JPH07332194A - Fuel injection valve cooling device of gas engine - Google Patents

Fuel injection valve cooling device of gas engine

Info

Publication number
JPH07332194A
JPH07332194A JP6121387A JP12138794A JPH07332194A JP H07332194 A JPH07332194 A JP H07332194A JP 6121387 A JP6121387 A JP 6121387A JP 12138794 A JP12138794 A JP 12138794A JP H07332194 A JPH07332194 A JP H07332194A
Authority
JP
Japan
Prior art keywords
valve
fuel injection
injection valve
pressure reducing
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6121387A
Other languages
Japanese (ja)
Other versions
JP3102266B2 (en
Inventor
Ryuichi Idoguchi
隆一 井戸口
Shizuo Ishizawa
静雄 石澤
Mitsunori Ishii
光教 石井
Eiji Inada
英二 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06121387A priority Critical patent/JP3102266B2/en
Publication of JPH07332194A publication Critical patent/JPH07332194A/en
Application granted granted Critical
Publication of JP3102266B2 publication Critical patent/JP3102266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To cool effectively the fuel injection valve of a gas engine which is equipped with a decompression valve and a fuel injection valve. CONSTITUTION:The back pressure side cavity of a decompression valve 2 is filled with coolant such as water or oil, and a cover 4 is provided as surrounding a fuel injection valve 3, and a cooling space 5 is formed between the valve 3 and cover 4. Two communication paths 6A, 6B are furnished to put the back pressure side cavity of the decompression valve 2 in communication with the cooling space 5 of the fuel injection valve 3 and are fitted with respective check valves 7A, 7B. Thus the coolant cooled through heat exchange is supplied to the cooling space 5 by the use of a temp. drop when the gas fuel is decompressed by the valve 2 and the back pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスエンジン(天然ガ
スエンジン等)の燃料噴射弁冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve cooling device for a gas engine (natural gas engine or the like).

【0002】[0002]

【従来の技術】吸気系に燃料噴射弁を備える燃料噴射式
のエンジンにおいて、燃料噴射弁はエンジンからの熱を
受ける。通常のガソリンエンジンでは、燃料タンクと燃
料噴射弁との間でガソリンを循環させているので、燃料
噴射弁がエンジンからの熱を受けても、ガソリンで冷却
されるので問題はないが、ガスエンジンでは、このよう
な機能がなく、また、燃料が気体であるので、燃料噴射
弁が冷却されず、燃料噴射弁の電磁コイルが過熱して、
所望の作動特性を得ることができなくなる恐れがある。
2. Description of the Related Art In a fuel injection type engine having a fuel injection valve in an intake system, the fuel injection valve receives heat from the engine. In a normal gasoline engine, gasoline is circulated between the fuel tank and the fuel injection valve, so even if the fuel injection valve receives heat from the engine, it will be cooled by gasoline, so there is no problem. Then, since there is no such function and the fuel is gas, the fuel injection valve is not cooled and the electromagnetic coil of the fuel injection valve overheats,
It may not be possible to obtain the desired operating characteristics.

【0003】従って、ガスエンジンでは、燃料噴射弁を
冷却することが必要であり、従来の燃料噴射弁冷却装置
としては、例えば特開昭61−118554号公報に示
されるようなものがある。これは、燃料噴射弁を、その
外面との間に空間が形成されるようにしてカバーにより
覆うと共に、その燃料噴射弁の周囲の温度あるいはその
温度と相関性のある温度を検知する温度センサにより、
燃料噴射弁の周囲温度が所定温度より高いと判断された
ときに作動される電動ファンを設け、その電動ファンに
より供給される冷却空気が、燃料噴射弁とカバーとの間
の空間に導かれるようにしている。
Therefore, in a gas engine, it is necessary to cool the fuel injection valve, and a conventional fuel injection valve cooling device is, for example, one disclosed in Japanese Patent Laid-Open No. 61-118554. This is because the fuel injection valve is covered with a cover so that a space is formed between the fuel injection valve and the outer surface thereof, and a temperature sensor for detecting the temperature around the fuel injection valve or a temperature correlated with the temperature. ,
An electric fan that operates when the ambient temperature of the fuel injection valve is determined to be higher than a predetermined temperature is provided so that the cooling air supplied by the electric fan is guided to the space between the fuel injection valve and the cover. I have to.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の燃料噴射弁冷却装置をガスエンジンに用いる
とすると、冷却装置として、電動ファン、温度センサ、
タイマ、リレー等の付帯装置が必要となって、複雑にな
ると共に、コストの面で割高となり、また、これらの制
御回路の保守・点検が必要となるという問題点があっ
た。
However, when such a conventional fuel injection valve cooling device is used in a gas engine, an electric fan, a temperature sensor,
There is a problem in that auxiliary devices such as a timer and a relay are required, the device is complicated, the cost is high, and the maintenance and inspection of these control circuits are required.

【0005】本発明は、このような従来の問題点に鑑
み、電動ファン等を使用することなく簡単に構成できる
ガスエンジンの燃料噴射弁冷却装置を提供することを目
的とする。
In view of the above conventional problems, the present invention has an object of providing a fuel injection valve cooling device for a gas engine which can be simply constructed without using an electric fan or the like.

【0006】[0006]

【課題を解決するための手段】このため、本発明は、ガ
ス燃料を減圧する減圧弁と、減圧されたガス燃料をエン
ジンに噴射供給する燃料噴射弁とを備えるガスエンジン
において、減圧弁の背圧側空洞部に冷媒を満たす一方、
燃料噴射弁を囲んで冷却空間を形成し、減圧弁の背圧側
空洞部と燃料噴射弁の冷却空間とを連通する2本の連通
路を設けて、これらの連通路にそれぞれ逆止弁を介装
し、減圧弁の背圧側空洞部と燃料噴射弁の冷却空間との
間で冷媒を循環させる構成としたものである。
Therefore, the present invention provides a gas engine equipped with a pressure reducing valve for depressurizing gas fuel and a fuel injection valve for injecting the depressurized gas fuel to the engine. While filling the pressure side cavity with the refrigerant,
A cooling space is formed by surrounding the fuel injection valve, and two communication passages that connect the back pressure side cavity of the pressure reducing valve and the cooling space of the fuel injection valve are provided, and check valves are respectively provided in these communication passages. In this configuration, the refrigerant is circulated between the back pressure side cavity of the pressure reducing valve and the cooling space of the fuel injection valve.

【0007】ここで、前記減圧弁は、ガス燃料の通路を
開閉する弁体と、この弁体に連結されて弁体下流側の圧
力を弁体閉方向に受けるダイアフラムと、このダイアフ
ラムを弁体開方向に付勢するコイルスプリングとを含ん
で構成され、前記背圧側空洞部は、ガス燃料の通路とは
ダイアフラムにより仕切られてコイルスプリングが配置
されているものであるとよい。
Here, the pressure reducing valve includes a valve body for opening and closing a passage for gas fuel, a diaphragm connected to the valve body for receiving pressure on the downstream side of the valve body in a valve body closing direction, and the diaphragm for the valve body. It is preferable that the coil spring is configured to include a coil spring that biases in the opening direction, and the back pressure side hollow portion is separated from the gas fuel passage by a diaphragm, and the coil spring is arranged.

【0008】また、前記減圧弁の背圧側空洞部内に配置
されたコイルスプリングの外側を円筒状の仕切板で囲む
とよい。また、前記減圧弁の背圧側空洞部内に配置され
たコイルスプリングの内側に円柱状の空間閉塞部材を配
置するとよい。
Further, it is preferable that the coil spring disposed in the back pressure side cavity of the pressure reducing valve is surrounded by a cylindrical partition plate on the outside. Further, a columnar space closing member may be arranged inside the coil spring arranged in the back pressure side cavity of the pressure reducing valve.

【0009】[0009]

【作用】ガス燃料は減圧弁により減圧されるが、このと
きの圧力降下により、周囲から熱を奪うため、減圧弁は
最大で50℃程度、温度低下する。この温度低下を利用し
て、減圧弁の背圧側空洞部にて冷媒を熱交換させる。ま
た、減圧弁の背圧側空洞部の背圧を利用し、これと逆止
弁とでポンプ作用を発揮させて、冷媒を循環させる。
[Function] The gas fuel is decompressed by the pressure reducing valve, but the pressure drop at this time removes heat from the surroundings, so that the temperature of the pressure reducing valve decreases by a maximum of about 50 ° C. Utilizing this temperature decrease, the refrigerant is heat-exchanged in the back pressure side cavity of the pressure reducing valve. Further, the back pressure of the back pressure side cavity portion of the pressure reducing valve is utilized, and this and the check valve exhibit a pumping action to circulate the refrigerant.

【0010】すなわち、減圧弁の背圧側空洞部にて冷媒
を熱交換により冷却すると共に、背圧によるポンプ作用
で冷媒を一方の連通路より燃料噴射弁の冷却空間に向か
わせて、燃料噴射弁の冷却に用いる。そして、燃料噴射
弁の冷却により温度上昇した冷媒は他方の連通路より減
圧弁の背圧側空洞部へ戻して再び熱交換により冷却す
る。
That is, the refrigerant is cooled by heat exchange in the back pressure side cavity of the pressure reducing valve, and at the same time, the refrigerant is directed from one of the communication passages toward the cooling space of the fuel injection valve by the pumping action by the back pressure. Used for cooling. Then, the refrigerant whose temperature has risen due to the cooling of the fuel injection valve is returned from the other communication path to the back pressure side cavity of the pressure reducing valve and cooled again by heat exchange.

【0011】このような循環サイクルにより、燃料噴射
弁を冷却することができるのみならず、減圧弁は加熱さ
れることになるので、その氷結固着を防止し得る。特
に、減圧弁がダイアフラム式の場合には、ダイアフラム
部分で熱交換すると共に、ダイアフラムによりポンプ作
用を発揮させることができ、しかも、ダイアフラムに対
し、冷媒がダンパーの役目を果たして、作動音を低減で
きる。
By such a circulation cycle, not only the fuel injection valve can be cooled, but also the pressure reducing valve is heated, so that the ice sticking can be prevented. In particular, when the pressure reducing valve is a diaphragm type, heat can be exchanged in the diaphragm portion and the diaphragm can exert a pumping action, and the refrigerant functions as a damper against the diaphragm, and the operating noise can be reduced. .

【0012】また、減圧弁の背圧側空洞部内に配置され
たコイルスプリングの外側を円筒状の仕切板で囲むこと
で、背圧側空洞部内での流れを規制し、冷媒とダイアフ
ラムとの接触面積を増やして、熱交換効率を向上させる
ことにより、冷却効果を高めることができる。また、減
圧弁の背圧側空洞部内に配置されたコイルスプリングの
内側に円柱状の空間閉塞部材を配置することで、背圧側
空洞部内の冷媒の体積を減少させて、ダイアフラムによ
るポンプ吐出能力を向上させることにより、冷却効果を
高めることができる。
Further, by enclosing the outer side of the coil spring arranged in the back pressure side hollow portion of the pressure reducing valve with a cylindrical partition plate, the flow in the back pressure side hollow portion is regulated and the contact area between the refrigerant and the diaphragm is reduced. The cooling effect can be enhanced by increasing the heat exchange efficiency by increasing the heat exchange efficiency. Also, by arranging a cylindrical space blocking member inside the coil spring arranged in the back pressure side cavity of the pressure reducing valve, the volume of the refrigerant in the back pressure side cavity is reduced and the pump discharge capacity by the diaphragm is improved. By doing so, the cooling effect can be enhanced.

【0013】[0013]

【実施例】以下に本発明の実施例を説明する。図1〜図
3は本発明の一実施例を示している。図1は天然ガスエ
ンジンの要部の概略図を示し、ボンベ1からのガス燃料
は、減圧弁2により減圧された後、燃料噴射弁3に供給
される。
EXAMPLES Examples of the present invention will be described below. 1 to 3 show an embodiment of the present invention. FIG. 1 is a schematic view of a main part of a natural gas engine. Gas fuel from a cylinder 1 is decompressed by a pressure reducing valve 2 and then supplied to a fuel injection valve 3.

【0014】この減圧弁2は、図2に示すように構成さ
れている。ハウジング20には、燃料入口21と燃料出口22
との間のガス燃料通路23の途中に弁座部24が形成されて
いる。そして、この弁座部24に弁体25を相対させてあ
り、この弁体25はシャフト26を介してダイアフラム27に
連結されている。ダイアフラム27の一方の面は弁体25下
流側のガス燃料通路23に臨んでいて、弁体25下流側の圧
力を弁体25閉弁方向に受けるようになっている。
The pressure reducing valve 2 is constructed as shown in FIG. The housing 20 includes a fuel inlet 21 and a fuel outlet 22.
A valve seat portion 24 is formed in the middle of the gas fuel passage 23 between and. The valve body 25 is opposed to the valve seat portion 24, and the valve body 25 is connected to the diaphragm 27 via the shaft 26. One surface of the diaphragm 27 faces the gas fuel passage 23 on the downstream side of the valve body 25, and receives the pressure on the downstream side of the valve body 25 in the valve body 25 closing direction.

【0015】ダイアフラム27の他方の面の側は背圧側空
洞部28をなし、この背圧側空洞部28には、ダイアフラム
27を弁体25開弁方向に付勢するコイルスプリング29が配
置されている。尚、30はダイアフラム27側のスプリング
リテーナ、31はダイアフラム25側のスプリングガイド、
32は固定壁側のスプリングリテーナ、33はスプリング力
調整用ねじである。
A back pressure side cavity 28 is formed on the other surface side of the diaphragm 27, and the diaphragm is provided in the back pressure side cavity 28.
A coil spring 29 for urging the valve 27 in the valve opening direction of the valve element 25 is arranged. In addition, 30 is a spring retainer on the diaphragm 27 side, 31 is a spring guide on the diaphragm 25 side,
32 is a spring retainer on the fixed wall side, and 33 is a spring force adjusting screw.

【0016】この減圧弁2においては、燃料出口22側、
すなわち弁体25下流側の圧力が低い場合には、スプリン
グ29によりダイアフラム27が下方に変位して弁体25が弁
座部24から離れ、ガス燃料が弁座部24とシャフト26との
間を通って、燃料出口22側へ向かう(図3の破線状
態)。これにより、燃料出口22側、すなわち弁体25下流
側の圧力が高くなっていくと、コイルスプリング29によ
り規定される圧力に達したところで、ダイアフラム27が
上方に変位して弁体25が弁座部24に着座する結果、ガス
燃料は流れなくなる(図3の実線状態)。以上の繰り返
しにより、ガス燃料の圧力を一定に減圧して流す機能を
持っている。
In the pressure reducing valve 2, the fuel outlet 22 side,
That is, when the pressure on the downstream side of the valve body 25 is low, the diaphragm 27 is displaced downward by the spring 29, the valve body 25 is separated from the valve seat portion 24, and the gas fuel flows between the valve seat portion 24 and the shaft 26. Pass through to the fuel outlet 22 side (broken line state in FIG. 3). As a result, when the pressure on the fuel outlet 22 side, that is, on the downstream side of the valve body 25 increases, when the pressure specified by the coil spring 29 is reached, the diaphragm 27 is displaced upward and the valve body 25 is seated. As a result of being seated on the portion 24, the gas fuel does not flow (solid line state in FIG. 3). By repeating the above, it has a function of reducing the pressure of the gas fuel to a constant pressure and flowing it.

【0017】ここにおいて、減圧弁2の背圧側空洞部28
に、水又はオイル等の冷媒を満たす一方、燃料噴射弁3
を囲んでカバー4を設け、燃料噴射弁3とカバー4との
間に冷却空間5を形成する。そして、減圧弁2の背圧側
空洞部28と燃料噴射弁3の冷却空間5とを連通する2本
の連通路6A,6Bを設け、これらの連通路6A,6B
にそれぞれ逆止弁7A,7Bを介装して、減圧弁2の背
圧側空洞部28と燃料噴射弁3の冷却空間5との間で冷媒
を循環させる構成とする。
Here, the back pressure side cavity portion 28 of the pressure reducing valve 2
While filling the refrigerant such as water or oil with the fuel injection valve 3
A cover 4 is provided so as to surround the above, and a cooling space 5 is formed between the fuel injection valve 3 and the cover 4. Further, two communication passages 6A, 6B are provided to connect the back pressure side cavity portion 28 of the pressure reducing valve 2 and the cooling space 5 of the fuel injection valve 3, and these communication passages 6A, 6B are provided.
The check valves 7A and 7B are provided in each of the two, and the refrigerant is circulated between the back pressure side cavity portion 28 of the pressure reducing valve 2 and the cooling space 5 of the fuel injection valve 3.

【0018】尚、逆止弁7A,7Bは、背圧側空洞部28
に対する連通路6A,6Bの接続部近傍に設けてあり、
ここでは、逆止弁7Bが吸入弁として、また逆止弁7A
が吐出弁として機能する。また、吸入側の連通路6Bは
背圧側空洞部28のダイアフラム27から遠い固定壁側に開
口させ、吐出側の連通路6Aは位置をずらしてダイアフ
ラム27寄りに開口させてある。
The check valves 7A and 7B have a back pressure side cavity 28
Is provided near the connecting portion of the communication passages 6A and 6B with respect to
Here, the check valve 7B serves as an intake valve, and the check valve 7A
Functions as a discharge valve. Further, the suction side communication passage 6B is opened to the fixed wall side of the back pressure side hollow portion 28 far from the diaphragm 27, and the discharge side communication passage 6A is opened to the diaphragm 27 side by shifting the position.

【0019】次に作用を説明する。ガス燃料は減圧弁2
により減圧されるが、このときの圧力降下により、周囲
から熱を奪うため、減圧弁2のダイアフラム27部分は最
大で50℃程度、温度低下する。この温度低下を利用し
て、減圧弁2の背圧側空洞部28にて冷媒をダイアフラム
27と熱交換させる。また、減圧弁2の背圧側空洞部28に
おけるダイアフラム27の背圧(上下変位)を利用し、こ
れと逆止弁7A,7Bとでポンプ作用を発揮させて、冷
媒を循環させる。
Next, the operation will be described. Gas fuel is pressure reducing valve 2
Due to the pressure drop at this time, heat is taken from the surroundings, and therefore the temperature of the diaphragm 27 portion of the pressure reducing valve 2 drops by about 50 ° C. at the maximum. By utilizing this temperature decrease, the refrigerant is diaphragmed in the back pressure side cavity portion 28 of the pressure reducing valve 2.
Heat exchange with 27. Further, the back pressure (vertical displacement) of the diaphragm 27 in the back pressure side cavity portion 28 of the pressure reducing valve 2 is utilized, and this and the check valves 7A and 7B exert a pumping action to circulate the refrigerant.

【0020】すなわち、減圧弁2の背圧側空洞部28にて
冷媒をダイアフラム27部分との熱交換により冷却すると
共に、ダイアフラム27の上下変位と逆止弁7A,7Bと
によるポンプ作用で、冷媒を吸入側の連通路6Bより吸
入しつつ、吐出側の連通路6Aより吐出させる。そし
て、吐出側の連通路6Aより冷媒を燃料噴射弁3の冷却
空間5に向かわせて、燃料噴射弁3の冷却に用いる。そ
して、燃料噴射弁3の冷却により温度上昇した冷媒は、
吸入側の連通路6Bより減圧弁2の背圧側空洞部28へ戻
して再び冷却する。
That is, the refrigerant is cooled in the back pressure side cavity portion 28 of the pressure reducing valve 2 by heat exchange with the diaphragm 27 portion, and the vertical displacement of the diaphragm 27 and the pump action of the check valves 7A and 7B cause the refrigerant to be discharged. While being sucked from the suction side communication passage 6B, it is discharged from the discharge side communication passage 6A. Then, the refrigerant is directed from the discharge side communication passage 6A to the cooling space 5 of the fuel injection valve 3 and used for cooling the fuel injection valve 3. The refrigerant whose temperature has risen due to the cooling of the fuel injection valve 3 is
It is returned to the back pressure side cavity portion 28 of the pressure reducing valve 2 from the suction side communication passage 6B and cooled again.

【0021】このような循環サイクルにより、燃料噴射
弁3を冷却することができる。逆に、減圧弁2は加熱さ
れることになるので、減圧弁2の氷結固着を防止するこ
とができる。尚、冷媒としての水やオイル等は、元々エ
ンジンで使用しているので、新たな付帯装置が不要であ
る上、液体であるので、熱容量が大きく、かつ非圧縮性
のため、わずかなポンプ吐出能力でも、十分な循環と熱
交換ができる。
The fuel injection valve 3 can be cooled by such a circulation cycle. On the contrary, since the pressure reducing valve 2 is heated, it is possible to prevent the pressure reducing valve 2 from being frozen and stuck. Since water, oil, etc. as refrigerants are originally used in the engine, new auxiliary devices are not required, and since they are liquids, they have a large heat capacity and are non-compressible, so they can be discharged by a small pump. Even with the capacity, sufficient circulation and heat exchange are possible.

【0022】図4には、他の実施例を示している。この
実施例は、減圧弁2の背圧側空洞部28内に配置されたコ
イルスプリング29の外側を円筒状の仕切板34で囲み、こ
の仕切板34の外側にのみ冷媒を流通させることで、背圧
側空洞部28内での冷媒の流れを規制している。これによ
り、冷媒とダイアフラム27との接触面積を増やして、熱
交換効率を向上させることにより、冷却効果を高めるこ
とができる。
FIG. 4 shows another embodiment. In this embodiment, the coil spring 29 disposed inside the back pressure side cavity portion 28 of the pressure reducing valve 2 is surrounded by a cylindrical partition plate 34, and the refrigerant is circulated only outside the partition plate 34, whereby The flow of the refrigerant in the pressure side cavity portion 28 is regulated. Thereby, the contact area between the refrigerant and the diaphragm 27 is increased and the heat exchange efficiency is improved, so that the cooling effect can be enhanced.

【0023】また、この実施例では、吸入側の連通路6
Bは背圧側空洞部28のダイアフラム27から遠い固定壁側
に開口させ、吐出側の連通路6Aも同様に背圧側空洞部
28のダイアフラム27から遠い固定壁側に開口させてあ
る。これによっても、冷媒のダイアフラム27との接触面
積を増やすように、冷媒の流れを規制して、冷却効果を
高めている。
Further, in this embodiment, the communication passage 6 on the suction side is provided.
B is opened to the fixed wall side far from the diaphragm 27 of the back pressure side hollow portion 28, and the communication passage 6A on the discharge side is also the back pressure side hollow portion.
It is opened to the fixed wall side far from the diaphragm 27 of 28. Also by this, the flow of the refrigerant is regulated so as to increase the contact area of the refrigerant with the diaphragm 27, and the cooling effect is enhanced.

【0024】図5には、さらに他の実施例を示してい
る。この実施例は、減圧弁2の背圧側空洞部28内に配置
されたコイルスプリング29の内側に円柱状の空間閉塞部
材35を配置しており、特にここではスプリングガイド31
を大型化して、空間閉塞部材35としている。これによ
り、減圧弁2の背圧側空洞部28内の冷媒の体積を減少さ
せることができ、ダイアフラム27の面積に比べて、冷媒
の体積が減少するので、ダイアフラム27によるポンプ吐
出能力を向上させることができ、冷却効果を高めること
ができる。
FIG. 5 shows still another embodiment. In this embodiment, a cylindrical space closing member 35 is arranged inside a coil spring 29 arranged in the back pressure side cavity portion 28 of the pressure reducing valve 2, and in particular, here, a spring guide 31 is arranged.
Is enlarged to form the space closing member 35. As a result, the volume of the refrigerant in the back pressure side cavity portion 28 of the pressure reducing valve 2 can be reduced, and the volume of the refrigerant is reduced as compared with the area of the diaphragm 27. Therefore, the pump discharge capacity of the diaphragm 27 can be improved. The cooling effect can be enhanced.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、既
存の減圧弁の温度低下とポンプ作用とを用いるようにし
たため、複雑な回路や補機を必要とせず、簡単な構成で
冷却効果を得ることができ、また、減圧弁の流量に比例
して温度低下するため、燃料噴射弁の駆動時に確実に冷
却でき、更には、減圧弁の氷結固着を防止できるという
効果が得られる。
As described above, according to the present invention, since the temperature reduction of the existing pressure reducing valve and the pump action are used, the cooling effect is simple and does not require a complicated circuit or auxiliary equipment. In addition, since the temperature decreases in proportion to the flow rate of the pressure reducing valve, it is possible to reliably cool the fuel injection valve when it is driven, and further it is possible to prevent the pressure reducing valve from being frozen.

【0026】また、ダイアフラム式の減圧弁のダイアフ
ラムを利用することで、ダイアフラムに対し、冷媒がダ
ンパーの役目を果たし、作動音を低減することができ
る。また、減圧弁の背圧側空洞部内に配置されたコイル
スプリングの外側を円筒状の仕切板で囲むことにより、
冷媒の流路を規制して、ダイアフラムでの熱交換効率を
高めることができる。
Further, by using the diaphragm of the diaphragm type pressure reducing valve, the refrigerant functions as a damper against the diaphragm and the operating noise can be reduced. In addition, by surrounding the outside of the coil spring arranged in the back pressure side cavity of the pressure reducing valve with a cylindrical partition plate,
The flow path of the refrigerant can be regulated to improve the heat exchange efficiency of the diaphragm.

【0027】また、減圧弁の背圧側空洞部内に配置され
たコイルスプリングの内側に円柱状の空間閉塞部材を配
置することにより、ダイアフラムの面積に比べて、減圧
弁内帑の冷媒の体積が減少するので、ポンプ作用を高め
ることができる。
Further, by disposing the cylindrical space closing member inside the coil spring disposed in the back pressure side cavity of the pressure reducing valve, the volume of the refrigerant in the pressure reducing valve inner pocket is reduced as compared with the area of the diaphragm. Therefore, the pumping action can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す天然ガスエンジンの
要部の概略図
FIG. 1 is a schematic view of a main part of a natural gas engine showing an embodiment of the present invention.

【図2】 同上実施例における減圧弁の断面図FIG. 2 is a sectional view of a pressure reducing valve according to the above embodiment.

【図3】 減圧弁の作用を示す図FIG. 3 is a diagram showing the action of the pressure reducing valve.

【図4】 本発明の他の実施例を示す減圧弁の断面図FIG. 4 is a sectional view of a pressure reducing valve showing another embodiment of the present invention.

【図5】 本発明のさらに他の実施例を示す減圧弁の断
面図
FIG. 5 is a sectional view of a pressure reducing valve showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ボンベ 2 減圧弁 3 燃料噴射弁 4 カバー 5 冷却空間 6A,6B 連通路 7A,7B 逆止弁 25 弁体 27 ダイアフラム 28 背圧側空洞部 29 コイルスプリング 31 スプリングガイド 34 仕切板 35 空間閉塞部材(大型スプリングガイド) 1 cylinder 2 pressure reducing valve 3 fuel injection valve 4 cover 5 cooling space 6A, 6B communication passage 7A, 7B check valve 25 valve body 27 diaphragm 28 back pressure side cavity 29 coil spring 31 spring guide 34 partition plate 35 space blocking member (large size) Spring guide)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲田 英二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Inada 2 Takara-cho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ガス燃料を減圧する減圧弁と、減圧された
ガス燃料をエンジンに噴射供給する燃料噴射弁とを備え
るガスエンジンにおいて、 減圧弁の背圧側空洞部に冷媒を満たす一方、燃料噴射弁
を囲んで冷却空間を形成し、減圧弁の背圧側空洞部と燃
料噴射弁の冷却空間とを連通する2本の連通路を設け
て、これらの連通路にそれぞれ逆止弁を介装し、減圧弁
の背圧側空洞部と燃料噴射弁の冷却空間との間で冷媒を
循環させる構成としたことを特徴とするガスエンジンの
燃料噴射弁冷却装置。
1. A gas engine comprising a pressure reducing valve for reducing the pressure of gas fuel and a fuel injection valve for injecting the reduced pressure gas fuel to the engine, wherein the back pressure side cavity of the pressure reducing valve is filled with refrigerant while fuel injection is performed. A cooling space is formed by surrounding the valve, and two communication passages that connect the back pressure side cavity of the pressure reducing valve and the cooling space of the fuel injection valve are provided, and check valves are respectively provided in these communication passages. A fuel injection valve cooling device for a gas engine, wherein a refrigerant is circulated between a back pressure side cavity of the pressure reducing valve and a cooling space of the fuel injection valve.
【請求項2】前記減圧弁は、ガス燃料の通路を開閉する
弁体と、この弁体に連結されて弁体下流側の圧力を弁体
閉方向に受けるダイアフラムと、このダイアフラムを弁
体開方向に付勢するコイルスプリングとを含んで構成さ
れ、前記背圧側空洞部は、ガス燃料の通路とはダイアフ
ラムにより仕切られてコイルスプリングが配置されてい
ることを特徴とする請求項1記載のガスエンジンの燃料
噴射弁冷却装置。
2. The pressure reducing valve comprises a valve body for opening and closing a passage for gas fuel, a diaphragm connected to the valve body for receiving pressure on a downstream side of the valve body in a valve body closing direction, and the diaphragm for opening the valve body. 2. The gas according to claim 1, further comprising a coil spring biased in a direction, wherein the back pressure side cavity is separated from a gas fuel passage by a diaphragm, and the coil spring is arranged. Engine fuel injector cooling system.
【請求項3】前記減圧弁の背圧側空洞部内に配置された
コイルスプリングの外側を円筒状の仕切板で囲んだこと
を特徴とする請求項2記載のガスエンジンの燃料噴射弁
冷却装置。
3. The fuel injection valve cooling device for a gas engine according to claim 2, wherein the coil spring disposed inside the back pressure side cavity of the pressure reducing valve is surrounded by a cylindrical partition plate.
【請求項4】前記減圧弁の背圧側空洞部内に配置された
コイルスプリングの内側に円柱状の空間閉塞部材を配置
したことを特徴とする請求項2記載のガスエンジンの燃
料噴射弁冷却装置。
4. A fuel injection valve cooling device for a gas engine according to claim 2, wherein a cylindrical space closing member is arranged inside the coil spring arranged in the back pressure side cavity of the pressure reducing valve.
JP06121387A 1994-06-02 1994-06-02 Gas engine fuel injector cooling system Expired - Fee Related JP3102266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06121387A JP3102266B2 (en) 1994-06-02 1994-06-02 Gas engine fuel injector cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06121387A JP3102266B2 (en) 1994-06-02 1994-06-02 Gas engine fuel injector cooling system

Publications (2)

Publication Number Publication Date
JPH07332194A true JPH07332194A (en) 1995-12-22
JP3102266B2 JP3102266B2 (en) 2000-10-23

Family

ID=14809945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06121387A Expired - Fee Related JP3102266B2 (en) 1994-06-02 1994-06-02 Gas engine fuel injector cooling system

Country Status (1)

Country Link
JP (1) JP3102266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028396A (en) * 2001-07-23 2003-01-29 Ito Koki Kk Vaporizer for liquefied gas
WO2007126562A1 (en) * 2006-04-27 2007-11-08 Caterpillar Inc. Engine and method for operating an engine
CN102425518A (en) * 2011-11-21 2012-04-25 重庆潍柴发动机厂 Marine diesel injector cooling unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028396A (en) * 2001-07-23 2003-01-29 Ito Koki Kk Vaporizer for liquefied gas
WO2007126562A1 (en) * 2006-04-27 2007-11-08 Caterpillar Inc. Engine and method for operating an engine
US7415946B2 (en) 2006-04-27 2008-08-26 Caterpillar Inc. Engine and method for operating an engine
GB2450294A (en) * 2006-04-27 2008-12-17 Caterpillar Inc Engine and method for operating an engine
GB2450294B (en) * 2006-04-27 2010-11-03 Caterpillar Inc Engine and method for operating an engine
CN102425518A (en) * 2011-11-21 2012-04-25 重庆潍柴发动机厂 Marine diesel injector cooling unit

Also Published As

Publication number Publication date
JP3102266B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
CA2313560A1 (en) Capacity control of compressors
US7128541B2 (en) Oscillating displacement pump
ES2596304T3 (en) Refrigerant system that discharges a branch in the evaporator inlet
US6857280B1 (en) Air conditioner
JP3413385B2 (en) Switching valve for refrigerant flow path
JPH07332194A (en) Fuel injection valve cooling device of gas engine
EP0652123A1 (en) Refrigerating system with auxiliary compressor-cooling device
JP2006057635A (en) Mounting arrangement for electric water pump
KR980700917A (en) A heating system for a vehicle
JPS6338697A (en) Rotary compressor
US5647731A (en) Air compressor
US7165569B2 (en) Safety shut-off device
JPH09158724A (en) Circulating water passage structure for vehicle
JP4151881B2 (en) Engine cooling system
JPH08144984A (en) Motor-driven compressor for heat pump
KR100565520B1 (en) Refrigeration cycle device with linear compressor and control method thereof
JP4039134B2 (en) Valve device used in refrigeration cycle equipment
EP3012454B1 (en) Control valve
KR200337486Y1 (en) A boiler with the defference of hydraulic pressure type a 3-way valve
JPH02248787A (en) Temperature control valve
JPH01269865A (en) Refrigerating device
JP2008157143A (en) Cooling device for internal combustion engine
JP2020133657A (en) Fluid valve device
JPH106758A (en) Flow adjusting method and device in heating system for vehicle
JPH0510614A (en) Screw refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees