JPH07332020A - Repowering system for steam power plant - Google Patents

Repowering system for steam power plant

Info

Publication number
JPH07332020A
JPH07332020A JP12335794A JP12335794A JPH07332020A JP H07332020 A JPH07332020 A JP H07332020A JP 12335794 A JP12335794 A JP 12335794A JP 12335794 A JP12335794 A JP 12335794A JP H07332020 A JPH07332020 A JP H07332020A
Authority
JP
Japan
Prior art keywords
gas cooler
pressure stack
turbine
stack gas
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12335794A
Other languages
Japanese (ja)
Inventor
Nobuo Okita
信雄 沖田
Yasuhisa Tanaka
泰久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12335794A priority Critical patent/JPH07332020A/en
Publication of JPH07332020A publication Critical patent/JPH07332020A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To feed exhaust gas from a boiler to a high pressure stack gas cooler and a low pressure stack gas cooler for heating feed water in a steam turbine system and to control exhaust gas quantity to the high pressure stack gas cooler so as to reduce stored heat in the high pressure stack gas cooler in the case of a partial load by additionally arranging a gas turbine plant in a steam power plant. CONSTITUTION:In a steam power plant consisting of a boiler 1, a high pressure turbine 3, an intermediate pressure turbine 7, a low pressure turbine 9, a generator 10, low pressure feed water heaters 14a-14c, high pressure feed water heaters 18a-18c, and the like, a gas turbine plant consisting of an air compressor 20, a combustor 21, a gas turbine 22, a gas turbine generator 23, and the like is additionally provided. In addition, exhaust gas discharged from the boiler 1 is distributed to a high pressure stack gas cooler 25 and a bypass duct 28 by means of a controller comprising a gas damper 27 and is gathered again so as to be led to a low pressure stack gas cooler 26. This distribution quantity is controlled according to a load, and a feed water temperature at the boiler inlet is lowered so that stored heat quantity in the high pressure stack gas cooler 25 during a low load is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汽力発電設備のリパワ
リングシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repowering system for steam power generation equipment.

【0002】[0002]

【従来の技術】既設汽力発電設備にガスタービンプラン
トを追設し、ガスタービンの排気をボイラの燃焼用空気
として使用するとともに、ボイラの排ガスの有する熱を
蒸気タービンサイクル系に回収するようにして排気再燃
型コンバインドサイクルを構成したリパワリングシステ
ムは一般に知られている。そして、この種のリパワリン
グシステムは、以下のような特長を有している。
2. Description of the Related Art A gas turbine plant has been added to an existing steam power generation facility so that the exhaust gas of a gas turbine is used as combustion air for a boiler and the heat of the exhaust gas of the boiler is recovered by a steam turbine cycle system. A repowering system that constitutes an exhaust gas reburn type combined cycle is generally known. And this kind of repowering system has the following features.

【0003】第1に、既設の発電プラントをコンバイン
ド化することにより発電効率を向上させることができ
る。第2に、ガスタービンを追設するため、発電所全体
としての発生電力量を増加させることができる。第3
に、既設汽力発電設備の改造部分を少なくできるため、
比較的短期間でリパワリングを行なうことができる。
First, the power generation efficiency can be improved by combining an existing power generation plant. Secondly, since the gas turbine is additionally installed, it is possible to increase the amount of electric power generated in the power plant as a whole. Third
In addition, because it is possible to reduce the modification part of the existing steam power generation equipment,
Repowering can be performed in a relatively short period of time.

【0004】ところで、近年の大幅な電力需要の伸び、
それに伴なう各電力会社の電力予備率の低下、これに対
処するために新たな発電所を早急に建設することの困難
さ等の問題があり、リパワリングシステムは、現状にお
けるこれらの問題に対処できる有効な手段の一つである
と考えられる。
By the way, in recent years, a significant increase in the demand for electric power,
As a result, there are problems such as a reduction in the power reserve ratio of each power company, and difficulty in constructing a new power plant as soon as possible to deal with this.The repowering system addresses these issues at present. It is considered to be one of the effective means that can be done.

【0005】図5は、汽力発電設備にガスタービンプラ
ントを追設し、排気再燃型コンバインドサイクルを構成
した従来のリパワリングシステムの構成図である。この
リパワリングシステムは、ボイラ1、高圧タービン3、
再熱器5、中圧タービン7、低圧タービン9、発電機1
0、復水器11、復水ポンプ12、低圧給水加熱器14
a,14b,14c,脱気器15、給水ポンプ17、高
圧給水加熱器18a,18b,18cを主構成機器とす
る従来の汽力発電設備に、空気圧縮機20、燃焼器2
1、ガスタービン22、ガスタービン発電機23、ガス
ダンパー24等で構成されるガスタービンプラントを追
設して構成されたものである。なお、2は主蒸気管、4
は低温再熱管、6は高温再熱管、8はクロスオーバ管、
13は復水管である。また、このリパワリングシステム
は、ガスタービン22の排気をボイラ1の燃焼用空気と
して利用するため空気予熱器は不要となる。さらに、ボ
イラ1の高温の排ガスを有効利用するため、また高温の
排ガスをそのまま煙突から放出することができないた
め、排ガスの温度を下げる目的で、高圧スタックガスク
ーラ25および低圧スタックガスクーラ26が追設され
ている。
FIG. 5 is a block diagram of a conventional repowering system in which a gas turbine plant is additionally installed in a steam power generation facility to construct an exhaust gas reburn type combined cycle. This repowering system consists of a boiler 1, a high pressure turbine 3,
Reheater 5, medium pressure turbine 7, low pressure turbine 9, generator 1
0, condenser 11, condenser pump 12, low pressure feed water heater 14
a, 14b, 14c, deaerator 15, feed water pump 17, high-pressure feed water heater 18a, 18b, 18c in the conventional steam power generation equipment as a main component equipment, an air compressor 20, a combustor 2
1, a gas turbine 22, a gas turbine generator 23, a gas damper 24, and the like. 2 is the main steam pipe, 4
Is a low temperature reheat tube, 6 is a high temperature reheat tube, 8 is a crossover tube,
Reference numeral 13 is a condensate pipe. Further, in this repowering system, the exhaust gas of the gas turbine 22 is used as the combustion air of the boiler 1, so that the air preheater is not required. Further, since the high temperature exhaust gas of the boiler 1 is effectively used and the high temperature exhaust gas cannot be discharged from the chimney as it is, a high pressure stack gas cooler 25 and a low pressure stack gas cooler 26 are additionally provided for the purpose of lowering the temperature of the exhaust gas. ing.

【0006】この高圧スタックガスクーラ25は、給水
管16から分岐した水とボイラ1の排ガスとの熱交換を
行なって給水を加熱し、昇温した給水を再び蒸気タービ
ンサイクル系に戻している。また、低圧スタックガスク
ーラ26は、復水管13から分岐した水とボイラ1の排
ガスとの熱交換を行なって復水を加熱し、昇温した復水
を再び蒸気タービンサイクル系に戻している。
The high-pressure stack gas cooler 25 exchanges heat between the water branched from the water supply pipe 16 and the exhaust gas of the boiler 1 to heat the supplied water, and returns the heated supply water to the steam turbine cycle system again. The low-pressure stack gas cooler 26 heats the condensate by exchanging heat between the water branched from the condensate pipe 13 and the exhaust gas of the boiler 1, and returns the heated condensate to the steam turbine cycle system again.

【0007】[0007]

【発明が解決しようとする課題】図5に示す従来のリパ
ワリングシステムにおいて、ガスタービン22は、常に
一定回転をしているため、空気圧縮機20で圧縮される
空気量は、部分負荷においてもさほど変化はない。した
がって、ボイラ1より高圧スタックガスクーラ25へ排
出される部分負荷時の排ガス量も定格運転時とさほど変
化はない。
In the conventional repowering system shown in FIG. 5, since the gas turbine 22 is constantly rotating, the amount of air compressed by the air compressor 20 is small even at partial load. There is no change. Therefore, the amount of exhaust gas discharged from the boiler 1 to the high-pressure stack gas cooler 25 at the time of partial load does not change much from that at the time of rated operation.

【0008】一方、蒸気タービンサイクル系をみると、
部分負荷になると、蒸気タービンサイクルでは、負荷に
応じて復水管13や給水管16を流れる水の量は減少し
てくる。また、直列に構成された高圧スタックガスクー
ラ25と低圧スタックガスクーラ26における収熱量
は、排ガス量と伝熱特性により決まる。
On the other hand, looking at the steam turbine cycle system,
When the partial load is reached, in the steam turbine cycle, the amount of water flowing through the condensate pipe 13 and the water supply pipe 16 decreases depending on the load. In addition, the amount of heat collected in the high pressure stack gas cooler 25 and the low pressure stack gas cooler 26 that are configured in series is determined by the amount of exhaust gas and the heat transfer characteristics.

【0009】この結果、部分負荷では、高圧スタックガ
スクーラ25の出口給水温度が上がり過ぎ、ボイラ1の
節炭器内でスチーミングが発生するおそれがある。そこ
で、従来のリパワリングシステムの運転においては、高
圧スタックガスクーラ25の出口給水温度がスチーミン
グ限界を越えない負荷までを連続運転負荷とするため、
最低負荷が50%以上となりかなり高くなるので、夜間
等の電力需要の低い期間等には対応できず、運用性を損
なうという欠点があった。また、最低負荷を引下げるた
めに、高圧スタックガスクーラ出口から分岐して復水器
11へつなぐ配管及び調整弁を新たに設け、低負荷にお
いては、高圧ガスクーラ出口から復水器へ給水の一部を
再循環させることにより、高圧ガスクーラでの給水量を
増加させ、高圧ガスクーラ出力給水温度を下げる方法が
とられているが、この方法は復水器へ高温の給水が連続
的に長時間流入するため、復水器の信頼性低下、ないし
は復水器保護のための改造が必要になるという問題があ
った。
As a result, at a partial load, the outlet feed water temperature of the high-pressure stack gas cooler 25 rises too much, and steaming may occur in the economizer of the boiler 1. Therefore, in the operation of the conventional repowering system, the continuous operation load is set up to the load at which the outlet water temperature of the high pressure stack gas cooler 25 does not exceed the steaming limit.
Since the minimum load is 50% or more, which is considerably high, there is a drawback that it cannot cope with a period of low power demand such as nighttime and impairs operability. Also, in order to reduce the minimum load, a pipe and a regulating valve that branch from the high pressure stack gas cooler outlet and connect to the condenser 11 are newly provided. At low load, a part of the water supply from the high pressure gas cooler outlet to the condenser is provided. By recirculating water, the amount of water supplied by the high-pressure gas cooler is increased and the high-pressure gas cooler output water temperature is lowered, but this method continuously flows hot water into the condenser for a long time. As a result, there was a problem that the reliability of the condenser deteriorated or that the condenser had to be modified to protect it.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的は部分負荷における高圧スタックガスク
ーラの収熱を従来より低下させる汽力発電設備のリパワ
リングシステムを提供することであり、他の目的はボイ
ラ節炭器内でスチーミングが発生する最低負荷を引き下
げ、運用性を向上させる汽力発電設備のリパワリングシ
ステムを提供することである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a repowering system for a steam power generation facility that lowers the heat collection of a high pressure stack gas cooler under partial load as compared with the conventional one. The objective is to provide a repowering system for steam power generation equipment that reduces the minimum load that steaming occurs in the boiler economizer and improves operability.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1は、汽力発電設備にガスタービン
プラントを追設し、ガスタービン排気をボイラの燃焼用
空気として使用するとともにボイラの排ガスを蒸気ター
ビンサイクル系の給水を加熱する高圧スタックガスクー
ラおよび低圧スタックガスクーラに供給して排気再燃型
コンバインドサイクルを構成する汽力発電設備のリパワ
リングシステムにおいて、当該汽力発電設備の部分負荷
運転時に前記高圧スタックガスクーラへの排ガス量を制
御する排ガス制御装置を設けたことを特徴とする。
In order to achieve the above object, according to claim 1 of the present invention, a gas turbine plant is additionally installed in a steam power generation facility, and the gas turbine exhaust is used as combustion air for a boiler. In a repowering system of a steam power generation facility that supplies exhaust gas from a boiler to a high-pressure stack gas cooler that heats feed water of a steam turbine cycle system and a low-pressure stack gas cooler to form an exhaust gas re-combustion combined cycle, and An exhaust gas control device for controlling the amount of exhaust gas to the high-pressure stack gas cooler is provided.

【0012】本発明の請求項2は、請求項1記載の汽力
発電設備のリパワリングシステムにおいて、前記高圧ス
タックガスクーラにバイパス経路を内蔵し、前記排ガス
を前記バイパス経路にも流通させることにより前記排ガ
ス量を制御することを特徴とする。
A second aspect of the present invention is the repowering system for steam power generation equipment according to the first aspect, wherein the high pressure stack gas cooler has a bypass passage built therein and the exhaust gas is also circulated in the bypass passage. It is characterized by controlling.

【0013】本発明の請求項3は、請求項1また請求項
2記載の汽力発電設備のリパワリングシステムにおい
て、前記高圧スタックガスクーラのバイパス経路に前記
低圧スタックガスクーラを挿入し、当該低圧スタックガ
スクーラへの排ガス量及び復水量をそれぞれ制御する制
御装置を設けたことを特徴とする。
According to a third aspect of the present invention, in the repowering system for steam power generation equipment according to the first or second aspect, the low pressure stack gas cooler is inserted into a bypass path of the high pressure stack gas cooler, and the low pressure stack gas cooler is connected to the low pressure stack gas cooler. It is characterized in that a control device for respectively controlling the exhaust gas amount and the condensate amount is provided.

【0014】[0014]

【作用】本発明の汽力発電設備のリパワリングシステム
によると、部分負荷における高圧スタックガスクーラの
収熱量を従来よりも減少させることにより、ボイラ入口
の給水温度を下げ、節炭器でスチーミングが発生する最
低負荷を引き下げることができる。
According to the repowering system for steam power generation equipment of the present invention, the heat collection amount of the high-pressure stack gas cooler under partial load is reduced as compared with the conventional case, so that the feed water temperature at the boiler inlet is lowered and steaming occurs in the economizer. The minimum load can be reduced.

【0015】[0015]

【実施例】図1は、本発明の一実施例の系統構成図であ
る。なお、図中図5の従来例と同一機器には同一符号を
付してその説明は省略する。同図に示すように、本実施
例が従来例と相違する点は、ボイラ1から排出される排
ガスをガスダンパ27からなる制御装置により高圧スタ
ックガスクーラ25とバイパスダクト28に分配・制御
された後、再び合流して低圧スタックガスクーラ26へ
導くように構成した点のみである。ただし、この分配量
は負荷に応じて制御し、低負荷における高圧スタックガ
スクーラ25での収熱量を減らすように制御される。
FIG. 1 is a system configuration diagram of an embodiment of the present invention. In the figure, the same devices as those in the conventional example of FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted. As shown in the figure, the present embodiment is different from the conventional example in that after the exhaust gas discharged from the boiler 1 is distributed and controlled to the high pressure stack gas cooler 25 and the bypass duct 28 by the control device including the gas damper 27, The only difference is that they are merged again and led to the low pressure stack gas cooler 26. However, this distribution amount is controlled according to the load, and is controlled so as to reduce the amount of heat collected in the high-pressure stack gas cooler 25 at a low load.

【0016】次に、本実施例の作用を図2を参照して説
明する。なお、図2(a)は従来例の場合で、負荷の変
化と、給水量,排ガス量,高圧スタックガスクーラ収熱
量と給水温度との関係を示す特性図、図2(b)は本発
明の場合で、従来例と同様な特性図である。
Next, the operation of this embodiment will be described with reference to FIG. 2 (a) is a conventional example, and is a characteristic diagram showing the relationship between the load change and the feed water amount, exhaust gas amount, high pressure stack gas cooler heat collection amount, and feed water temperature. FIG. 2 (b) shows the present invention. In the case, it is a characteristic diagram similar to a conventional example.

【0017】まず、従来例は同図(a)に示すように、
部分負荷における給水量がほぼ負荷に比例して変化する
のに対して、排ガス量はさほど変化しないため、高圧ス
タックガスクーラ収熱量もさほど変化しない。その結
果、高圧スタックガスクーラ出口の給水温度は負荷の減
少と共に増加し、ボイラ節炭器でのスチーミング限界温
度に達する負荷Aが最低負荷となる。これに対して、本
実施例は同図(b)に示すように、負荷Bからガスダン
パ27により一部のガスをバイパスダクト28へ分配さ
せているので、低負荷においては、バイパス量Cを制御
することにより、高圧スタックガスクーラへの排ガス
量、即ち収熱量を任意に減少させることができる。これ
により、高圧スタックガスクーラ出口の給水温度は、低
負荷においてもボイラ節炭器でのスチーミング限界以下
に保つことができる。
First, in the conventional example, as shown in FIG.
The amount of water supply at partial load changes almost in proportion to the load, while the amount of exhaust gas does not change so much, so the heat collection amount of the high-pressure stack gas cooler does not change so much. As a result, the feed water temperature at the outlet of the high-pressure stack gas cooler increases as the load decreases, and the load A that reaches the steaming limit temperature in the boiler economizer becomes the minimum load. On the other hand, in the present embodiment, as shown in FIG. 2B, since a part of the gas is distributed from the load B to the bypass duct 28 by the gas damper 27, the bypass amount C is controlled at a low load. By doing so, the amount of exhaust gas to the high-pressure stack gas cooler, that is, the amount of heat collected can be arbitrarily reduced. As a result, the feed water temperature at the outlet of the high-pressure stack gas cooler can be kept below the steaming limit of the boiler economizer even under a low load.

【0018】しかし、バイパス量Cを大きくしすぎる
と、低圧スタックガスクーラ26での収熱量が大きくな
りすぎて、低圧スタックガスクーラ出口の復水がスチー
ミングするか、もしくは復水量を増加させるための復水
器への再循環量が大きくなりすぎるため、バイパス量C
は限界があり、ボイラ節炭器でのスチーミング限界によ
る最低負荷はA′(<A)となる。
However, if the bypass amount C is made too large, the amount of heat collected in the low-pressure stack gas cooler 26 becomes too large, and the condensed water at the outlet of the low-pressure stack gas cooler steams, or the recovery amount for increasing the condensed water amount is increased. Because the amount of recirculation to the water tank becomes too large, the bypass amount C
Has a limit, and the minimum load due to the steaming limit in the boiler economizer is A '(<A).

【0019】このように本実施例では、最低負荷は従来
例よりも低くすることができる。さらに最低負荷を下げ
る場合には、バイパスダクト28から直接煙突へ排出す
るライン(図示せず)を設け、この流量を制御すること
により低圧スタックガスクーラ26での収熱も減少させ
ることができる。即ち、バイパス量Cを大きくすること
ができるため、最低負荷はさらに下がることになる。
As described above, in this embodiment, the minimum load can be made lower than that of the conventional example. Further, when the minimum load is lowered, a line (not shown) for directly discharging from the bypass duct 28 to the chimney is provided, and the heat collection in the low pressure stack gas cooler 26 can be reduced by controlling the flow rate. That is, since the bypass amount C can be increased, the minimum load is further reduced.

【0020】図3は、図1に用いる高圧スタックガスク
ーラ25の構成図である。同図において、ガスダンパ2
7及びバイパスダクト28は高圧スタックガスクーラ2
5に内蔵されており、外部にバイパスダクトを設ける必
要がなく、コンパクト化、省スペース化が可能となる。
この高圧スタックガスクーラ25において、ガスダンパ
27は温度の低い排ガス下流側に設けられているが、図
1のように排ガス上流側に設けた場合と同じ制御ができ
る。
FIG. 3 is a block diagram of the high pressure stack gas cooler 25 used in FIG. In the figure, the gas damper 2
7 and the bypass duct 28 are the high pressure stack gas cooler 2
Since it is built in 5, it is not necessary to provide a bypass duct outside, and it is possible to make it compact and save space.
In the high-pressure stack gas cooler 25, the gas damper 27 is provided on the downstream side of the exhaust gas having a low temperature, but the same control as that provided on the upstream side of the exhaust gas as shown in FIG. 1 can be performed.

【0021】図4は本発明の他の実施例の系統構成図で
ある。本実施例が図1の実施例と相違する点は、バイパ
スダクト28を低圧スタックガスクーラ29に挿入し、
高圧スタックガスクーラ25と一体構造とし、また低圧
スタックガスクーラ29への復水を低圧スタックガスク
ーラ26の上流から分岐し、調節弁30にて流量を調節
するように構成した点であり、その他の構成は同一であ
るので同一部分には同一符号を付してその説明は省略す
る。
FIG. 4 is a system configuration diagram of another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 1 in that the bypass duct 28 is inserted into the low pressure stack gas cooler 29,
The high pressure stack gas cooler 25 is integrated with the low pressure stack gas cooler 29, and the condensate to the low pressure stack gas cooler 29 is branched from the upstream side of the low pressure stack gas cooler 26 to adjust the flow rate by the control valve 30. Since they are the same, the same parts are designated by the same reference numerals and the description thereof will be omitted.

【0022】図1の実施例においては、バイパスダクト
28を通った高温の排ガスはそのまま低圧スタックガス
クーラ26の上流側へ混入させるため、低圧スタックガ
スクーラ26の入口排ガス温度が上昇し、これにより伝
熱特性から決まる出口排ガス温度も上昇する傾向にあ
る。出口排ガス温度の上昇は、性能の低下および煙突の
耐熱性の問題があり、これを相殺するためには、低圧ス
タックガスクーラ26への復水を増加させる必要がある
が、復水量の増加は低圧スタックガスクーラ26の伝熱
管内流速の増加を伴ない、浸食(インレットアタック)
の可能性が増加する恐れがある。
In the embodiment of FIG. 1, the high temperature exhaust gas that has passed through the bypass duct 28 is mixed as it is into the upstream side of the low pressure stack gas cooler 26, so that the temperature of the exhaust gas at the inlet of the low pressure stack gas cooler 26 rises, which causes heat transfer. The outlet exhaust gas temperature, which is determined by the characteristics, also tends to rise. The rise in the temperature of the exhaust gas has a problem of performance deterioration and heat resistance of the stack, and in order to offset them, it is necessary to increase the condensate to the low pressure stack gas cooler 26. Erosion (inlet attack) accompanied by an increase in the flow velocity in the heat transfer tube of the stack gas cooler 26
There is a possibility that the possibility of will increase.

【0023】本実施例ではこのような図1の実施例の不
具合を解決したものである。すなわち、図4に示す構成
によりバイパスダクト28を通った排ガスは排ガス制御
装置である低圧スタックガスクーラ29により低温に制
御され、低圧スタックガスクーラ26への復水を増加さ
せることなく出口排ガス温度を低くできる。また、バイ
パスダクト28が低圧スタックガスクーラ26の上流で
混合する時に、混合前後の温度差を低くすることができ
るため、ダクトの熱応力を減らし信頼性を向上すること
も可能となる。このように、本実施例によると、部分負
荷における性能と信頼性を確保しつつ、最低負荷を従来
より下げることが可能である。
In this embodiment, such a problem of the embodiment of FIG. 1 is solved. That is, with the configuration shown in FIG. 4, the exhaust gas that has passed through the bypass duct 28 is controlled to a low temperature by the low pressure stack gas cooler 29, which is an exhaust gas control device, and the outlet exhaust gas temperature can be lowered without increasing the condensate to the low pressure stack gas cooler 26. . Further, when the bypass duct 28 is mixed upstream of the low pressure stack gas cooler 26, the temperature difference before and after the mixing can be reduced, so that the thermal stress in the duct can be reduced and the reliability can be improved. As described above, according to this embodiment, it is possible to lower the minimum load as compared with the conventional one while ensuring the performance and reliability under the partial load.

【0024】[0024]

【発明の効果】以上説明したように、本発明の汽力発電
設備のリパワリングシステムによると、部分負荷におけ
る高圧スタックガスクーラの収熱量を従来よりも減少さ
せることにより、ボイラ入口の給水温度を下げ、節炭器
でスチーミングが発生する最低負荷を引き下げることが
できる、というすぐれた効果を奏する。
As described above, according to the repowering system of the steam power generation facility of the present invention, the heat collection amount of the high pressure stack gas cooler under partial load is reduced as compared with the conventional case, so that the feed water temperature at the boiler inlet is reduced, and It has the excellent effect that the minimum load that steaming occurs in the charcoal can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統構成図。FIG. 1 is a system configuration diagram of an embodiment of the present invention.

【図2】図1の作用を説明するための特性図。FIG. 2 is a characteristic diagram for explaining the operation of FIG.

【図3】図1の高圧スタックガスクーラの構成図。FIG. 3 is a configuration diagram of the high pressure stack gas cooler of FIG. 1.

【図4】本発明の他の実施例の系統構成図。FIG. 4 is a system configuration diagram of another embodiment of the present invention.

【図5】従来のリパワリングシステムの系統構成図。FIG. 5 is a system configuration diagram of a conventional repowering system.

【符号の説明】[Explanation of symbols]

1…ボイラ、2…主蒸気管、3…高圧タービン、4…低
温再熱管、5…再熱器、6…高温再熱管、7…中圧ター
ビン、8…クロスオーバ管、9…低圧タービン、10,
23…発電機、11…復水器、12…復水ポンプ、13
…復水管、14a,14b,14c…低圧給水加熱器、
15…脱気器、16…給水管、17…給水ポンプ、18
a,18b,18c…高圧給水加熱器、20…空気圧縮
機、22…ガスタービン、25…高圧スタックガスクー
ラ、26,29…低圧スタックガスクーラ、24,27
…ガスダンパ、28…バイパスダクト、30…調節弁。
1 ... Boiler, 2 ... Main steam pipe, 3 ... High pressure turbine, 4 ... Low temperature reheat pipe, 5 ... Reheater, 6 ... High temperature reheat pipe, 7 ... Medium pressure turbine, 8 ... Crossover pipe, 9 ... Low pressure turbine, 10,
23 ... Generator, 11 ... Condenser, 12 ... Condensate pump, 13
... Condensate pipes, 14a, 14b, 14c ... Low-pressure feed water heater,
15 ... Deaerator, 16 ... Water supply pipe, 17 ... Water supply pump, 18
a, 18b, 18c ... High pressure feed water heater, 20 ... Air compressor, 22 ... Gas turbine, 25 ... High pressure stack gas cooler, 26, 29 ... Low pressure stack gas cooler, 24, 27
… Gas damper, 28… Bypass duct, 30… Control valve.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 汽力発電設備にガスタービンプラントを
追設し、ガスタービン排気をボイラの燃焼用空気として
使用するとともにボイラの排ガスを蒸気タービンサイク
ル系の給水を加熱する高圧スタックガスクーラおよび低
圧スタックガスクーラに供給して排気再燃型コンバイン
ドサイクルを構成する汽力発電設備のリパワリングシス
テムにおいて、当該汽力発電設備の部分負荷運転時に前
記高圧スタックガスクーラへの排ガス量を制御する排ガ
ス制御装置を設けたことを特徴とする汽力発電設備のリ
パワリングシステム。
1. A high-pressure stack gas cooler and a low-pressure stack gas cooler in which a gas turbine plant is additionally installed in a steam power generation facility, the gas turbine exhaust is used as combustion air for a boiler, and the exhaust gas of the boiler heats feed water of a steam turbine cycle system. In the repowering system of the steam power generation facility that supplies the exhaust gas to the exhaust reburn type combined cycle, an exhaust gas control device is provided to control the amount of exhaust gas to the high pressure stack gas cooler during partial load operation of the steam power generation facility. Repowering system for steam power generation equipment.
【請求項2】 請求項1記載の汽力発電設備のリパワリ
ングシステムにおいて、前記高圧スタックガスクーラに
バイパス経路を内蔵し、前記排ガスを前記バイパス経路
にも流通させることにより前記排ガス量を制御すること
を特徴とする汽力発電設備のリパワリングシステム。
2. The repowering system for steam power generation equipment according to claim 1, wherein the high-pressure stack gas cooler has a bypass passage built therein, and the exhaust gas is also passed through the bypass passage to control the exhaust gas amount. The repowering system for steam power generation equipment.
【請求項3】 請求項1また請求項2記載の汽力発電設
備のリパワリングシステムにおいて、前記高圧スタック
ガスクーラのバイパス経路に前記低圧スタックガスクー
ラを挿入し、当該低圧スタックガスクーラへの排ガス量
及び復水量をそれぞれ制御する制御装置を設けたことを
特徴とする汽力発電設備のリパワリングシステム。
3. The steam turbine repowering system according to claim 1 or 2, wherein the low pressure stack gas cooler is inserted in a bypass path of the high pressure stack gas cooler, and the exhaust gas amount and the condensate amount to the low pressure stack gas cooler are adjusted. A repowering system for steam power generation facilities, which is equipped with a control device for controlling each.
JP12335794A 1994-06-06 1994-06-06 Repowering system for steam power plant Pending JPH07332020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12335794A JPH07332020A (en) 1994-06-06 1994-06-06 Repowering system for steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12335794A JPH07332020A (en) 1994-06-06 1994-06-06 Repowering system for steam power plant

Publications (1)

Publication Number Publication Date
JPH07332020A true JPH07332020A (en) 1995-12-19

Family

ID=14858585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12335794A Pending JPH07332020A (en) 1994-06-06 1994-06-06 Repowering system for steam power plant

Country Status (1)

Country Link
JP (1) JPH07332020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824351B2 (en) * 2000-05-05 2004-11-30 Siemens Aktienegesellschaft Method and device for cooling the inflow area of the shaft of a steam turbine
JP2009008365A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Steam power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824351B2 (en) * 2000-05-05 2004-11-30 Siemens Aktienegesellschaft Method and device for cooling the inflow area of the shaft of a steam turbine
JP2009008365A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Steam power plant

Similar Documents

Publication Publication Date Title
US5267434A (en) Gas turbine topped steam plant
JP3032005B2 (en) Gas / steam turbine combined facility
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
EP0609037A2 (en) Combined combustion and steam turbine power plant
EP0290220A1 (en) Reheat type waste heat recovery boiler and power generation plant using the same
US6427636B1 (en) Method and plant for heating a liquid medium
CN101012924A (en) Composite cycle power generation system improved in efficiency
RU2062332C1 (en) Combined-cycle plant
EP0618997A1 (en) Steam system in a multiple boiler plant.
US5140818A (en) Internal moisture separation cycle
JPH1061413A (en) Exhaust reburning type compound power plant
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP4842007B2 (en) Waste heat recovery boiler
JPH07332020A (en) Repowering system for steam power plant
JPH09303113A (en) Combined cycle generating plant
JP2766687B2 (en) Combined power plant
CN1232533A (en) Method for operating boiler with forced circulation and boiler for its implementation
JPH11200889A (en) Gas turbine combined power generation system
JPH062806A (en) Water supplying and heating device
JP3122234B2 (en) Steam power plant repowering system
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH07109905A (en) Method and apparatus for controlling steam temperature in composite power generation plant
JPH04362207A (en) Repowering system of steam power generating equipment
Dechamps et al. Once-through heat recovery steam generators working with sub-and supercritical steam conditions for combined cycles
JP2000220412A (en) Repowering system of steam power generating equipment