JPH07332132A - Post-start idle speed control method for internal combustion engine - Google Patents

Post-start idle speed control method for internal combustion engine

Info

Publication number
JPH07332132A
JPH07332132A JP12850294A JP12850294A JPH07332132A JP H07332132 A JPH07332132 A JP H07332132A JP 12850294 A JP12850294 A JP 12850294A JP 12850294 A JP12850294 A JP 12850294A JP H07332132 A JPH07332132 A JP H07332132A
Authority
JP
Japan
Prior art keywords
amount
predetermined
engine
idle speed
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12850294A
Other languages
Japanese (ja)
Inventor
Hidehiko Asakuma
英彦 朝熊
Yasuhisa Ichikawa
泰久 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12850294A priority Critical patent/JPH07332132A/en
Publication of JPH07332132A publication Critical patent/JPH07332132A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To establish a control method which can prevent the engine speed from heightening too much temporarily immediately after the start of engine, eliminates risk of generation of undershoot thereafter, and ensures stable behavior of the engine speed after the start. CONSTITUTION:When the engine speed NE becomes over the specified value (500rpm) after the starting operation (Step 46), the specified amount CIRED is determined (Step 54) to decrease the bypass suction amount according to the engine temp. THW, and also the specified period CTCUT for decreasing is determined (Step 55), and the bypass suction amount is decreased by this amount CIRBD for the period CTCUT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の始動後アイ
ドル回転数制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the idle speed of an internal combustion engine after starting.

【0002】[0002]

【従来の技術】特開昭60−19937号公報で内燃機
関の始動後アイドル回転数制御方法について説明されて
いるが、この方法によると始動後からの経過時間によっ
てアイドル速度制御弁ISCVの始動後増量を低下させ
る方法をとっているが、この方法においては内燃機関温
度が高い場合に、図1の1に示すように始動直後の回転
数が高くなる傾向(フレアー)にあり、高すぎると違和
感があり内燃機関によっては問題となる場合がある。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 60-19937 describes a method for controlling the idle speed of an internal combustion engine after starting. According to this method, the idle speed control valve ISCV is started depending on the elapsed time from the start. Although the method of reducing the amount of increase is adopted, in this method, when the internal combustion engine temperature is high, the rotational speed immediately after starting tends to be high (flare) as shown in 1 of FIG. There may be a problem depending on the internal combustion engine.

【0003】この対策としてはISCVの始動後増量を
無くした場合が図1の2であるが、フレアーの減り方が
少ない割に、その後のアンダーシュートが出てしまい、
これも違和感がある。
As a countermeasure against this, the case where the increase in the amount of ISCV after starting is eliminated is 2 in FIG. 1. However, although the flare is reduced less, an undershoot after that occurs,
This also feels strange.

【0004】[0004]

【発明が解決しようとする課題】このように、上記従来
技術では内燃機関温度が高い場合の始動時のエンジン発
生トルクが大きいため、始動直後にエンジン回転数が一
時的に高くなり過ぎる(フレア)場合がある。しかし、
従来技術では始動直後の空気量を、フレアを低下させる
ためだけに制御できないため、始動直後の空気量低下
は、フレアの低下効果が少ない割に、その後のアンダー
ショートが発生し、両立が困難であった。
As described above, according to the above-mentioned prior art, since the engine generated torque at the time of starting when the internal combustion engine temperature is high, the engine speed temporarily becomes too high immediately after starting (flare). There are cases. But,
In the conventional technology, the amount of air immediately after starting cannot be controlled only to reduce flare, so the amount of air immediately after starting is less effective for flare reduction, but after that, an under short circuit occurs and it is difficult to achieve both. there were.

【0005】そこで、本発明はフレアの低下効果を十分
に発揮すると共に、その後のアンダーシュートを発生さ
せず、図1の3に示すように安定した始動後エンジン回
転数挙動となるような制御法を提供することを目的とす
る。
Therefore, the present invention sufficiently exerts the flare reduction effect, does not cause the undershoot thereafter, and exhibits a stable engine speed behavior after starting as shown by 3 in FIG. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】そのため本発明は、内燃
機関の吸気バイパス通路の吸気量を調節して、内燃機関
のアイドル回転数を制御するものにおいて、始動操作
後、所定機関回転数に到達した時、内燃機関の温度に応
じて、前記バイパス吸気量を所定期間、所定量低下させ
ることを特徴とする内燃機関の始動後アイドル回転数制
御方法を提供するものである。
SUMMARY OF THE INVENTION Therefore, according to the present invention, the amount of intake air in the intake bypass passage of the internal combustion engine is adjusted to control the idle speed of the internal combustion engine. In this case, there is provided a method for controlling a post-start idle speed of an internal combustion engine, characterized in that the bypass intake air amount is decreased by a predetermined amount for a predetermined period according to the temperature of the internal combustion engine.

【0007】[0007]

【作用】これにより、始動操作後において所定機関回転
数に到達すると、バイパス吸気量が、機関温度に応じ
て、所定期間、所定量だけ低下される。
As a result, when the predetermined engine speed is reached after the start operation, the bypass intake air amount is reduced by a predetermined amount for a predetermined period according to the engine temperature.

【0008】[0008]

【実施例】本発明の一実施例の構成を図2に示す。電子
制御ユニットECU10では機関冷却水温を検出する水
温センサ11の出力をA/Dコンバータ12を介して、
また機関カム軸に取付けられた回転角センサ13の出力
をI/Oポート14を介して、各々CPU15に入力し
て内燃機関(エンジン)が要求する燃料量、点火時期を
演算して出力段のトランジスタ16等を介してアクチュ
エータ18等を駆動して燃料、点火時期を制御してい
る。アクチュエータ18等は図示しないインジェクタ、
イグナイタ等である。
FIG. 2 shows the configuration of one embodiment of the present invention. The electronic control unit ECU 10 outputs the output of the water temperature sensor 11 for detecting the engine cooling water temperature via the A / D converter 12.
Further, the output of the rotation angle sensor 13 attached to the engine camshaft is input to the CPU 15 via the I / O port 14 to calculate the fuel amount and ignition timing required by the internal combustion engine (engine) to calculate the output stage. The actuator 18 and the like are driven via the transistor 16 and the like to control fuel and ignition timing. The actuator 18 and the like are injectors (not shown),
Such as an igniter.

【0009】一方、アイドル回転数制御用のアイドル速
度制御弁ISCV19は吸気管22の絞り弁23をバイ
パスするバイパス通路20に設置されており、ISCV
19内のソレノイドコイル19aに、CPU15の演算
結果に基づき出力段のトランジスタ17を介して電流を
流すことで、バイパス通路20の面積を制御すること
で、エンジン24のシリンダ21に吸入される空気量を
調節してアイドル回転数制御を行う。
On the other hand, the idle speed control valve ISCV19 for controlling the idle speed is installed in the bypass passage 20 that bypasses the throttle valve 23 of the intake pipe 22.
Amount of air taken into the cylinder 21 of the engine 24 by controlling the area of the bypass passage 20 by causing a current to flow through the solenoid coil 19a in the valve 19 through the transistor 17 of the output stage based on the calculation result of the CPU 15. To control the idle speed.

【0010】本発明の制御状態、回転数挙動を図3に示
す。スタータスイッチをONして(図3の31)クラン
キングし、エンジン24に燃料を供給し、点火が実行さ
れると、燃焼が発生して、機関回転数は上昇して所定値
(図3の32)に達すると、短期間(図3の36)遅延
してISCV19の開度は所定の期間(図3の34)だ
け所定の量(図3の33)だけ現在の開度から閉じる方
向へ制御される。結果として、本制御の無い場合に比べ
て、エンジン回転数の上昇時の燃焼トルクが低下して始
動直後のエンジン回転数のフレアが図3の35の分だけ
低下し、違和感の無い始動フィーリングとなる。
The control state and the rotational speed behavior of the present invention are shown in FIG. When the starter switch is turned on (31 in FIG. 3) to perform cranking, fuel is supplied to the engine 24, and ignition is executed, combustion occurs, the engine speed increases, and the engine speed increases to a predetermined value (see FIG. 3). 32), the opening of the ISCV 19 is delayed for a short period of time (36 in FIG. 3) for a predetermined period (34 in FIG. 3) and a predetermined amount (33 in FIG. 3) from the current opening toward the closing direction. Controlled. As a result, compared to the case without this control, the combustion torque when the engine speed increases and the flare of the engine speed immediately after the start is decreased by 35 in FIG. 3, and the start feeling is comfortable. Becomes

【0011】以下本実施例のフローチャートを図4にて
説明する。ECU10内のCPU15で64ms毎に本
制御はステップ41から実行される。ステップ42以降
ステップ47までは、始動判定用のフラグXCSTEM
Sを制御する部分であり、ステップ42で始動後状態X
CSTEMS=1の時はステップ43で機関回転数NE
が300rpmより小さい時にはステップ44に進んで
XCSTEMS=0として始動状態判定にする。一方、
ステップ42で始動状態であった時は、ステップ46で
機関回転数NEが500rpm以上であれば、ステップ
47に進んでXCSTEMS=1として始動後状態判定
にする。
The flow chart of this embodiment will be described below with reference to FIG. This control is executed by the CPU 15 in the ECU 10 from step 41 every 64 ms. From step 42 to step 47, the flag XCSTEM for start determination
This is a part for controlling S, and the state X after starting is determined in step 42.
When CSTEMS = 1, in step 43 the engine speed NE
Is less than 300 rpm, the routine proceeds to step 44, where XCSTEMS = 0 and the starting state is judged. on the other hand,
If the engine speed NE is 500 rpm or more in step 46 when the engine is in the starting state in step 42, the process proceeds to step 47, in which XCSTEMS = 1 is set and the post-starting state determination is performed.

【0012】次に、ステップ51に移行してXCSTE
MS=1であればステップ52に進んで始動後経過時間
カウンタCCASTを64ms分カウントアップする。
次にステップ53で始動後経過時間CCASTが256
ms以上の時はステップ54に進んで、ISCV19の
フレア補正値CIREDを水温THWに応じて(水温T
HWが所定値以上になると、水温の増加に応じてフレア
補正値CIREDが折れ線的に増大するように)決定す
る。次に、ステップ55ではフレア補正値カット時間C
TCUTを同様に水温に応じて(水温THWが所定値以
上になると、水温の増加に応じてCTCUTが折れ線的
に減少するように)決定する。ここで、始動後経過時間
CCASTが256ms未満の短時間の間フレア補正値
CIREDを設定しない(CIREDを0のままとす
る)のは、始動直後のバイパス吸気量の減量による機関
回転数の減り過ぎを防止するためである。
Next, in step 51, the XCSTE
If MS = 1, the routine proceeds to step 52, where the elapsed time counter CSTART after starting is counted up by 64 ms.
Next, in step 53, the elapsed time CSTART after the start is 256
When the time is longer than ms, the routine proceeds to step 54, where the flare correction value CIRED of ISCV19 is set according to the water temperature THW (water temperature TW).
When HW becomes equal to or larger than a predetermined value, the flare correction value CIRED is determined so as to increase linearly according to the increase in water temperature. Next, at step 55, flare correction value cut time C
Similarly, TCUT is determined according to the water temperature (when the water temperature THW becomes a predetermined value or more, the CTCUT decreases linearly according to the increase of the water temperature). Here, the flare correction value CIRED is not set (the CIRED is kept at 0) for a short time of less than 256 ms after the start-up elapsed time CAST is because the engine speed is excessively reduced due to the reduction of the bypass intake amount immediately after the start. This is to prevent

【0013】次のステップ56、57では、始動後経過
時間CCASTがCTCUT+256msを超えていれ
ばフレア補正値CIREDは0となる。次のステップ5
8ではISCV19の駆動最終デューティCIOPAを
他の係数a(学習値、始動後増量、暖機増量等)からフ
レア補正値CIREDを引き算することで求め、この駆
動最終デューティCIOPAにてISCV19を駆動し
てバイパス通路20を流れる吸気量を制御する。ここ
で、他の係数aのうち始動後増量は、特開昭60─19
937号公報に記載されるものと同様に、機関始動操作
時にバイパス空気量を水温に応じて増加させ、機関始動
後(機関回転数NEが500rpm以上)、所定時間経
過毎に所定量ずつ、増加させた空気量を目標空気量まで
減少させるものである。
In the next steps 56 and 57, the flare correction value CIRED becomes 0 if the post-start elapsed time CAST exceeds CTCUT + 256 ms. Next step 5
In 8, the drive final duty CIOPA of the ISCV19 is obtained by subtracting the flare correction value CIRED from the other coefficient a (learning value, increase after starting, increase in warm-up, etc.), and the ISCV19 is driven by this drive final duty CIOPA. The amount of intake air flowing through the bypass passage 20 is controlled. Here, among the other coefficients a, the amount of increase after the start is disclosed in JP-A-60-19.
Similarly to the one described in Japanese Patent No. 937, the bypass air amount is increased in accordance with the water temperature during the engine starting operation, and after the engine is started (the engine speed NE is 500 rpm or more), the bypass air amount is increased by a predetermined amount each time a predetermined time elapses. The amount of air thus made is reduced to the target amount of air.

【0014】なお、上記の始動後の回転数フレア制御方
法においては、高地においては吸入空気重量の低下に伴
い、燃焼トルクの低下が発生するためフレアは小さくな
るので、大気圧に応じてフレア補正値CIREDの作動
期間、量を低下させることにより、より緻密なフレア補
正が可能となる。具体的には図5に示すようにステップ
54の後にステップ65、66を追加して、フレア補正
値CIREDの大気圧PMHACによる作動量補正を、
大気圧が低圧ほどCIREDの作動量が少なくなるよう
に実施する。さらに、ステップ55の後にステップ6
9、70を追加して、フレア補正値CIREDの大気圧
PMHACによる作動期間補正を、大気圧が低圧ほど作
動期間CTCUTが少なくなるように実施する。
In the post-startup rotation speed flare control method described above, flare correction is performed according to atmospheric pressure because flare is reduced at high altitudes due to a decrease in combustion torque with a decrease in intake air weight. By decreasing the operation period and the amount of the value CIRED, more precise flare correction can be performed. Specifically, as shown in FIG. 5, steps 65 and 66 are added after step 54 to correct the operation amount of the flare correction value CIRED by the atmospheric pressure PMHAC.
The operation is performed so that the lower the atmospheric pressure, the smaller the operating amount of CIRED. Further, after step 55, step 6
9, 70 are added, and the operating period correction of the flare correction value CIRED by the atmospheric pressure PMHAC is performed so that the operating period CTCUT becomes shorter as the atmospheric pressure becomes lower.

【0015】また、上記の始動後の回転数フレア制御方
法においては、低吸気温において吸入空気重量の増加に
伴い、燃焼トルクの増加が発生するためフレアは大きく
なるので、吸気温度に応じてフレア補正値CIREDの
作動期間、量を増加させることにより、より緻密なフレ
ア補正が可能となる。具体的には図6に示すようにステ
ップ54の後にステップ85、86を追加して、フレア
補正値CIREDの吸気温度THAによる作動量補正
を、吸気温が低温ほどCIREDの作動量が大きくなる
ように実施する。さらに、ステップ55の後にステップ
89、90を追加して、フレア補正値CIREDの吸気
温度THAによる作動期間補正を、吸気温度が低温ほど
作動期間CTCUTが大きくなるように実施する。
Further, in the above-described rotational speed flare control method after starting, the flare becomes large because the combustion torque increases as the intake air weight increases at a low intake temperature, so the flare increases depending on the intake temperature. By increasing the operation period and amount of the correction value CIRED, more precise flare correction can be performed. Specifically, as shown in FIG. 6, steps 85 and 86 are added after step 54 to correct the operation amount of the flare correction value CIRED by the intake air temperature THA so that the operation amount of the CIRED becomes larger as the intake air temperature becomes lower. To implement. Furthermore, steps 89 and 90 are added after step 55, and the operating period correction of the flare correction value CIRED with the intake temperature THA is performed so that the operating period CTCUT becomes longer as the intake temperature becomes lower.

【0016】また、始動後増量、暖機増量等の他の係数
はエンジン機種によっては不要な場合もあり、また、バ
イパス吸気量の機関温度に応じた所定期間、所定量の低
下は、水温に応じて、所定期間と、所定量とのうち一方
のみ変化させるものでもよく、また、所定期間、所定量
を一定値として、水温が所定値以上のときのみバイパス
吸気量の低下を実行するようにしてもよい。
Further, other factors such as the post-start increase and the warm-up increase may not be necessary depending on the engine model, and the decrease of the predetermined amount by the predetermined amount for a predetermined period according to the engine temperature of the bypass intake air amount depends on the water temperature. Accordingly, only one of the predetermined period and the predetermined amount may be changed, and the bypass intake amount may be reduced only when the water temperature is equal to or higher than the predetermined value while the predetermined amount is set to a constant value for the predetermined period. May be.

【0017】[0017]

【発明の効果】以上本発明により、始動直後の回転数上
昇(フレア)を以下のように改善できるという優れた効
果がある。始動後所定期間後、バイパス吸入空気量を所
定期間だけ低下させて始動直後のエンジン発生トルクを
低下させることで、エンジン回転数の上昇を抑えること
が可能であり、バイパス吸入空気量を低下させる期間を
限定しているため、エンジン回転数の上昇後のアンダー
シュートを発生させずに済む。また、高地において、バ
イパス吸入空気量を低下させる期間や量を低下させるこ
とと、低吸気温度において、バイパス吸入空気量を低下
させる期間や量を増加させることで、より緻密な始動直
後のエンジン回転数の上昇制御を実施できる。
As described above, according to the present invention, there is an excellent effect that the increase in rotational speed (flare) immediately after starting can be improved as follows. It is possible to suppress the increase in engine speed by reducing the bypass intake air amount for a predetermined period after the start to reduce the engine generated torque immediately after the start. Since it is limited, undershoot does not occur after the engine speed increases. Also, by reducing the period and amount of reducing the bypass intake air amount at high altitudes and increasing the period and amount of reducing the bypass intake air amount at low intake air temperature, a more precise engine rotation immediately after starting can be performed. It is possible to control the increase of the number.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術と本発明による始動後ISCV開度と
エンジン回転数を対比して示すタイムチャートである。
FIG. 1 is a time chart showing the ISCV opening after starting and the engine speed according to the related art and the present invention.

【図2】本発明の一実施例の構成を示す図である。FIG. 2 is a diagram showing a configuration of an exemplary embodiment of the present invention.

【図3】上記実施例における始動後ISCV開度とエン
ジン回転数を示すタイムチャートである。
FIG. 3 is a time chart showing the ISCV opening after starting and the engine speed in the above embodiment.

【図4】本発明の制御フローの一実施例を示すフローチ
ャートである。
FIG. 4 is a flowchart showing an embodiment of a control flow of the present invention.

【図5】本発明の大気圧を考慮した場合の制御フローの
一実施例を示すフローチャートである。
FIG. 5 is a flowchart showing an embodiment of a control flow in the case of considering atmospheric pressure according to the present invention.

【図6】本発明の吸気温を考慮した場合の制御フローの
一実施例を示すフローチャートである。
FIG. 6 is a flow chart showing an embodiment of a control flow when the intake air temperature of the present invention is taken into consideration.

【符号の説明】[Explanation of symbols]

10 電子制御ユニット(ECU) 11 水温センサ 15 CPU 19 ISCV 20 バイパス通路 22 吸気管 23 絞り弁 24 エンジン 10 Electronic Control Unit (ECU) 11 Water Temperature Sensor 15 CPU 19 ISCV 20 Bypass Passage 22 Intake Pipe 23 Throttle Valve 24 Engine

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の吸気バイパス通路の吸気量を
調節して、内燃機関のアイドル回転数を制御するものに
おいて、始動操作後、所定機関回転数に到達した時、内
燃機関の温度に応じて、前記バイパス吸気量を所定期
間、所定量低下させることを特徴とする内燃機関の始動
後アイドル回転数制御方法。
1. An engine for controlling an idle speed of an internal combustion engine by adjusting an intake air amount of an intake bypass passage of the internal combustion engine, wherein when a predetermined engine speed is reached after a starting operation, the temperature of the internal combustion engine is changed according to a temperature of the internal combustion engine. Then, the bypass intake air amount is decreased by a predetermined amount for a predetermined period, and a post-start idle speed control method for an internal combustion engine.
【請求項2】 前記バイパス吸気量を所定期間、所定量
低下させる場合の前記所定期間、または前記所定量が、
大気圧が低い程、短くまたは、少量に設定されている請
求項1記載の始動後アイドル回転数制御方法。
2. The predetermined period, or the predetermined amount when the bypass intake air amount is decreased by a predetermined period, a predetermined amount,
The post-start idle speed control method according to claim 1, wherein the lower the atmospheric pressure, the shorter or the smaller the atmospheric pressure is set.
【請求項3】 前記バイパス吸気量を所定期間、所定量
低下させる場合の前記所定期間、または前記所定量が、
内燃機関の吸気温度が低い程、長くまたは多量に設定さ
れている請求項1または2記載の始動後アイドル回転数
制御方法。
3. The predetermined period, or the predetermined amount when the bypass intake air amount is decreased by a predetermined period, a predetermined amount,
3. The post-start idle speed control method according to claim 1, wherein the lower the intake air temperature of the internal combustion engine, the longer or more the intake air temperature is set.
【請求項4】 前記バイパス吸気量を所定期間、所定量
低下させる場合の前記所定期間は、機関温度の増加に応
じて、減少するように設定されている請求項1または2
または3記載の始動後アイドル回転数制御方法。
4. The predetermined period when the bypass intake amount is reduced by a predetermined amount for a predetermined period, the predetermined period is set to decrease in accordance with an increase in engine temperature.
Alternatively, the post-startup idle speed control method described in 3 above.
【請求項5】 前記バイパス吸気量を所定期間、所定量
低下させる場合の前記所定量は、この機関温度増加に応
じて増大するように設定されている請求項1〜4のうち
いずれか1つに記載の始動後アイドル回転数制御方法。
5. The predetermined amount for decreasing the bypass intake air amount by a predetermined amount for a predetermined period is set so as to increase in accordance with the increase in the engine temperature. The method for controlling idle speed after starting as described in.
【請求項6】 前記バイパス吸気量の前記所定期間、所
定量の低下は、機関温度が所定値以下のとき実質的に禁
止される請求項1〜5のうちいずれか1つに記載の始動
後アイドル回転数制御方法。
6. The post-startup according to claim 1, wherein the reduction of the bypass intake air amount by the predetermined amount during the predetermined period is substantially prohibited when the engine temperature is below a predetermined value. Idle speed control method.
【請求項7】 前記バイパス吸気量の前記所定期間、所
定量の低下は、前記所定機関回転数に到達してから短期
間延遅して実行する請求項1〜6のうちいずれか1つに
記載の始動後アイドル回転数制御方法。
7. The reduction of the bypass intake amount by the predetermined amount during the predetermined period is delayed for a short period after reaching the predetermined engine speed, and executed. Idle speed control method after starting.
JP12850294A 1994-06-10 1994-06-10 Post-start idle speed control method for internal combustion engine Withdrawn JPH07332132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12850294A JPH07332132A (en) 1994-06-10 1994-06-10 Post-start idle speed control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12850294A JPH07332132A (en) 1994-06-10 1994-06-10 Post-start idle speed control method for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07332132A true JPH07332132A (en) 1995-12-22

Family

ID=14986335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12850294A Withdrawn JPH07332132A (en) 1994-06-10 1994-06-10 Post-start idle speed control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07332132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193382A2 (en) 2000-09-29 2002-04-03 Mazda Motor Corporation Engine control system
WO2004013488A1 (en) * 2002-07-31 2004-02-12 Yamaha Hatsudoki Kabushiki Kaisha Automatic choke controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193382A2 (en) 2000-09-29 2002-04-03 Mazda Motor Corporation Engine control system
EP1193382A3 (en) * 2000-09-29 2002-07-24 Mazda Motor Corporation Engine control system
US6651610B2 (en) 2000-09-29 2003-11-25 Mazda Motor Corporation Engine control system
WO2004013488A1 (en) * 2002-07-31 2004-02-12 Yamaha Hatsudoki Kabushiki Kaisha Automatic choke controller

Similar Documents

Publication Publication Date Title
US7281510B2 (en) Apparatus for controlling engine
JP2001032739A (en) Air-fuel ratio control device for internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
JP2002266688A (en) Control device for internal combusion engine
JPH07332132A (en) Post-start idle speed control method for internal combustion engine
JP3586975B2 (en) Idle speed control device for internal combustion engine
JPH0526138A (en) Ignition timing controller
JP2000265880A (en) Intake control device for internal combustion engine
JP2002317681A (en) Control device of internal combustion engine
JP3276976B2 (en) Engine idle speed control method
JP2004353501A (en) Engine control device
JP2002047981A (en) Idle speed controller of internal combustion engine
JPH0914018A (en) Engine revolving speed control method
JP2526547B2 (en) Internal combustion engine controller
JP3425757B2 (en) Engine speed control device for internal combustion engine
JP2007071047A (en) Control device of internal combustion engine
JPH05214995A (en) Idle rotating speed control method for internal combustion engine
JP4477561B2 (en) Control device for internal combustion engine
JP4179837B2 (en) EGR control device
JP2785590B2 (en) Air flow control device for internal combustion engine
JPH04301137A (en) Engine fitted with mechanical supercharger
JP2000257480A (en) Intake air quantity control unit for internal combustion engine
JPS59185843A (en) Idle revolution speed controller
JP2882248B2 (en) Auxiliary air amount control device for internal combustion engine
JPH04203265A (en) Ignition timing control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904