rear surface side through the rear surface side polarizing plate 32 is not scattered by the semi-transmissive reflective film M also in the transmissive display.

【0122】また、この場合、前記表面側偏光板31の
表面が光散乱面Aであれば、反射型表示の際に液晶表示
装置にその表面側から入射する光が散乱されてから表面
側偏光板31の偏光作用により直線偏光になるし、また
反射型表示においても透過型表示においても、液晶セル
10の液晶層を通った光が前記表面側偏光板31の検光
作用により画像光となってから散乱されるため、入射光
が前記表面側偏光板31を通って画像光となるまでは光
が散乱されることはなく、したがって、品質の良い画像
を表示することができる。
In this case, if the surface of the front-side polarizing plate 31 is the light-scattering surface A, the light incident on the liquid-crystal display device from the front side is scattered after the reflection-type display and then the front-side polarization is performed. In the reflective display and the transmissive display, the light that has passed through the liquid crystal layer of the liquid crystal cell 10 becomes the image light due to the analyzing function of the front-side polarizing plate 31 in the reflective display and the transmissive display. Since the light is scattered after it is incident, the light is not scattered until the incident light passes through the front-side polarizing plate 31 to become image light, so that a high-quality image can be displayed.

【0123】なお、上記光散乱面Aの散乱効果は、上述
したヘイズ値によって決まり、このヘイズ値が25%以
上であると、表面側偏光板31の検光作用によって画像
光となった光も大きく散乱されて表示画像が不鮮明にな
り、またヘイズ値が6%以下であると上記外部像の写り
込みを生じるが、光散乱面Aのヘイズ値が9〜14%の
範囲であれば、鮮明な表示画像を得るとともに外部像の
写り込みもなくすことができる。
The scattering effect of the light-scattering surface A is determined by the haze value described above. If the haze value is 25% or more, the light that has become image light due to the analyzing action of the front-side polarizing plate 31 is also included. If the haze value of the light scattering surface A is in the range of 9 to 14%, it is clear if the external image is reflected when the haze value is 6% or less. It is possible to obtain a clear display image and to prevent the reflection of an external image.

【0124】さらに、上記液晶表示装置においては、液
晶セル10の表面側基板12の内面に、この液晶セル1
0の裏面側基板11に配設した各画素電極13間の間隙
に対応するブラックマスク22を設けているため、各画
素間のコントラストを鮮明にして高品位の画像を表示す
ることができる。
Further, in the above liquid crystal display device, the liquid crystal cell 1 is formed on the inner surface of the front substrate 12 of the liquid crystal cell 10.
Since the black mask 22 corresponding to the gap between the pixel electrodes 13 arranged on the back side substrate 11 of 0 is provided, the contrast between the pixels can be made clear and a high-quality image can be displayed.

【0125】なお、上述した第1の実施例では、液晶セ
ル10として、その裏面側基板11の内面に画素電極1
3とMIM14とを配設し、表面側基板12の内面に対
向電極20を設けたものを用いたが、この液晶セル10
は、表面側基板12の内面に画素電極13とMIM14
とを配設し、裏面側基板11の内面に対向電極20を設
けたものであってもよい。
In the first embodiment described above, the pixel electrode 1 is formed on the inner surface of the rear substrate 11 as the liquid crystal cell 10.
3 and MIM 14 are provided, and the counter electrode 20 is provided on the inner surface of the front substrate 12, the liquid crystal cell 10 is used.
Is the pixel electrode 13 and the MIM 14 on the inner surface of the front substrate 12.
And the counter electrode 20 may be provided on the inner surface of the back-side substrate 11. And the counter electrode 20 may be provided on the inner surface of the back-side substrate 11.

【0126】図16は、本発明の第2の実施例を示す液晶表示装置の一部分の断面図であり、この実施例は、液晶セル10を、その表面側基板12の内面に画素電極1
3とMIM14とを配設し、裏面側基板11の内面に対向電極20を設けた構成とするとともに、裏面側基板1
1の内面に設けた前記対向電極20に半透過反射膜Mを兼ねさせたものである。
FIG. 16 is a sectional view of a part of a liquid crystal display device showing a second embodiment of the present invention. In this embodiment, a liquid crystal cell 10 is provided on the inner surface of a front side substrate 12 thereof with a pixel electrode 1 formed thereon.

3 and the MIM 14, and the counter electrode 20 is provided on the inner surface of the back surface side substrate 11, and the back surface side substrate 1 3 and the MIM 14, and the counter electrode 20 is provided on the inner surface of the back surface side substrate 11, and the back surface side substrate 1
The counter electrode 20 provided on the inner surface of 1 also serves as the semi-transmissive reflective film M. The counter electrode 20 provided on the inner surface of 1 also serves as the semi-transmissive reflective film M.

【0127】なお、この実施例の液晶表示装置は、上述した第1の実施例において液晶セル10の裏面側基板1
1に設けた画素電極13とMIM14および配向膜19

を表面側基板12に設けるとともに前記画素電極13を透明電極とし、第1の実施例において液晶セル10の表面側基板12に設けた対向電極20と配向膜21とブラックマスク22とを裏面側基板11に設けるとともに前記対向電極20に半透過反射膜Mを兼ねさせたものであって、その他の構成は前記第1の実施例と同じであるから、構成の説明は図に同符号を付して省略する。 Is provided on the front surface side substrate 12, the pixel electrode 13 is used as a transparent electrode, and the counter electrode 20, the alignment film 21, and the black mask 22 provided on the front surface side substrate 12 of the liquid crystal cell 10 in the first embodiment are provided on the back surface side substrate. Since the counter electrode 20 is provided in No. 11 and the counter electrode 20 also serves as the semitransmissive reflective film M, and the other configurations are the same as those in the first embodiment, the description of the configuration is designated by the same reference numerals in the drawings. Omitted. The liquid crystal display device of this embodiment is similar to the first embodiment described above except that the rear substrate 1 of the liquid crystal cell 10 is used. The liquid crystal display device of this embodiment is similar to the first embodiment described above except that the rear substrate 1 of the liquid crystal cell 10 is used.
1, the pixel electrode 13, the MIM 14, and the alignment film 19 1, the pixel electrode 13, the MIM 14, and the alignment film 19
Is provided on the front side substrate 12, and the pixel electrode 13 is a transparent electrode, and the counter electrode 20, the alignment film 21, and the black mask 22 provided on the front side substrate 12 of the liquid crystal cell 10 in the first embodiment are provided on the back side substrate. 11, the counter electrode 20 also serves as the semi-transmissive reflective film M, and the other configurations are the same as those of the first embodiment, and therefore the description of the configurations is given the same reference numerals in the drawings. And omit. Is provided on the front side substrate 12, and the pixel electrode 13 is a transparent electrode, and the counter electrode 20, the alignment film 21, and the black mask 22 provided on the front side substrate 12 of the liquid crystal cell 10 in the first embodiment are provided on the back side substrate. 11, the counter electrode 20 also serves as the semi-transmissive reflective film M, and the other configurations are the same as those of the first embodiment, and therefore the description of the configurations is given The same reference numerals in the drawings. And omit.

【0128】また、この実施例の液晶表示装置も、液晶セル10の裏面側基板11の内面に半透過反射膜Mを設けることにより、外光を利用する反射型表示の際には、
液晶セル10の表面側に配置した表面側偏光板31に偏光作用と検光作用との両方の作用をもたせて、液晶セル10の裏面側に配置した裏面側偏光板32は用いずに表示するとともに、カラーフィルタを用いずに、位相差板40および液晶セル10の液晶層の複屈折効果と偏光板(反射型表示では表面側31、透過型表示では裏面側偏光板32と表面側偏光板31)の偏光および検光作用とを利用して光を着色するものであって、得られる種々の効果も第1の実施例と同じであるから、その説明も省略する。 The front-side polarizing plate 31 arranged on the front surface side of the liquid crystal cell 10 is provided with both a polarization effect and a light detection effect, and the back-side polarizing plate 32 arranged on the back surface side of the liquid crystal cell 10 is not used for display. At the same time, without using a color filter, the birefringence effect of the liquid crystal layer of the retardation plate 40 and the liquid crystal cell 10 and the polarizing plate (front side 31 in the reflective display, the back surface side polarizing plate 32 and the front surface side polarizing plate in the transmission type display) Since the light is colored by utilizing the polarization and the light detection action of 31) and the various effects obtained are the same as those in the first embodiment, the description thereof will be omitted. Further, also in the liquid crystal display device of this embodiment, by providing the semi-transmissive reflective film M on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10, in the case of the reflective display utilizing external light, Further, also in the liquid crystal display device of this embodiment, by providing the semi-transmissive reflective film M on the inner surface of the back surface side substrate 11 of the liquid crystal cell 10, in the case of the reflective display utilizing external light ,,
The front-side polarizing plate 31 arranged on the front surface side of the liquid crystal cell 10 is caused to have both the polarizing action and the analyzing action, and the rear-side polarizing plate 32 arranged on the rear face side of the liquid crystal cell 10 is used for display. At the same time, without using a color filter, the birefringence effect of the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10 and the polarizing plate (the front side 31 in the reflective display, the back side polarizing plate 32 and the front side polarizing plate in the transmissive display). Since the light is colored by utilizing the polarization and the analyzing action of 31) and various effects obtained are the same as those in the first embodiment, the description thereof will be omitted. The front-side polarizing plate 31 arranged on the front surface side of the liquid crystal cell 10 is caused to have both the polarizing action and the analyzing action, and the rear-side polarizing plate 32 arranged on the rear face side of the liquid crystal cell 10 is used for display. At the same time, without using a color filter, the birefringence effect of the retardation plate 40 and the liquid crystal layer of the liquid crystal cell 10 and the polarizing plate (the front side 31 in the reflective display) , the back side polarizing plate 32 and the front side liquid crystal plate in the transmissive display). Since the light is colored by utilizing the polarization and the analyzing action of 31) and various effects obtained are the same as those in the first embodiment, the description thereof will be omitted.

【0129】なお、上記第1および第2の実施例におい
ては、液晶セル10の両基板11,12のうち対向電極
20を設けた側の基板(第1の実施例では表面側基板1
2、第2の実施例では裏面側基板11)にブラックマス
ク22を設けているが、このブラックマスク22は、画
素電極13およびMIM14を配設した基板の内面に設
けてもよい。ただし、このブラックマスク22は必ずし
も必要ではない。
In the first and second embodiments described above, one of the substrates 11 and 12 of the liquid crystal cell 10 on which the counter electrode 20 is provided (in the first embodiment, the front-side substrate 1).
2. In the second embodiment, the backside substrate 11) is provided with the black mask 22, but the black mask 22 may be provided on the inner surface of the substrate on which the pixel electrodes 13 and the MIM 14 are provided. However, the black mask 22 is not always necessary. 2. In the second embodiment, the backside substrate 11) is provided with the black mask 22, but the black mask 22 may be provided on the inner surface of the substrate on which the pixel electrodes 13 and the MIM 14 are provided. However, the black mask 22 is not always necessary.

【0130】また、上記第1および第2の実施例の液晶
表示装置では、偏光板30と液晶セル10との間に位相
差板40を配置しているが、この位相差板40はなくて
もよく、その場合でも、前記表面側偏光板31を、その
透過軸を液晶セル10の表面側基板12上における液晶
分子配向方向12aに対して斜めにずらして設け、裏面
側偏光板32を、その透過軸を液晶セル10の裏面側基
板11上における液晶分子配向方向11aに対して斜め
にずらして設ければ、反射型表示の際も透過型表示の際
も、液晶セル10の液晶層の複屈折効果と偏光板の偏光
および検光作用とを利用して光を着色することができ
る。
Further, in the liquid crystal display devices of the first and second embodiments, the retardation plate 40 is arranged between the polarizing plate 30 and the liquid crystal cell 10, but the retardation plate 40 is not necessary. Even in that case, the front-side polarizing plate 31 is provided with its transmission axis obliquely shifted with respect to the liquid crystal molecule alignment direction 12a on the front-side substrate 12 of the liquid crystal cell 10, and the back-side polarizing plate 32 is provided. If the transmission axis is provided so as to be slanted with respect to the liquid crystal molecule alignment direction 11a on the back surface side substrate 11 of the liquid crystal cell 10, the liquid crystal layer of the liquid crystal cell 10 can be used in both reflective display and transmissive display. Light can be colored by utilizing the effect of birefringence and the polarization and analysis of the polarizing plate.

【0131】すなわち、反射型表示の場合、表面側偏光
板31の透過軸が液晶セル10の表面側基板12上にお
ける液晶分子配向方向12aに対して斜めにずれていれ
ば、表面側偏光板31を通って入射した直線偏光が、液
晶セル10を通る過程で液晶層の複屈折効果により波長
ごとに偏光状態が異なる楕円偏光となるとともに、半透
過反射膜Mで反射された光が再び液晶層を通る過程でさ
らに偏光状態を変えられて前記表面側偏光板31に入射
し、この偏光板31を透過する偏光成分の光が着色光と
なって液晶表示装置の表面に出射する。
That is, in the case of the reflection type display, if the transmission axis of the front surface side polarizing plate 31 is deviated obliquely with respect to the liquid crystal molecule alignment direction 12a on the front surface side substrate 12 of the liquid crystal cell 10, the front surface side polarizing plate 31. The linearly polarized light that has entered through the liquid crystal cell 10 becomes elliptically polarized light having a different polarization state for each wavelength due to the birefringence effect of the liquid crystal layer in the process of passing through the liquid crystal cell 10, and the light reflected by the semi-transmissive reflection film M is again reflected in the liquid crystal layer. In the process of passing through, the polarization state is further changed to enter the front surface side polarizing plate 31, and the light of the polarization component transmitted through the polarizing plate 31 becomes colored light and is emitted to the surface of the liquid crystal display device.

【0132】また、透過型表示の場合、裏面側偏光板3
2の透過軸が液晶セル10の裏面側基板11上における
液晶分子配向方向11aに対して斜めにずれていれば、
裏面側偏光板32を通って液晶セル10に入射した直線
偏光のうち、半透過反射膜Mを透過した光が、液晶層を
通る過程でその複屈折効果により波長ごとに偏光状態が
異なる楕円偏光となって表面側偏光板31に入射し、こ
の偏光板31を透過する偏光成分の光が着色光となって
液晶表示装置の表面に出射する。
In the case of a transmissive display, the back surface side polarizing plate 3
If the transmission axis of 2 is obliquely displaced with respect to the liquid crystal molecule alignment direction 11a on the back surface side substrate 11 of the liquid crystal cell 10, If the transmission axis of 2 is obliquely displaced with respect to the liquid crystal molecule alignment direction 11a on the back surface side substrate 11 of the liquid crystal cell 10,
Of the linearly polarized light that has entered the liquid crystal cell 10 through the rear surface side polarizing plate 32, the light that has transmitted through the semi-transmissive reflective film M has an elliptically polarized light that has a different polarization state for each wavelength due to its birefringence effect in the process of passing through the liquid crystal layer. Then, the light of the polarization component that enters the front surface side polarizing plate 31 and is transmitted through the polarizing plate 31 becomes colored light and is emitted to the surface of the liquid crystal display device. Of the linearly polarized light that has entered the liquid crystal cell 10 through the rear surface side polarizing plate 32, the light that has transmitted through the semi-transmissive reflective film M has an elliptically polarized light that has a different polarization state for each wavelength due To its birefringence effect in the process of passing through the liquid crystal layer. Then, the light of the polarization component that enters the front surface side grating plate 31 and is transmitted through the waveguide plate 31 becomes colored light and is emitted to the surface of the liquid crystal display device.

【0133】そして、この液晶表示装置においても、カ
ラーフィルタを透過させる場合に比べて透過光量のロス
を大幅に低減できるから、高輝度の着色光を得ることが
できるし、また、液晶セル10の液晶層に印加する電圧
の大きさに応じて液晶分子の配向状態が変化し、それに
応じて液晶層の複屈折効果が変化するため、液晶セル1
0への印加電圧を制御することによって前記着色光の色を変化させ、1つの画素で複数の色を表示することができる。 By controlling the voltage applied to 0, the color of the colored light can be changed, and a plurality of colors can be displayed by one pixel. Also in this liquid crystal display device, the loss of the amount of transmitted light can be greatly reduced as compared with the case where light is transmitted through the color filter, so that high-intensity colored light can be obtained, and the liquid crystal cell 10 can be obtained. The alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied to the liquid crystal layer, and the birefringence effect of the liquid crystal layer changes accordingly. Also in this liquid crystal display device, the loss of the amount of transmitted light can be greatly reduced as compared with the case where light is transmitted through the color filter, so that high-intensity colored light can be obtained, and the liquid crystal cell 10 can be obtained. The alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied to the liquid crystal layer, and the birefringence effect of the liquid crystal layer changes accordingly.
By controlling the voltage applied to 0, the color of the colored light can be changed and one pixel can display a plurality of colors. By controlling the voltage applied to 0, the color of the colored light can be changed and one pixel can display a plurality of colors.

【0134】ただし、上述した第1および第2の実施例
のように液晶セル10と表面側偏光板31との間に位相
差板40を配置すれば、反射型表示の際も透過型表示の
際も、入射光が位相差板40の複屈折効果と液晶セル1
0の液晶層の複屈折効果とを受けて偏光状態を大きく変えるため、波長ごとの偏光状態が大きく異なる楕円偏光を表面側偏光板31に入射させて鮮明な色の着色光を得ることができるし、また、液晶セル10に液晶分子が基板面に対してほぼ垂直に立上がり配向する電圧を印加したとき、つまり液晶層の複屈折効果が見掛上ほとんどなくなったときでも、位相差板40の複屈折効果によって入射光を楕円偏光とし、この楕円偏光を表面側偏光板3 Since the polarization state is greatly changed in response to the birefringence effect of the liquid crystal layer of 0, elliptically polarized light having a significantly different polarization state for each wavelength is incident on the surface side polarizing plate 31 to obtain clear colored light. Further, even when a voltage is applied to the liquid crystal cell 10 so that the liquid crystal molecules rise and align substantially perpendicular to the substrate surface, that is, when the birefringence effect of the liquid crystal layer apparently disappears, the retardation plate 40 The incident light is elliptically polarized by the birefringence effect, and this elliptically polarized light is used as the surface side polarizing plate 3.
1に入射させて着色光を得ることができるから、前記位相差板40を設けるのが望ましい。 It is desirable to provide the retardation plate 40 because it is possible to obtain colored light by incidenting it on 1. なお、この位相差板は2枚以上重ねて設けてもよい。 It should be noted that two or more retardation plates may be provided on top of each other. However, if the retardation plate 40 is disposed between the liquid crystal cell 10 and the front-side polarizing plate 31 as in the above-described first and second embodiments, a transmissive display can be achieved even in the reflective display. At this time, the incident light causes the birefringence effect of the retardation plate 40 and the liquid crystal cell 1. However, if the retardation plate 40 is disposed between the liquid crystal cell 10 and the front-side polarizing plate 31 as in the above-described first and second embodiments, a transmissive display can be achieved even in the reflective display. At this time, the incident light causes the birefringence effect of the retardation plate 40 and the liquid crystal cell 1.
Since the polarization state is greatly changed in response to the birefringence effect of the liquid crystal layer of 0, elliptically polarized light having a different polarization state for each wavelength can be incident on the front-side polarizing plate 31 to obtain a colored light of a clear color. In addition, even when a voltage is applied to the liquid crystal cell 10 so that the liquid crystal molecules rise and are aligned almost perpendicularly to the substrate surface, that is, even when the birefringence effect of the liquid crystal layer is virtually eliminated, the phase difference plate 40 The incident light is made into elliptically polarized light by the birefringence effect, and this elliptically polarized light is made into the surface side polarizing plate 3 Since the polarization state is greatly changed in response to the birefringence effect of the liquid crystal layer of 0, elliptically polarized light having a different polarization state for each wavelength can be incident on the front-side polarizing plate 31 to obtain a colored light of a clear color. In addition, even when a voltage is applied to the liquid crystal cell 10 so that the liquid crystal molecules rise and are aligned almost polarizedly to the substrate surface, that is, even when the birefringence effect of the liquid crystal layer is virtually eliminated, the phase difference plate 40 The incident light is made into elliptically polarized light by the birefringence effect, and this elliptically polarized light is made into the surface side polarizing plate 3
It is desirable to provide the retardation plate 40 because it is possible to obtain colored light by making it enter 1. In addition, you may provide this phase difference plate in piles of 2 or more sheets. It is desirable to provide the retardation plate 40 because it is possible to obtain colored light by making it enter 1. In addition, you may provide this phase difference plate in piles of 2 or more sheets.

【0135】また、上記実施例では、液晶セル10として、MIM14を能動素子とするアクティブマトリックス型セルを用いたが、この液晶セルは、薄膜ダイオード等の2端子の非線形抵抗素子を能動素子とするアクティブマトリックス型セルであってもよく、また液晶分子のツイスト角も90°に限らず、例えば180〜270°
としてもよいし、さらにこの液晶セル10は、液晶分子をホモジニアス配向、ホメオトロピック配向、ハイブリッド配向等の配向状態に配向させたものでもよい。 Further, the liquid crystal cell 10 may have liquid crystal molecules oriented in an orientation state such as homogenous orientation, homeotropic orientation, or hybrid orientation. In the above embodiment, the active matrix type cell having the MIM 14 as an active element is used as the liquid crystal cell 10, but this liquid crystal cell uses a two-terminal nonlinear resistance element such as a thin film diode as an active element. It may be an active matrix type cell, and the twist angle of liquid crystal molecules is not limited to 90 °, but may be, for example, 180 to 270 °. In the above embodiment, the active matrix type cell having the MIM 14 as an active element is used as the liquid crystal cell 10, but this liquid crystal cell uses a two-terminal nonlinear resistance element such as a thin film diode as an active element It may be an active matrix type cell, and the twist angle of liquid crystal molecules is not limited to 90 °, but may be, for example, 180 to 270 °.
Further, the liquid crystal cell 10 may be one in which liquid crystal molecules are aligned in an alignment state such as homogeneous alignment, homeotropic alignment, hybrid alignment or the like. Further, the liquid crystal cells 10 may be one in which liquid crystal molecules are aligned in an alignment state such as homogeneous alignment, homeotropic alignment, hybrid alignment or the like.

【0136】 [0136]

【発明の効果】本発明の液晶表示装置は、反射型表示の
際には、液晶セルの液晶層の複屈折効果と第1の偏光板
の偏光および検光作用とを利用して光を着色し、透過型
表示の際には、前記液晶セルの液晶層の複屈折効果と第
2の偏光板の偏光作用および第1の偏光板の検光作用と
を利用して光を着色するものであり、この液晶表示装置
は、カラーフィルタを用いずに光を着色するものである
から、カラーフィルタを透過させる場合に比べて透過光
量のロスを大幅に低減して高輝度の着色光を得ることが
でき、したがって、明るいカラー画像を表示することが
できる。
According to the liquid crystal display device of the present invention, in reflection type display, light is colored by utilizing the birefringence effect of the liquid crystal layer of the liquid crystal cell and the polarization and analysis function of the first polarizing plate. However, in the transmissive display, light is colored by utilizing the birefringence effect of the liquid crystal layer of the liquid crystal cell, the polarization effect of the second polarizing plate and the light analyzing effect of the first polarizing plate. Since this liquid crystal display device colors light without using a color filter, it is possible to obtain a highly bright colored light by significantly reducing the loss of the amount of transmitted light as compared with the case of transmitting the color filter. Therefore, a bright color image can be displayed.

【0137】しかも、この液晶表示装置においては、液
晶セルの液晶層に印加する電圧の大きさに応じて液晶分
子の配向状態が変化し、それに応じて液晶層の複屈折効
果が変化するため、液晶セルへの印加電圧を制御するこ
とによって前記着色光の色を変化させ、1つの画素で複
数の色を表示することができる。
Moreover, in this liquid crystal display device, the alignment state of the liquid crystal molecules changes according to the magnitude of the voltage applied to the liquid crystal layer of the liquid crystal cell, and the birefringence effect of the liquid crystal layer changes accordingly. The color of the colored light can be changed by controlling the voltage applied to the liquid crystal cell, and one pixel can display a plurality of colors.

【0138】また、この液晶表示装置は、液晶セルの裏
面側基板の内面に半透過反射膜を設けることにより、外
光を利用する反射型表示の際には、液晶セルの表面側に
配置した第1の偏光板に入射光を直線偏光とする偏光作
用と液晶セルの液晶層を通った光を画像光とする検光作
用との両方の作用をもたせて、液晶セルの裏面側に配置
した第2の偏光板は用いずに表示するものであるから、
反射型表示を、液晶セルの裏面側に配置した第2の偏光板および前記液晶セルの裏面側基板によって出射光量をロスすることなく行なうことができ、したがって、外光を利用する反射型表示の際の偏光板および液晶セルの基板での光吸収による光量ロスを少なくし、反射型表示での表示を十分明るくすることができる。 The reflective display can be performed without loss of the amount of emitted light by the second polarizing plate arranged on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell. Therefore, the reflective display using external light can be performed. It is possible to reduce the loss of light amount due to light absorption by the polarizing plate and the substrate of the liquid crystal cell, and to sufficiently brighten the display in the reflective display. Further, in this liquid crystal display device, a semi-transmissive reflective film is provided on the inner surface of the substrate on the rear surface side of the liquid crystal cell, so that it is arranged on the front surface side of the liquid crystal cell in the case of reflective display utilizing external light. The first polarizing plate is provided on the back surface side of the liquid crystal cell so as to have both the polarizing effect of making the incident light linearly polarized light and the analyzing effect of making the light passing through the liquid crystal layer of the liquid crystal cell the image light. Since the display is performed without using the second polarizing plate, Further, in this liquid crystal display device, a semi-transmissive reflective film is provided on the inner surface of the substrate on the rear surface side of the liquid crystal cell, so that it is arranged on the front surface side of the liquid crystal cell In the case of reflective display utilizing external light. The first liquid crystal plate is provided on the back surface side of the liquid crystal cell so as to have both the waveguide effect of making the incident light linearly polarized light and the analyzing effect of making the light Since the display is performed without using the second liquid crystal plate, passing through the liquid crystal layer of the liquid crystal cell the image light.
Reflective display can be performed by the second polarizing plate disposed on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell without loss of the emitted light amount. At this time, it is possible to reduce the loss of light amount due to the absorption of light in the polarizing plate and the substrate of the liquid crystal cell, and to make the display in the reflective display sufficiently bright. Reflective display can be performed by the second polarizing plate disposed on the back surface side of the liquid crystal cell and the back surface side substrate of the liquid crystal cell without loss of the emitted light amount. At this time, it is possible to reduce the loss of light amount due to the absorption of light in the polarizing plate and the substrate of the liquid crystal cell, and to make the display in the reflective display sufficiently bright.

【0139】また、本発明の液晶表示装置において、前
記液晶セルの両基板の内面にそれぞれ設けられている電
極のうち、裏面側基板の内面に設けられている電極に前
記半透過反射膜を兼ねさせれば、この電極と半透過反射
膜とを同時に形成できるから、液晶セルの構造を簡素化
するとともにその製造を容易にすることができる。
In the liquid crystal display device of the present invention, among the electrodes provided on the inner surfaces of both substrates of the liquid crystal cell, the electrode provided on the inner surface of the back side substrate also serves as the semi-transmissive reflective film. By doing so, since this electrode and the semi-transmissive reflective film can be formed at the same time, the structure of the liquid crystal cell can be simplified and its manufacture can be facilitated.

【0140】さらに、本発明の液晶表示装置において、
液晶セルとその表面側に配置した第1の偏光板との間に位相差板を配置し、この位相差板の遅相軸を前記第1の偏光板および第2の偏光板の透過軸に対してそれぞれ斜めにずらしておけば、反射型表示の際も透過型表示の際も、入射光が前記位相差板の複屈折効果と液晶セルの液晶層の複屈折効果とを受けて偏光状態を大きく変えるため、波長ごとの偏光状態が大きく異なる楕円偏光を前記第1の偏光板に入射させて鮮明な色の着色光を得ることができるし、また、液晶セルに液晶分子が基板面に対してほぼ垂直に立上がり配向する電圧を印加したとき、つまり液晶層の複屈折効果が見掛上ほとんどなくなったときでも、位相差板の複屈折効果によって入射光を楕円偏光とし、この楕円偏光を前記第1の偏光板に入射させて着色光を得ることができる。 A retardation plate is arranged between the liquid crystal cell and the first polarizing plate arranged on the surface side thereof, and the slow axis of the retardation plate is set as the transmission axis of the first polarizing plate and the second polarizing plate. On the other hand, if they are shifted diagonally, the incident light is polarized by the double-reflecting effect of the retardation plate and the double-reflecting effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. It is possible to obtain colored light of a clear color by incidenting elliptically polarized light having a greatly different polarization state for each wavelength on the first polarizing plate, and liquid crystal molecules are placed on the substrate surface in the liquid crystal cell. On the other hand, even when a voltage that rises and orients almost vertically is applied, that is, when the double refraction effect of the liquid crystal layer seems to disappear, the incident light is elliptically polarized by the double polarization effect of the retardation plate, and this elliptically polarized light is used. Colored light can be obtained by incidenting on the first polarizing plate. Furthermore, in the liquid crystal display device of the present invention, Furthermore, in the liquid crystal display device of the present invention,
A retardation plate is disposed between the liquid crystal cell and the first polarizing plate disposed on the surface side of the liquid crystal cell, and the slow axis of this retardation plate is used as the transmission axes of the first polarizing plate and the second polarizing plate. If they are slanted, the incident light receives the birefringence effect of the retardation plate and the birefringence effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. In order to significantly change the wavelength, elliptically polarized light whose polarization states are greatly different for each wavelength can be made incident on the first polarizing plate to obtain a colored light of a clear color, and liquid crystal molecules can be attached to the substrate surface in the liquid crystal cell. On the other hand, when a voltage that rises and aligns almost vertically is applied, that is, even when the birefringence ef A retardation plate is disposed between the liquid crystal cell and the first polarizing plate disposed on the surface side of the liquid crystal cell, and the slow axis of this retardation plate is used as the transmission axes of the first polarizing plate and the second polarizing plate In order to significantly change the wavelength, elliptically. If they are slanted, the incident light receives the birefringence effect of the retardation plate and the birefringence effect of the liquid crystal layer of the liquid crystal cell in both the reflective display and the transmissive display. polarized light whose polarization states are greatly different for each wavelength can be made incident on the first liquid crystal plate to obtain a colored light of a clear color, and liquid crystal molecules can be attached to the substrate surface in the liquid crystal cell. On the other hand, when a voltage that rises and aligns almost vertically is applied, that is, even when the birefringence ef fect of the liquid crystal layer is virtually eliminated, the birefringence effect of the retardation plate makes the incident light elliptically polarized light. Obtaining colored light by making it enter the first polarizing plate It can be. fect of the liquid crystal layer is virtually eliminated, the birefringence effect of the retardation plate makes the incident light elliptically polarized light. Obtaining colored light by making it enter the first grating plate It can be.

【0141】また、本発明の液晶表示装置においは、液
晶セルの裏面側基板の内面に半透過反射膜を設けている
ため、この半透過反射膜を拡散反射膜とすることは難し
いが、液晶セルの表面側に配置した第1の偏光板の一面
が光散乱面となっていれば、前記半透過反射膜の反射面
がほぼ鏡面であっても、表示観察者の顔やその背景等の
外部像が前記反射面に写って見えることはない。
Further, in the liquid crystal display device of the present invention, since the semi-transmissive reflective film is provided on the inner surface of the back side substrate of the liquid crystal cell, it is difficult to use this semi-transmissive reflective film as a diffuse reflective film, but the liquid crystal If one surface of the first polarizing plate arranged on the front surface side of the cell is a light scattering surface, even if the reflecting surface of the semi-transmissive reflecting film is almost a mirror surface, the face of the display observer or the background thereof, etc. The external image never appears on the reflecting surface.

【0142】そして、前記半透過反射膜の反射面がほぼ
鏡面であれば、反射型表示において液晶セルの液晶層に
より偏光状態を変えられた光を半透過反射膜によって散
乱させてしまうことはなく、また透過型表示において
も、第2の偏光板を通って液晶セルにその裏面側から入
射する光を半透過反射膜によって散乱させてしまうこと
はない。
If the reflection surface of the semi-transmissive reflection film is almost a mirror surface, the light whose polarization state is changed by the liquid crystal layer of the liquid crystal cell in the reflection type display is not scattered by the semi-transmission reflection film. Further, also in the transmissive display, light that enters the liquid crystal cell from the back side thereof through the second polarizing plate is not scattered by the semi-transmissive reflective film.

【0143】また、この場合、前記第1の偏光板の表面
が光散乱面であれば、反射型表示の際に液晶表示装置に
その表面側から入射する光が散乱されてから第1の偏光
板の偏光作用により直線偏光になるし、また反射型表示
においても透過型表示においても、液晶セルの液晶層を
通った光が前記第1の偏光板の検光作用により画像光と
なってから散乱されるため、入射光が前記第1の偏光板
を通って画像光となるまでは光が散乱されることはな
く、したがって、品質の良い画像を表示することができ
る。
In this case, if the surface of the first polarizing plate is a light-scattering surface, the first polarized light is scattered after the light incident on the liquid crystal display device from the surface side is scattered during the reflective display. After the light is transmitted through the liquid crystal layer of the liquid crystal cell into the image light by the analyzing function of the first polarizing plate in both the reflective display and the transmissive display, the light becomes a linearly polarized light by the polarizing action of the plate. Since the light is scattered, the light is not scattered until the incident light passes through the first polarizing plate to become the image light, and therefore a high quality image can be displayed.

【図面の簡単な説明】 [Brief description of drawings]

【図1】本発明の第1の実施例を示す液晶表示装置の一部分の断面図。 FIG. 1 is a partial cross-sectional view of a liquid crystal display device showing a first embodiment of the present invention.

【図2】液晶セルの一部分の平面図。 FIG. 2 is a plan view of a part of a liquid crystal cell.

【図3】半透過反射膜の第1の例を示すその一部分の断面図。 FIG. 3 is a partial cross-sectional view showing a first example of a semi-transmissive reflective film.

【図4】図3に示した半透過反射膜の平面図。 FIG. 4 is a plan view of the semi-transmissive reflective film shown in FIG.

【図5】半透過反射膜の第2の例を示すその一部分の断面図。 FIG. 5 is a partial sectional view showing a second example of a semi-transmissive reflective film.

【図6】半透過反射膜の第3の例を示すその一部分の断面図。 FIG. 6 is a partial cross-sectional view showing a third example of a semi-transmissive reflective film.

【図7】半透過反射膜の第4の例を示すその一部分の断面図。 FIG. 7 is a partial sectional view showing a fourth example of a semi-transmissive reflective film.

【図8】図7に示した半透過反射膜の平面図。 FIG. 8 is a plan view of the semi-transmissive reflective film shown in FIG.

【図9】表面側偏光板の表面の拡大断面図。 FIG. 9 is an enlarged cross-sectional view of the surface of the front-side polarizing plate.

【図10】第1の実施例の液晶表示装置の基本構成図。 FIG. 10 is a basic configuration diagram of the liquid crystal display device of the first embodiment.

【図11】液晶セルの液晶分子配向方向と、位相差板の遅相軸と、偏光板の透過軸とを示す平面図。 FIG. 11 is a plan view showing a liquid crystal molecule alignment direction of a liquid crystal cell, a slow axis of a retardation plate, and a transmission axis of a polarizing plate.

【図12】反射型表示の際の印加電圧に対する出射光の色変化を示すCIE色度図。 FIG. 12 is a CIE chromaticity diagram showing a color change of emitted light with respect to an applied voltage during reflective display.

【図13】反射型表示の際の電圧−出射率特性図。 FIG. 13 is a voltage-emissivity characteristic diagram for reflective display.

【図14】透過型表示の際の印加電圧に対する出射光の色変化を示すCIE色度図。 FIG. 14 is a CIE chromaticity diagram showing a color change of emitted light with respect to an applied voltage in transmissive display.

【図15】透過型表示の際の電圧−出射率特性図。 FIG. 15 is a voltage-emissivity characteristic diagram for transmissive display.

【図16】本発明の第2の実施例を示す液晶表示装置の一部分の断面図。 FIG. 16 is a partial cross-sectional view of a liquid crystal display device showing a second embodiment of the present invention.

【図17】従来の液晶表示装置の基本構成図。 FIG. 17 is a basic configuration diagram of a conventional liquid crystal display device.

【符号の説明】 [Explanation of symbols]

10…液晶セル 11…裏面側基板 12…表面側基板 13…画素電極 M…半透過反射膜 14…MIM(非線形抵抗素子) 19…配向膜 20…対向電極 21…配向膜 22…ブラックマスク LC…液晶 31…表面側偏光板(第1の偏光板) A…光散乱面 32…裏面側偏光板(第2の偏光板) 40…位相差板 50…光源 10 ... Liquid crystal cell 11 ... Back side substrate 12 ... Front side substrate 13 ... Pixel electrode M ... Semi-transmissive reflective film 14 ... MIM (non-linear resistance element) 19 ... Alignment film 20 ... Counter electrode 21 ... Alignment film 22 ... Black mask LC ... Liquid crystal 31 ... Front-side polarizing plate (first polarizing plate) A ... Light-scattering surface 32 ... Back-side polarizing plate (second polarizing plate) 40 ... Phase difference plate 50 ... Light source

Claims (6)

    【特許請求の範囲】 [Claims]
  1. 【請求項1】表面側から外光を入射させその光を反射させて表示する反射型表示機能と、光源からの光を裏面側から入射させて表示する透過型表示機能とを有し、かつ液晶セルに、2端子の非線形抵抗素子を能動素子とするアクティブマトリックス型液晶セルを用いた液晶表示装置であって、 前記液晶セルと、この液晶セルの表面側に配置された第1の偏光板と、前記液晶セルの裏面側に配置された第2
    の偏光板とからなり、 かつ、前記液晶セルの裏面側の基板の内面に、入射光をある反射率と透過率で反射および透過させる半透過反射膜が設けられているとともに、 前記第1の偏光板の透過軸が、前記液晶セルの表面側の基板上における液晶分子の配向方向に対して斜めずれ、 A semi-transmissive reflective film is provided on the inner surface of the substrate on the back surface side of the liquid crystal cell to reflect and transmit incident light at a certain reflectance and transmittance, and the first The transmission axis of the polarizing plate is obliquely displaced with respect to the orientation direction of the liquid crystal molecules on the substrate on the surface side of the liquid crystal cell.
    前記第2の偏光板の透過軸が、前記液晶セルの裏面側の基板上における液晶分子の配向方向に対して斜めずれていることを特徴とする液晶表示装置。 A liquid crystal display device characterized in that the transmission axis of the second polarizing plate is obliquely deviated from the orientation direction of liquid crystal molecules on a substrate on the back surface side of the liquid crystal cell. 1. A reflection type display function of displaying external light by making external light incident from the front side and reflecting the light, and a transmission type display function of making light from a light source incident from the back side to display. A liquid crystal display device using, as a liquid crystal cell, an active matrix liquid crystal cell having a two-terminal nonlinear resistance element as an active element, wherein the liquid crystal cell and a first polarizing plate arranged on the front surface side of the liquid crystal cell. And a second panel disposed on the back side of the liquid crystal cell. 1. A reflection type display function of displaying external light by making external light incident from the front side and reflecting the light, and a transmission type display function of making light from a light source incident from the back side to display. A liquid crystal display device using, as a liquid crystal cell, an active matrix liquid crystal cell having a two-terminal nonlinear resistance element as an active element, wherein the liquid crystal cell and a first waveguide plate arranged on the front surface side of the liquid crystal cell. And a second panel disposed on the back side of the liquid crystal cell.
    And a semi-transmissive reflective film for reflecting and transmitting incident light with a certain reflectance and a certain transmittance on the inner surface of the substrate on the back surface side of the liquid crystal cell. The transmission axis of the polarizing plate is obliquely displaced with respect to the alignment direction of the liquid crystal molecules on the substrate on the surface side of the liquid crystal cell, And a semi-transmissive reflective film for reflecting and transmitting incident light with a certain transmittance and a certain transmittance on the inner surface of the substrate on the back surface side of the liquid crystal cell. The transmission axis of the waveguide plate is obliquely displaced with respect to the alignment direction of the liquid crystal molecules on the substrate on the surface side of the liquid crystal cells,
    A liquid crystal display device, wherein a transmission axis of the second polarizing plate is obliquely displaced with respect to an alignment direction of liquid crystal molecules on a substrate on the back surface side of the liquid crystal cell. A liquid crystal display device, wherein a transmission axis of the second polarizing plate is obliquely displaced with respect to an alignment direction of liquid crystal molecules on a substrate on the back surface side of the liquid crystal cell.
  2. 【請求項2】液晶セルの両基板の内面にそれぞれ設けら
    れている電極のうち、裏面側基板の内面に設けられてい
    る電極が半透過反射膜を兼ねていることを特徴とする請
    求項1に記載の液晶表示装置。
    2. The electrode provided on the inner surface of the back-side substrate among the electrodes provided on the inner surfaces of both substrates of the liquid crystal cell also serves as a semi-transmissive reflective film. The liquid crystal display device according to item 1.
  3. 【請求項3】液晶セルとその表面側に配置された第1の
    偏光板との間に位相差板が配置されており、この位相差
    板は、その遅相軸を前記第1の偏光板および第2の偏光
    板の透過軸に対してそれぞれ斜めにずらして設けられて
    いることを特徴とする請求項1に記載の液晶表示装置。
    3. A retardation plate is disposed between a liquid crystal cell and a first polarizing plate disposed on the surface side of the liquid crystal cell, and the retardation plate has the slow axis of the first polarizing plate. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is provided so as to be obliquely displaced with respect to the transmission axes of the second polarizing plate.
  4. 【請求項4】半透過反射膜の反射面はほぼ鏡面であることを特徴とする請求項1に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the reflective surface of the semi-transmissive reflective film is substantially a mirror surface.
  5. 【請求項5】液晶セルの表面側に配置された第1の偏光板の一面が光散乱面となっていることを特徴とする請求項1または請求項4に記載の液晶表示装置。 5. The liquid crystal display device according to claim 1, wherein one surface of the first polarizing plate arranged on the front surface side of the liquid crystal cell is a light scattering surface.
  6. 【請求項6】偏光板の表面が光散乱面であることを特徴
    とする請求項5に記載の液晶表示装置。
    6. The liquid crystal display device according to claim 5, wherein the surface of the polarizing plate is a light scattering surface.
JP12756794A 1994-06-09 1994-06-09 Liquid Crystal Display Expired - Lifetime JP3301219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12756794A JP3301219B2 (en) 1994-06-09 1994-06-09 Liquid Crystal Display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12756794A JP3301219B2 (en) 1994-06-09 1994-06-09 Liquid Crystal Display
US08/455,898 US5753937A (en) 1994-05-31 1995-05-31 Color liquid crystal display device having a semitransparent layer on the inner surface of one of the substrates

Publications (2)

Publication Number Publication Date
JPH07333598A true JPH07333598A (en) 1995-12-22
JP3301219B2 JP3301219B2 (en) 2002-07-15

Family

ID=14963242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12756794A Expired - Lifetime JP3301219B2 (en) 1994-06-09 1994-06-09 Liquid Crystal Display

Country Status (1)

Country Link
JP (1) JP3301219B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920367A (en) * 1996-11-12 1999-07-06 Sharp Kabushiki Kaisha Liquid crystal display device
US6195140B1 (en) 1997-07-28 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
US6330047B1 (en) 1997-07-28 2001-12-11 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US6341002B1 (en) 1998-10-15 2002-01-22 Sharp Kabushiki Kaisha Liquid crystal display device
US6400437B1 (en) 1999-06-30 2002-06-04 Kyocera Corporation Light semitransmitting type liquid crystal display device
US6456347B1 (en) 1998-04-28 2002-09-24 Kyocera Corporation Liquid crystal display
US6563554B2 (en) 1997-12-26 2003-05-13 Sharp Kabushiki Kaisha Liquid crystal display
US6624860B1 (en) 1998-01-26 2003-09-23 Sharp Kabushiki Kaisha Color filter layer providing transmitted light with improved brightness and display device using same
US6738115B1 (en) 1999-11-02 2004-05-18 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US6774965B2 (en) 2002-02-25 2004-08-10 Advanced Display Inc. Liquid crystal display device and manufacturing method thereof
US6850307B2 (en) 2000-02-18 2005-02-01 Seiko Epson Corporation Display device substrate, method for manufacturing the display device substrate, liquid-crystal display device, and electronic equipment
US6970218B2 (en) 2003-03-07 2005-11-29 Hitachi Displays, Ltd. Semi-transmissive LCD device including an optical film having negative uniaxial double refractive index ellipsoids
US7027116B2 (en) 2002-01-04 2006-04-11 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display having the same
JP2006146271A (en) * 1998-01-30 2006-06-08 Sharp Corp Liquid crystal display device
JP2006285293A (en) * 1997-07-10 2006-10-19 Citizen Watch Co Ltd Liquid crystal panel
US7133094B2 (en) 2002-03-04 2006-11-07 Sanyo Electric Co., Ltd. Liquid crystal display apparatus having a transparent layer covering a reflective layer
JP2007506129A (en) * 2003-09-19 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Translucent display with improved contrast
KR100708842B1 (en) * 2004-11-26 2007-04-17 삼성에스디아이 주식회사 Liquid crystal display
US7209107B2 (en) 2002-11-06 2007-04-24 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method for the same
US7239364B2 (en) 2001-12-27 2007-07-03 Seiko Epson Corporation Display substrate having non-uniform reflectivity in a high transmittance region and non-uniform reflectivity in a high reflectivity region, liquid crystal device using display substrate, electronic appliances comprising liquid crystal device, and method of manufacturing thereof
US7259813B2 (en) 2001-12-28 2007-08-21 Sanyo Electric Co., Ltd. Liquid crystal display apparatus having insulated reflective layer and manufacturing method thereof
US7271863B2 (en) 2002-10-16 2007-09-18 Nitto Denko Corporation Color liquid crystal display with internal rear polarizer
US7312844B2 (en) 2003-03-28 2007-12-25 Sharp Kabushiki Kaisha Liquid crystal display device
JP2008152267A (en) * 2007-12-26 2008-07-03 Semiconductor Energy Lab Co Ltd Semi-transmission type liquid crystal display device, and electronic apparatus
US7414686B2 (en) 2004-09-10 2008-08-19 Innolux Display Corp. In plane switching liquid crystal display
US7483100B2 (en) 1998-04-08 2009-01-27 Seiko Epson Corporation Liquid crystal device and electronic apparatus
US7535529B2 (en) 1998-02-04 2009-05-19 Seiko Epson Corporation Liquid crystal device and electronic device having liquid crystal molecules aligned at reflective electrodes
US7738062B2 (en) 2004-05-27 2010-06-15 Fujitsu Limited Liquid crystal display and method of manufacturing the same
USRE41678E1 (en) 1998-11-02 2010-09-14 Hitachi, Ltd. Half reflection type liquid crystal display device having matched phase of transmitted and reflected light
US9448432B2 (en) 2002-03-01 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920367A (en) * 1996-11-12 1999-07-06 Sharp Kabushiki Kaisha Liquid crystal display device
JP2006285293A (en) * 1997-07-10 2006-10-19 Citizen Watch Co Ltd Liquid crystal panel
US6330047B1 (en) 1997-07-28 2001-12-11 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US6452654B2 (en) 1997-07-28 2002-09-17 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
US6195140B1 (en) 1997-07-28 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
US7394511B2 (en) 1997-12-26 2008-07-01 Sharp Kabushiki Kaisha Liquid crystal display
US7542116B2 (en) 1997-12-26 2009-06-02 Sharp Kabushiki Kaisha Liquid crystal display
US7859620B2 (en) 1997-12-26 2010-12-28 Sharp Kabushiki Kaisha Liquid crystal display
US8427608B2 (en) 1997-12-26 2013-04-23 Sharp Kabushiki Kaisha Liquid crystal display
US6563554B2 (en) 1997-12-26 2003-05-13 Sharp Kabushiki Kaisha Liquid crystal display
US6900863B2 (en) 1997-12-26 2005-05-31 Sharp Kabushiki Kaisha Liquid crystal display
US7050132B2 (en) 1997-12-26 2006-05-23 Sharp Kabushiki Kaisha Liquid crystal display
US7250998B2 (en) 1998-01-26 2007-07-31 Sharp Kabushiki Kaisha Color filter layer comprising a transmissive non-color filter region and the transflective display device using the same
US6906765B2 (en) 1998-01-26 2005-06-14 Sharp Kabushiki Kaisha Color filter layer and display device using the same
US7916249B2 (en) 1998-01-26 2011-03-29 Sharp Kabushiki Kaisha Color filter layer and display device using the same
US7599023B2 (en) 1998-01-26 2009-10-06 Sharp Kabushiki Kaisha Color filter layer and transflective liquid crystal display device using the same
US6624860B1 (en) 1998-01-26 2003-09-23 Sharp Kabushiki Kaisha Color filter layer providing transmitted light with improved brightness and display device using same
US7471359B2 (en) 1998-01-26 2008-12-30 Sharp Kabushiki Kaisha Color filter layer having different area ratio between different colors and transflective liquid crystal display device using the same
JP2006146271A (en) * 1998-01-30 2006-06-08 Sharp Corp Liquid crystal display device
US7535529B2 (en) 1998-02-04 2009-05-19 Seiko Epson Corporation Liquid crystal device and electronic device having liquid crystal molecules aligned at reflective electrodes
US7483100B2 (en) 1998-04-08 2009-01-27 Seiko Epson Corporation Liquid crystal device and electronic apparatus
US6456347B1 (en) 1998-04-28 2002-09-24 Kyocera Corporation Liquid crystal display
US6341002B1 (en) 1998-10-15 2002-01-22 Sharp Kabushiki Kaisha Liquid crystal display device
USRE41678E1 (en) 1998-11-02 2010-09-14 Hitachi, Ltd. Half reflection type liquid crystal display device having matched phase of transmitted and reflected light
US6400437B1 (en) 1999-06-30 2002-06-04 Kyocera Corporation Light semitransmitting type liquid crystal display device
US6738115B1 (en) 1999-11-02 2004-05-18 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US7379133B2 (en) 1999-11-02 2008-05-27 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US6970215B2 (en) 1999-11-02 2005-11-29 Seiko Epson Corporation Reflective LCD, semitransmitting reflective LCD and electronic device
US6924867B2 (en) 2000-02-18 2005-08-02 Seiko Epson Corporation Display device substrate, method for manufacturing the display device substrate, liquid-crystal device, and electronic equipment
US6850307B2 (en) 2000-02-18 2005-02-01 Seiko Epson Corporation Display device substrate, method for manufacturing the display device substrate, liquid-crystal display device, and electronic equipment
US6922225B2 (en) 2000-02-18 2005-07-26 Seiko Epson Corporation Display device substrate, method for manufacturing the display device substrate, liquid-crystal device, and electronic equipment
US7372527B2 (en) 2001-12-27 2008-05-13 Seiko Epson Corporation Display substrate, liquid crystal device using display substrate, electronic appliances comprising liquid crystal device, and method for manufacturing thereof
US7239364B2 (en) 2001-12-27 2007-07-03 Seiko Epson Corporation Display substrate having non-uniform reflectivity in a high transmittance region and non-uniform reflectivity in a high reflectivity region, liquid crystal device using display substrate, electronic appliances comprising liquid crystal device, and method of manufacturing thereof
US7502083B2 (en) 2001-12-28 2009-03-10 Sanyo Electric Co., Ltd. Display apparatus and manufacturing method thereof
US7259813B2 (en) 2001-12-28 2007-08-21 Sanyo Electric Co., Ltd. Liquid crystal display apparatus having insulated reflective layer and manufacturing method thereof
US7609345B2 (en) 2002-01-04 2009-10-27 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display having the same
US7027116B2 (en) 2002-01-04 2006-04-11 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display having the same
US6774965B2 (en) 2002-02-25 2004-08-10 Advanced Display Inc. Liquid crystal display device and manufacturing method thereof
US9448432B2 (en) 2002-03-01 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US7133094B2 (en) 2002-03-04 2006-11-07 Sanyo Electric Co., Ltd. Liquid crystal display apparatus having a transparent layer covering a reflective layer
US7482746B2 (en) 2002-03-04 2009-01-27 Sanyo Electric Co., Ltd. Liquid crystal display apparatus having reflective layer
US7271863B2 (en) 2002-10-16 2007-09-18 Nitto Denko Corporation Color liquid crystal display with internal rear polarizer
US7768606B2 (en) 2002-11-06 2010-08-03 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method for the same
US7889296B2 (en) 2002-11-06 2011-02-15 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method for the same
US7209107B2 (en) 2002-11-06 2007-04-24 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method for the same
US7442566B2 (en) 2002-11-06 2008-10-28 Sharp Kabushiki Kaisha Liquid crystal display device and manufacturing method for the same
US7221422B2 (en) 2003-03-07 2007-05-22 Hitachi Displays, Ltd. Liquid crystal display device with particular phase plates having specific axis angles
US6970218B2 (en) 2003-03-07 2005-11-29 Hitachi Displays, Ltd. Semi-transmissive LCD device including an optical film having negative uniaxial double refractive index ellipsoids
US7728932B2 (en) 2003-03-07 2010-06-01 Hitachi Displays, Ltd. Liquid crystal display device with particular phase plates having specific axis angles
US7126659B2 (en) 2003-03-07 2006-10-24 Hitachi Displays, Ltd. Liquid crystal display device
US7471361B2 (en) 2003-03-07 2008-12-30 Hitachi Displays, Ltd. Liquid crystal display with particular phase plates having specific axis angles
US7570324B2 (en) 2003-03-28 2009-08-04 Sharp Kabushiki Kaisha Liquid crystal display device
US7372529B2 (en) 2003-03-28 2008-05-13 Sharp Kabushiki Kaisha Liquid crystal display device
US7312844B2 (en) 2003-03-28 2007-12-25 Sharp Kabushiki Kaisha Liquid crystal display device
JP2007506129A (en) * 2003-09-19 2007-03-15 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Translucent display with improved contrast
JP4791963B2 (en) * 2003-09-19 2011-10-12 ティーピーオー ホンコン ホールディング リミテッド Translucent display with improved contrast
US7738062B2 (en) 2004-05-27 2010-06-15 Fujitsu Limited Liquid crystal display and method of manufacturing the same
US7414686B2 (en) 2004-09-10 2008-08-19 Innolux Display Corp. In plane switching liquid crystal display
KR100708842B1 (en) * 2004-11-26 2007-04-17 삼성에스디아이 주식회사 Liquid crystal display
JP2008152267A (en) * 2007-12-26 2008-07-03 Semiconductor Energy Lab Co Ltd Semi-transmission type liquid crystal display device, and electronic apparatus

Also Published As

Publication number Publication date
JP3301219B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
US8638403B2 (en) Liquid crystal display device
EP0978752B1 (en) Reflection liquid crystal display optionally provided with built-in touch panel
US5526149A (en) Reflection type liquid crystal display device
KR101022926B1 (en) Color liquid crystal display with internal rear polarizer
US7027116B2 (en) Substrate for liquid crystal display and liquid crystal display having the same
TW536688B (en) Liquid crystal display element
KR0149744B1 (en) Lcd device
US6717641B2 (en) Liquid crystal display device
KR100187329B1 (en) A reflective substrate, a method for producing the same and liquid crystal display device using the same
US7417700B2 (en) Optical sheet assembly and liquid crystal display apparatus having the same
JP4526590B2 (en) Method for forming optical λ / 4 layer for transflective liquid crystal display device
CN100428009C (en) Fringe field switching mode transflective liquid crystal display
TW552457B (en) Liquid crystal display device and method of manufacturing the same
US6825903B2 (en) Liquid crystal display element and method of manufacturing the same
EP0667553B1 (en) Normally white twisted nematic liquid crystal display device with retardation films on opposite sides of the liquid crystal material for improving the viewing zone and method for centering the highest contrast viewing zone
EP1750165B1 (en) Transreflective liquid crytal displays
JP3380482B2 (en) Liquid crystal display
JP3073025B2 (en) Liquid Crystal Display
US6215538B1 (en) Liquid crystal display including both color filter and non-color filter regions for increasing brightness
EP0576303B1 (en) Reflective type liquid crystal display device
EP0780721B1 (en) Reflection-type liquid crystal display device
KR100663394B1 (en) Liquid crystal display device and manufacturing method therefor
KR100513939B1 (en) Transflective and reflective lcd
US6801283B2 (en) Liquid crystal display device
EP0536898B1 (en) Reflection type liquid crystal display device and method of manufacturing the same