JPH07331529A - Polyhexamethylene adipamide fiber and its production - Google Patents

Polyhexamethylene adipamide fiber and its production

Info

Publication number
JPH07331529A
JPH07331529A JP12038494A JP12038494A JPH07331529A JP H07331529 A JPH07331529 A JP H07331529A JP 12038494 A JP12038494 A JP 12038494A JP 12038494 A JP12038494 A JP 12038494A JP H07331529 A JPH07331529 A JP H07331529A
Authority
JP
Japan
Prior art keywords
fiber
polyhexamethylene adipamide
raw yarn
polyglutarimide
meq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12038494A
Other languages
Japanese (ja)
Inventor
Tomonori Koizumi
智徳 小泉
Shinichi Takatsu
真一 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12038494A priority Critical patent/JPH07331529A/en
Publication of JPH07331529A publication Critical patent/JPH07331529A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain polyhexamethylene-based fibers, excellent in transparency and stability of physical properties at high temperatures and high humidities with time and suitable for improving functions in the fields of clothes, legs and usual industrial materials. CONSTITUTION:This method for producing polyhexamethylene adipamide fibers is to apply 1600-5000ppm water to a mixed composition comprising 99-75 pts.wt. polyhexamethylene adipamide having an amino end group concentration A mequiv./g and a carboxyl end group concentration B mequiv./g satisfying the relationship A>=1.2XB and 1-25 pts.wt. polyglutarimide having an acid anhydride group of the formula (R1 and R2 are each H or a 1-20C alkyl; R3 is H, an alkyl, a cycloalkyl, allyl, an alkaryl or an aralkyl), then melt discharge the resultant composition at >=270 deg.C, subsequently draw the obtained yarn and provide the nylon 66-based fibers. The fibers have physical properties satisfying the relationships of <=3OC difference in beta dispersion peak temperature of a tandelta-temperature curve before and after treating the fibers at 45 deg.C and RH85% in a tensed state for 7 days, <=0.05 difference in its value tandelta beta before and after the treatment, 0.1 <= (total de)<=30, transmittance % of the raw yarn > -15.6Xlog(total de) + 35.0 and reflectance of the raw yarn %<-58.7 (transmittance of the raw yarn) + 151.4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリヘキサメチレンア
ジパミドとポリグルタールイミドとの混合繊維およびそ
の製造法に関する。更に、詳しくは、高湿度や高温雰囲
気下での経時的物性低下をミニマイズした、衣料用途、
レッグ用途などに好適に用いられるポリヘキサメチレン
アジパミドとポリεカプロアミドブレンド繊維に関す
る。
TECHNICAL FIELD The present invention relates to a mixed fiber of polyhexamethylene adipamide and polyglutarimide and a method for producing the same. More specifically, for clothing applications, which minimizes the deterioration of physical properties over time in high humidity and high temperature atmospheres,
The present invention relates to a polyhexamethylene adipamide and poly ε-caproamide blend fiber suitably used for leg applications and the like.

【0002】[0002]

【従来の技術】ポリヘキサメチレンアジパミド(ナイロ
ン66)繊維は、強度、タフネス、耐熱性、染色性堅牢
性、発色性等に優れているため、産業資材用、インテリ
ア寝装用、衣料用繊維、レッグ用繊維として幅広く使用
されている。しかし、その高結晶性の為ポリεカプロア
ミド(ナイロン6)繊維に比較して、発色性が低く、ま
た、剛性が高いので相対的にソフト感は低く、製品とし
ても加えられたエネルギーに対する耐性が低くいと云う
問題点を持っている。
2. Description of the Related Art Polyhexamethylene adipamide (nylon 66) fibers are excellent in strength, toughness, heat resistance, dyeing fastness, color developability, etc., and are therefore fibers for industrial materials, interior bedding, and clothing. Widely used as a leg fiber. However, due to its high crystallinity, it has lower color development and higher rigidity than poly ε-caproamide (nylon 6) fiber, and therefore has a relatively low soft feeling, and as a product, it has resistance to the energy applied. It has the problem of being low.

【0003】また、アクリル系繊維、ナイロン6などの
ように、非晶性ないし、低結晶性でないため、本質的に
透明性は低くかかる特性を要求する分野での利用も制限
される。更に、ポリアミド系繊維は高温高湿条件下での
経時的物性低下を引き起こすという宿命的欠点を有して
いる。これは、基本的に、水分の作用に基づく構造変化
(水分拡散誘起結晶化)とミクロボイド化に起因するも
のであり、原糸にかかる欠点があると製織、製編、染
色、セット段階でも物性低下が起こり、透明性も含めて
原糸のもつ潜在能力を十分発揮させられない。
Further, since it is not amorphous or low in crystallinity, such as acrylic fiber and nylon 6, its use is essentially limited in fields requiring transparency and low transparency. Furthermore, the polyamide-based fiber has a fatal defect that it causes deterioration of physical properties over time under high temperature and high humidity conditions. This is basically due to the structural change (moisture diffusion induced crystallization) and microvoiding due to the action of water, and if there are defects in the raw yarn, the physical properties even at the weaving, knitting, dyeing and setting stages. As a result, the yarn's potential, including transparency, cannot be fully exerted.

【0004】上記ナイロン66の透明性を高めるために
は、単糸を細くすれば良いが、構造論的には無定型領域
を増加すれば良い、また、経時物性変化欠点を改良する
には、無定型領域の分子鎖の凝集密度を高める必要があ
る。従って、この原理は基本的に1つであり、紡糸段階
でのナイロン66の結晶生長性を阻害し、かつ無定型部
の水素結合濃度を高めれば良い、方法論としては線状鎖
に分岐構造を導入したり、他のポリマーをブレンドする
などが主流である。エンジニアリングプラスチックの分
野では分岐構造導入法として、ナイロン6に本質的に非
結晶性であるグルタールイミド系ポリマーを溶融混合時
に苛性ソーダなどを介在させグラフト化することで、強
度、耐衝撃性の向上が計れることが知られているが、繊
維形態で成形された報告はなく、ナイロン66に対して
上記ポリマーをグラフトまたはブレンドした例も余り知
られていない。
In order to improve the transparency of the nylon 66, the single yarn may be made thin, but in terms of structure, an amorphous region may be increased, and in order to improve the defect of physical property change with time, It is necessary to increase the aggregation density of molecular chains in the amorphous region. Therefore, this principle is basically one, and it suffices to inhibit the crystal growth of nylon 66 in the spinning stage and increase the hydrogen bond concentration in the amorphous portion. The methodology is to form a branched structure in a linear chain. The mainstream is introduction and blending with other polymers. In the field of engineering plastics, as a method of introducing a branched structure, strength and impact resistance can be improved by grafting nylon 6 essentially non-crystalline glutarimide polymer with caustic soda intervening during melt mixing. It is known that it can be measured, but there is no report that it is molded in a fiber form, and there are few known examples of grafting or blending the above polymer with nylon 66.

【0005】これは、ナイロン6とナイロン66の基本
的な水素結合密度の相違で、ナイロン66とは均一混合
すら出来ないためと推察される。また、ナイロン6の例
のように、苛性ソーダを高温で混合すること自体好まし
い方法とは言えない。つまり、ブレンド系に多少水分が
あっても、苛性ソーダの融点は318℃以上であり、混
合操作過程で一部炭酸塩に変化することも避け難い。
It is presumed that this is because the basic hydrogen bond densities of nylon 6 and nylon 66 are different from each other, so that even nylon 66 cannot be uniformly mixed. Further, it cannot be said that mixing caustic soda at a high temperature as in the case of nylon 6 is a preferable method per se. That is, even if the blend system has some water, the melting point of caustic soda is 318 ° C. or higher, and it is unavoidable that a part of the caustic soda is changed to carbonate during the mixing operation process.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ナイ
ロン66とポリグルタールイミドとの均一溶融混合法を
確立し、構成単糸デニールが1.8d以下で透明性が高
く、高湿度や高温度雰囲気下での物性の経時安定性に優
れたナイロン66とポリグルタールイミドとのブレンド
繊維を提供し、それに依って、更に高タフネス性の維持
およびソフト風合いを要求される衣料、レッグ、一般産
業資材分野での機能向上を達成させるとともに、加工安
定性を保証することにある。
SUMMARY OF THE INVENTION An object of the present invention is to establish a uniform melt mixing method of nylon 66 and polyglutarimide, which has a single yarn denier of 1.8 d or less and has high transparency, high humidity and high humidity. Provided is a blended fiber of nylon 66 and polyglutarimide, which has excellent physical stability over time in a temperature atmosphere, and accordingly, clothing, legs, and general industries that are required to maintain high toughness and have a soft texture. It is to ensure the processing stability while achieving the functional improvement in the material field.

【0007】[0007]

【課題を解決するための手段】本発明者らは、ナイロン
66とポリグルタールイミドとの工業的ブレンド方法を
検討し、それから得られる繊維の特徴を鋭意検討した結
果、ナイロン66とポリグルタールイミドとの混合組成
体の溶融混合性が流動特性とナイロン66の末端基バラ
ンスにあること、ブレンド繊維はナイロン66の結晶生
長が抑制され、透明性が格段に優れる事、上記の経時的
な物性低下の機構が水分拡散誘起結晶化に基づくミクロ
ボイド形成にあること、溶融吐出繊維の無定型領域の本
質的凝集性も末端基バランスが関係している事をつきと
め本発明に至った。
Means for Solving the Problems The inventors of the present invention investigated an industrial blending method of nylon 66 and polyglutarimide, and earnestly studied the characteristics of the fiber obtained from the method. The melt-mixing property of the mixed composition of No. 1 is in balance with the flow characteristics and the end group of nylon 66, the crystal growth of Nylon 66 is suppressed in the blended fiber, and the transparency is remarkably excellent. The present inventors have found that the mechanism lies in the formation of microvoids based on water diffusion-induced crystallization, and that the end group balance is also related to the essential cohesiveness of the amorphous region of the melt-extruded fiber.

【0008】即ち、本発明の一つは、アミノ末端基濃度
A(ミリ等量/kg;meq/kg)とカルボキシル末
端基濃度B(meq/kg)の関係がA≧1.2xBで
あるポリヘキサメチレンアジパミド99〜75重量部と
下記一般式(1)で示される酸無水物基を有すポリグル
タルイミド1〜25重量部の混合組成体からなるブレン
ド繊維であって、上記繊維が(イ)構成単糸デニールが
1.8d以下で、(ロ)緊張状態で45℃、相対湿度8
5%の雰囲気で7日処理し、処理前と処理後の繊維のt
anδー温度(T)曲線で現れるβ分散ピーク温度T
β、とその値tanδβの差が3℃以下、および0.0
05以下で、(ハ)原糸透過率及び原糸反射率が以下の
式(2)(3)を満足することを特徴とするポリヘキサ
メチレンアジパミド系繊維、
That is, according to one aspect of the present invention, the relationship between the amino terminal group concentration A (milliequivalent / kg; meq / kg) and the carboxyl terminal group concentration B (meq / kg) is A ≧ 1.2 × B. A blend fiber comprising 99 to 75 parts by weight of hexamethylene adipamide and 1 to 25 parts by weight of polyglutarimide having an acid anhydride group represented by the following general formula (1). (A) Constituent single yarn denier is 1.8 d or less, (b) 45 ° C. and 8% relative humidity under tension.
T of fiber before and after treatment in 5% atmosphere for 7 days
an δ-temperature (T) β dispersion peak temperature T appearing in the curve
The difference between β and its value tan δβ is 3 ° C or less, and 0.0
And less than 05, (c) a raw fiber transmittance and a raw yarn reflectance satisfy the following formulas (2) and (3), a polyhexamethylene adipamide-based fiber,

【0009】[0009]

【化3】 [Chemical 3]

【0010】 原糸透過率(%) >−15.6×Log(総デニール)+35.0 ……(2) ただし、0.1 ≦(総デニール)≦ 30であるこ
と。 原糸反射率(%) <−58.7×(原糸透過率(%) )+151.4……(3) 、であり、もう一つは、ポリヘキサメチレンアジパミド
と下記一般式(1)で示される酸無水物基を有すポリグ
ルタルイミドとのブレンド繊維の製造法であって、上記
ポリヘキサメチレンアジパミドのアミノ末端基濃度A
(ミリ等量/kg;meq/kg)とカルボキシル末端
基濃度B(meq/kg)の関係がA≧1.2xBであ
り、上記ポリヘキサメチレンアジパミドを99〜75重
量部と上記ポリグルタルイミドを1〜25重量部との混
合組成体に対し1600〜5000ppmの濃度で水分
を付与し、270℃以上で溶融吐出し繊維とし、上記吐
出した繊維そのまま引取り、または引き続き該引取った
繊維を延伸することを特徴とするポリヘキサメチレンア
ジパミド系繊維の製造法、である。
Raw yarn transmittance (%)> − 15.6 × Log (total denier) +35.0 (2) However, 0.1 ≦ (total denier) ≦ 30. Raw yarn reflectance (%) <−58.7 × (raw yarn transmittance (%)) + 151.4 (3), and the other is polyhexamethylene adipamide and the following general formula ( 1. A method for producing a blend fiber with an acid anhydride group-containing polyglutarimide represented by 1), wherein the amino terminal group concentration A of the polyhexamethylene adipamide is A.
The relationship between (milliequivalent / kg; meq / kg) and the concentration B of carboxyl end group B (meq / kg) is A ≧ 1.2 × B, and 99 to 75 parts by weight of the polyhexamethylene adipamide and the polyglutar. Water is added to a mixed composition of 1 to 25 parts by weight of imide at a concentration of 1600 to 5000 ppm, and melt-discharged at 270 ° C. or higher to form a fiber, and the discharged fiber is directly drawn or continuously drawn. And a method for producing a polyhexamethylene adipamide-based fiber, which comprises:

【0011】[0011]

【化4】 [Chemical 4]

【0012】即ち、本発明の、ナイロン66とポリグル
タールイミドとのブレンド繊維は、アミノ末端基濃度A
(ミリ等量/kg;meq/kg)とカルボキシル末端
基濃度B(meq/kg)の関係がA≧1.2xBであ
るポリヘキサメチレンアジパミド99〜75重量部と酸
無水物基を有すポリグルタールイミド1〜25重量部の
混合体に対し1600〜5000ppmの濃度で水分を
付与し、270℃以上で溶融混合後、吐出し、そのまま
引取った繊維、または、該引取った繊維を引き続き延伸
して得た、その構成単糸デニールが1.8d以下の繊維
で以下の特徴を有するものであり、透明性が高く、かつ
経時物性低下の少ない新規な繊維である。
That is, the blend fiber of nylon 66 and polyglutarimide of the present invention has an amino terminal group concentration A
(Milliequivalent / kg; meq / kg) and carboxyl end group concentration B (meq / kg) have a relationship of A ≧ 1.2 × B, polyhexamethylene adipamide 99 to 75 parts by weight, and acid anhydride group. Water is added to a mixture of 1 to 25 parts by weight of polyglutarimide at a concentration of 1600 to 5000 ppm, melt-mixed at 270 ° C. or higher, and then discharged, and then the fibers are taken as they are, or the fibers are taken. It is a novel fiber which has a denier of 1.8 d or less and has the following characteristics, which is obtained by subsequent drawing and has the following characteristics, and is highly transparent and has little deterioration in physical properties over time.

【0013】本発明において得られるブレンド繊維の、
原糸光透過率,同反射率は、日本電色工業(株)社製の
SZ−Σ90を用い、該繊維を5cm×3cmの穴のあ
いた厚さ2mmの金属製のプレートに、均一平行にトラ
バース制御により巻付けた後、このプレートに対して垂
直方向から透過光を入射させ透過率を、また反射率は同
プレートに対し0−45°法でそれぞれ測定、定義され
るものをいう。
Of the blended fiber obtained in the present invention,
As for the light transmittance and the reflectance of the raw yarn, SZ-Σ90 manufactured by Nippon Denshoku Industries Co., Ltd. was used, and the fiber was uniformly parallel to a metal plate with a thickness of 2 mm having a hole of 5 cm × 3 cm. After winding by traverse control, transmitted light is made incident on this plate in the vertical direction, and the transmittance is measured and defined on the plate by the 0-45 ° method.

【0014】本発明のブレンド繊維のポリヘキサメチレ
ンアジパミド系繊維の総デニール7デニール、5フィラ
メントの繊維の原糸光透過率,同反射率は、それぞれ2
1.8%以上72。 8%以下であり,通常の同一単糸デ
ニール、同フィラメント構成のナイロン66繊維の原糸
光透過率が18.0%、原糸光反射率が77.7%の値
であるものに比べ、特筆すべき透明度を有するものであ
る。
The total denier of the polyhexamethylene adipamide fiber of the blended fiber of the present invention is 7 denier, and the light transmittance and the reflectance of the 5 filament fiber are 2 respectively.
More than 1.8% 72. It is 8% or less, and compared with a normal nylon fiber having the same single filament denier and the same filament configuration, the raw fiber light transmittance is 18.0% and the raw fiber light reflectance is 77.7%. It has remarkable transparency.

【0015】また、緊張状態で45℃、相対湿度85%
の雰囲気で7日処理し、処理前と処理後の繊維のtan
δー温度(T)曲線で現れるβ分散ピーク温度Tβ、と
その値tanδβの差が3℃以下、および0.005以
下と変化度が極めて小さく、経時安定性が大きい。上記
のβ分散体はポリアミド系ポリマーの側鎖、末端基部分
の運動領域である。末端基部分は通常、緊張下では応力
集中点になり、この部分が外的刺激に対して動き易い場
合は結果的に経時特性の低下につながると考えられる。
特に、紡糸と延伸を別工程で行う旧来方式の紡糸では、
未延伸糸を放置する度に構造が変化してしまい、管理上
も問題が大きく、最終物性のばらつきも大きい欠点を有
する。従って、本発明のブレンド繊維では上記処理前後
のβ分散ピーク温度Tβ,とその値tanδβの差が3
℃以下、および0.005以下であることが必須であ
る。
Also, under tension, 45 ° C., relative humidity 85%
Tan of the fiber before and after treatment for 7 days in the atmosphere
The difference between the β dispersion peak temperature Tβ appearing on the δ-temperature (T) curve and its value tan δβ is 3 ° C. or less, and 0.005 or less, the degree of change is extremely small, and the stability over time is large. The β-dispersion is a moving region of side chains and end groups of the polyamide polymer. It is considered that the end base portion usually becomes a stress concentration point under tension, and if this portion easily moves with respect to an external stimulus, it eventually leads to deterioration of characteristics over time.
Especially, in the conventional spinning method in which spinning and drawing are performed in separate steps,
The structure of the undrawn yarn changes every time it is left unattended, which is a problem in terms of management and has a drawback that the final physical properties vary widely. Therefore, in the blended fiber of the present invention, the difference between the β dispersion peak temperature Tβ before and after the treatment and its value tanδβ is 3
It is essential that the temperature is not higher than 0 ° C and not higher than 0.005.

【0016】本発明のブレンド繊維のポリヘキサメチレ
ンアジパミド系繊維の1構成員であるナイロン66原料
ポリマーは、アジピン酸とヘキサメチレンジアミンとの
重縮合体である。本発明に用いるナイロン66原料ポリ
マーには、通常用いられる添加剤、例えば、リン酸、次
亜リン酸ソーダ等の無機リン化合物、フェニルフォスフ
ォン酸、トリフェニルフォスファイト等の有機リン化合
物、リン- 窒素系錯塩、リン−窒素系化合物等の重合触
媒、酢酸銅、臭化銅、よう化銅、2-メルカプトベンズイ
ミダゾール銅錯塩等の銅化合物、2-メルカプトベンズイ
ミダゾール、テトラキス-[メチレン-3- (3,5-ジt-
ブチル-4- ヒドロキシフェニル)- プロピオネート]-
メタン等の熱安定剤、乳酸マンガン、次亜リン酸マンガ
ン等の光安定剤、二酸化チタン、カオリン等の艶消剤、
エチレンビスステアリルアミド、同部分メチロール化
物、ステアリン酸カルシュウムなどの滑剤、可塑剤、結
晶阻害剤を含ませる事が出来る。
The nylon 66 raw material polymer which is one member of the polyhexamethylene adipamide fiber of the blended fiber of the present invention is a polycondensate of adipic acid and hexamethylene diamine. For the nylon 66 raw material polymer used in the present invention, commonly used additives, for example, inorganic phosphorus compounds such as phosphoric acid and sodium hypophosphite, organic phosphorus compounds such as phenylphosphonic acid and triphenylphosphite, phosphorus- Nitrogen complex salts, polymerization catalysts such as phosphorus-nitrogen compounds, copper acetate, copper bromide, copper iodide, copper compounds such as 2-mercaptobenzimidazole copper complex salts, 2-mercaptobenzimidazole, tetrakis- [methylene-3- (3,5-di t-
Butyl-4-hydroxyphenyl) -propionate]-
Heat stabilizers such as methane, light stabilizers such as manganese lactate and manganese hypophosphite, matting agents such as titanium dioxide and kaolin,
A lubricating agent such as ethylene bis-stearyl amide, a partial methylol compound, calcium stearate, a plasticizer, and a crystallization inhibitor can be included.

【0017】本発明に用いるナイロン66原料ポリマー
は、数平均重合度が13500以上あれば、実用機械特
性を満足できる。本発明のブレンド繊維のポリヘキサメ
チレンアジパミド系繊維の他の構成員であるポリグルタ
ルイミドは、市販品があり、グルタルイミド化率が55
〜80%、分子量が90000〜145000のものが
用いられる。
The nylon 66 raw material polymer used in the present invention can satisfy practical mechanical properties if the number average degree of polymerization is 13500 or more. Polyglutarimide, which is another member of the polyhexamethylene adipamide-based fiber of the blended fiber of the present invention, is commercially available and has a glutarimidization ratio of 55.
-80% and a molecular weight of 90,000 to 145,000 are used.

【0018】両者の混合比率は、ナイロン66の99〜
75重量%に対し,ポリグルタールイミド1〜25重量
%である。ポリグルタールイミド中の酸無水物部分がナ
イロン66の末端アミノ基と反応し、イミド部分がナイ
ロン66の水素結合形成を阻害すると考えられるため、
ポリグルタールイミドは1重量部以上あれば、十分ナイ
ロン66の結晶化を阻害でき、延伸性も向上させ得る。
ポリグルタールイミドが25重量%以上なると、ナイロ
ン66の持つ熱的特性を阻害し、たとえば、アクリル繊
維で見られるような、熱へたり現象を起こし好ましくな
い。
The mixing ratio of both is 99 to 66 of nylon 66.
The amount of polyglutarimide is 1 to 25% by weight with respect to 75% by weight. Since the acid anhydride part in the polyglutarimide reacts with the terminal amino group of nylon 66 and the imide part inhibits the hydrogen bond formation of nylon 66,
If the amount of polyglutarimide is 1 part by weight or more, the crystallization of nylon 66 can be sufficiently inhibited and the stretchability can be improved.
If the amount of polyglutarimide is 25% by weight or more, the thermal characteristics of nylon 66 are impaired, and the heat settling phenomenon seen in, for example, acrylic fibers occurs, which is not preferable.

【0019】上記ブレンド繊維のポリヘキサメチレンア
ジパミド系繊維を製造する上での絶対条件はナイロン6
6としてアミノ末端基濃度A(ミリ等量/kg;meq
/kg)とカルボキシル末端基濃度B(meq/kg)
の関係がA≧1.2xBであるチップを用い、両者の混
合体に対し、1600〜5000ppmの濃度で水分を
付与し、270℃以上で溶融吐出する点を技術骨格とす
る.ポリヘキサメチレンアジパミドチップのアミノ末端
基とカルボキシル末端基濃度は仕込モノマー比率によっ
て調整できる。
Nylon 6 is an absolute condition for producing the polyhexamethylene adipamide fiber of the above blended fiber.
6 as the amino terminal group concentration A (milliequivalent / kg; meq
/ Kg) and carboxyl end group concentration B (meq / kg)
Using a chip having a relationship of A ≧ 1.2 × B, water is added to the mixture of both at a concentration of 1600 to 5000 ppm, and melt ejection is performed at 270 ° C. or higher is a technical skeleton. The amino terminal group and carboxyl terminal group concentrations of the polyhexamethylene adipamide chip can be adjusted by the ratio of charged monomers.

【0020】本発明で規定するナイロン66のアミノ末
端基濃度A(ミリ等量/kg;meq/kg)とカルボ
キシル末端基濃度B(meq/kg)の関係、A≧1.
2xBは、ポリグルタールイミドとの溶融混合性に取っ
て重要である。混合操作によって分子鎖の絡まりは当然
できるが、後述するように、溶融混合時には必ず水分が
存在し、水分がメルト中を拡散する。
The relationship between the amino end group concentration A (milliequivalent / kg; meq / kg) and the carboxyl end group concentration B (meq / kg) of nylon 66 specified by the present invention, A ≧ 1.
2xB is important for the melt mixing property with polyglutarimide. Although the molecular chains can naturally be entangled by the mixing operation, as will be described later, water is always present during melt mixing, and the water diffuses in the melt.

【0021】このため、本発明のようにアミノ末端基が
リッチの系では水酸イオンが多数をしめ、この水酸イオ
ンは既存のポリマーの分子間水素結合を切断するが、新
たに新しい水素結合起点を作りだし、N66分子とポリ
グルタールイミドのイミド間での水素結合確率を上昇さ
せ、両者の混合性を増大するとともに、アルカリ雰囲気
でのポリグルタールイミド中の酸無水物とナイロン66
との高温での反応性をも、向上させる。
Therefore, in the system having a rich amino terminal group as in the present invention, a large number of hydroxide ions are present, and the hydroxide ions cleave the intermolecular hydrogen bond of the existing polymer, but a new hydrogen bond is newly formed. By creating a starting point and increasing the hydrogen bonding probability between the N66 molecule and the imide of polyglutarimide to increase the miscibility between the two, the acid anhydride and nylon 66 in the polyglutarimide under alkaline atmosphere
It also improves the reactivity at high temperature with.

【0022】他方、例えば、カルボキシルリッチな系で
は、プロトンが拡散するため、既存の水素結合の切断だ
けがおこり、N66とポリグルタールイミドを強固につ
なぐ水素結合確率がすくなくなるため、紡糸における熱
的相分離操作に際し、それぞれが、独立に凝集する確率
が増加して、全体としての強固な凝集構造は得られない
し、アミノ末端基と酸無水物間の反応は全く期待でき
ず、グラフト化によるナイロン66の結晶化阻害効果は
起こらない。
On the other hand, in a carboxyl-rich system, for example, since protons diffuse, only existing hydrogen bond breakage occurs, and the probability of hydrogen bond firmly connecting N66 and polyglutarimide is reduced, resulting in a thermal problem in spinning. During the phase separation operation, the probability of each independently aggregating increases, a strong aggregate structure cannot be obtained as a whole, the reaction between the amino terminal group and the acid anhydride cannot be expected at all, and nylon by grafting is not expected. The crystallization-inhibiting effect of 66 does not occur.

【0023】A−B(以下Δa)の上限値は限定的では
ないが、Δaが大きくなると同一重合度でも本発明に用
いるナイロン66は相対的に溶融工程中に溶融粘度が高
くなり、同一チップ水分条件では、Δaが更に大きくな
ると同一重合度での相対的溶融粘度上昇率も上がり、通
常の紡糸温度より極めて高い温度(300℃以上)で紡
糸せざるを得ず、ポリマーの酸化分解などの問題や、長
期操作中に押出し機壁面へのポリマーゲル生成の問題も
発生し、紡糸安定性を阻害するので、適宜選択すべきで
ある。
The upper limit of AB (hereinafter referred to as Δa) is not limited, but as Δa increases, the nylon 66 used in the present invention has a relatively high melt viscosity during the melting process even if the degree of polymerization is the same, and the same chip has the same viscosity. Under water conditions, as Δa becomes larger, the relative melt viscosity increase rate at the same degree of polymerization also rises, and there is no choice but to spin at a temperature (300 ° C. or higher) that is much higher than the normal spinning temperature, causing oxidative decomposition of the polymer, etc. Problems and problems of polymer gel formation on the wall surface of the extruder also occur during long-term operation, which impairs spinning stability, and therefore should be selected appropriately.

【0024】両者の混合均一性を保証するため、本発明
では、発明に用いられる両ポリマーチップに含まれる水
分率を1600〜5000ppmにし、270℃以上で
溶融混合する必要がある。紡糸温度は270℃を切らな
ければ、十分適正な紡糸ができ、しかも、凝集構造の均
一な1GD巻き取り糸を生産できる。これは、水分によ
る可塑化効果に加え、分子量の多分散性を小さくする効
果とも考えられる。 水分率が1600ppm以下では
溶融吐出される両混合ポリマーメルトのダイスエル改善
効果が低く、混合性も低く、紡糸された1GD引取り糸
の凝集構造の均一性に問題を残す。
In order to ensure the mixing uniformity of both, in the present invention, it is necessary to set the water content contained in both polymer chips used in the invention to 1600 to 5000 ppm and perform melt mixing at 270 ° C. or higher. If the spinning temperature does not fall below 270 ° C., sufficiently proper spinning can be performed, and a 1GD wound yarn having a uniform aggregated structure can be produced. This is considered to be an effect of reducing the polydispersity of molecular weight in addition to the plasticizing effect of water. When the water content is 1600 ppm or less, the effect of improving the die swell of both mixed polymer melts melted and discharged is low, the mixing property is low, and there remains a problem in the uniformity of the agglomerated structure of the spun 1GD take-up yarn.

【0025】これは、先に述べたように本発明に用いる
ナイロン66ポリマーの末端基が本発明のように、アミ
ノリッチであると、例えば、カルボキシルリッチなポリ
マーに比べ、溶融粘度は高いため、十分な水分の存在下
に可塑化効果をもたす必要があるのも理由の一つであ
る。逆に、5000ppm以上では、急激なN66部分
の結晶化作用を誘起し、折角、均一に混合されたポリマ
ーブレンド系でも、水分作用によりナイロン66部分が
早く結晶化し、ミクロ相分離を起こし、安定な紡糸性が
確保できないし、引き続き延伸操作をする際、上記のミ
クロ相分離に起因して、スムースな延伸を確保できず、
結果的に経時安定性を保証できない。より好適なチップ
水分率の範囲は、水分変動による吐出ポリマーメルトの
粘性変動が小さい点、および、紡糸された1GD卷取り
糸の構造安定性を考慮して、1800ppm〜3500
ppmである。
This is because when the terminal group of the nylon 66 polymer used in the present invention is amino-rich as in the present invention as described above, for example, the melt viscosity is higher than that of a carboxyl-rich polymer, One of the reasons is that it is necessary to have a plasticizing effect in the presence of sufficient water. On the contrary, at 5000 ppm or more, a rapid crystallization action of the N66 portion is induced, and even in a polymer blend system in which the N66 portion is uniformly mixed, the nylon 66 portion is rapidly crystallized due to the action of water to cause microphase separation, which is stable. The spinnability cannot be ensured, and when the stretching operation is continued, due to the above micro phase separation, smooth stretching cannot be secured,
As a result, stability over time cannot be guaranteed. The more preferable range of the chip moisture content is 1800 ppm to 3500 in consideration of the fact that the viscosity variation of the discharged polymer melt due to the moisture variation is small and the structural stability of the spun 1GD wound yarn.
It is ppm.

【0026】もちろん、当該技術者なら容易に分かるよ
うに、ポリアミド系繊維の経時安定性の問題の本質的解
決は基本的に、原糸段階での繊維構造の均一性、つま
り、無定型領域の分子鎖の凝集性にかかっている。この
点では構造歪部分(球晶部分など)を小さくし、分子鎖
配向を容易にして凝集構造の緻密化を図ることは、通常
の紡糸技術として採用されている。例えば、吐出された
ポリマーメルトの温度を上げる、また、ポリマーメルト
に与える冷風温度を下げる、冷風速度を上げる、与える
冷風を円周方向から均一に与える、一方向から冷風を与
える場合は、ポリマーメルトが吐出される紡口配列を最
適化する、単糸デニールを下げるなどで対応してきた。
これは、現在工業的に採用されている引取りロール温度
をポリマーのガラス転移点(ポリアミドでは65ー75
℃)に設定する、いわゆる、冷延伸法では妥当な方法で
ある。
Of course, as can be easily understood by those skilled in the art, the essential solution to the problem of stability of polyamide-based fibers over time is basically the uniformity of the fiber structure at the stage of the raw yarn, that is, in the amorphous region. It depends on the cohesiveness of the molecular chains. In this respect, it is adopted as a normal spinning technique to reduce the structurally strained portion (such as a spherulite portion) and facilitate the molecular chain orientation to densify the aggregated structure. For example, when raising the temperature of the discharged polymer melt, lowering the temperature of the cold air given to the polymer melt, increasing the velocity of the cold air, giving the given cold air uniformly from the circumferential direction, or giving the cold air from one direction, the polymer melt We have responded by optimizing the spinneret arrangement that discharges, and lowering the single yarn denier.
This is because the take-up roll temperature, which is currently used industrially, is the glass transition point of the polymer (65-75 for polyamide).
It is an appropriate method in the so-called cold stretching method, in which the temperature is set at (° C).

【0027】上記の方法では、球晶の減少に依り、無定
形部分に収容される分子鎖の分率も必然的に増加する。
しかし、これらの方法だけでは無定形領域に存在する分
子鎖を均一に引伸ばすための、均一凝集構造を得るには
程遠いのが現状である。特に、ポリマーメルト温度を上
げることが、効果的であるが、ポリマーの分解の問題が
つきまとう。
In the above method, the fraction of the molecular chains accommodated in the amorphous portion is necessarily increased due to the decrease of spherulites.
However, at present, it is far from obtaining a uniform aggregation structure for uniformly stretching the molecular chains existing in the amorphous region by these methods alone. In particular, it is effective to raise the polymer melt temperature, but it causes a problem of polymer decomposition.

【0028】他方、なるべく分子鎖の充填密度の均一な
無定形分率の絶対的増加を具現化する方法は、ポリアミ
ド繊維の高タフネス化と称して、色々と提案されてい
る。先記したもの以外で提案されている技術は、特許や
学術論文で判断すると、1)ポリマーの重合度を上げ
る、2)高温でゾーン(非接触型)延伸する、3)紡糸
速度を落として後で、多段延伸する、4)非水系油剤を
用いる、5)吐出冷却固化した糸条に140℃位で積極
的にスチーミングし、結晶化を促進されるなどの方法が
ある。
On the other hand, various methods have been proposed for realizing the absolute increase of the amorphous fraction in which the packing density of the molecular chains is as uniform as possible, which is referred to as increasing the toughness of the polyamide fiber. Judging from patents and academic papers, the technologies proposed other than the ones mentioned above are 1) increase the degree of polymerization of the polymer, 2) draw in a zone (non-contact type) at high temperature, and 3) reduce the spinning speed. Later, there are methods such as multi-stage drawing, 4) using a non-aqueous oil agent, and 5) positively steaming the discharged and cooled solidified yarn at about 140 ° C. to promote crystallization.

【0029】5)は、原糸が最終製品になってからの耐
久性、耐疲労性向上とは相反する。2)は延伸度にもよ
るが、もっとも、分子鎖の充填密度の均一な無定形分率
の絶対的増加を具現化し、しかも、糸条物がロール等の
媒体に接触しないため、マクロな構造欠陥(毛羽)も出
にくいが、生産性、製造設備面、コスト面できわめて不
利である。3)の場合も設備面、生産性面で不利である
ばかりでなく、ロール等の媒体に接触する機会が多くな
り、摩擦による構造欠陥も出やすい。4)は作業環境面
や比例製造費的に問題がある。
Item 5) contradicts the improvement in durability and fatigue resistance after the raw yarn is made into the final product. Although 2) depends on the degree of drawing, it realizes an absolute increase in the uniform density of the packing density of the molecular chains, and since the thread does not contact the medium such as rolls, it has a macro structure. Although defects (fluffs) are less likely to occur, they are extremely disadvantageous in terms of productivity, manufacturing equipment, and cost. In the case of 3), not only is it disadvantageous in terms of equipment and productivity, but it is more likely to come into contact with a medium such as a roll and structural defects due to friction are likely to occur. 4) has a problem in terms of work environment and proportional manufacturing cost.

【0030】もちろん、これらの方法は重要な技術領域
ではあるが、構成単糸が1.8d以下のナイロン66/
ナイロン6ブレンド繊維では、水分の作用に基づく構造
変化に起因する経時的な物性低下解決には不十分であ
り、本発明の方法をもってしないと効果ははなはだ少な
い.
Of course, although these methods are important technical areas, nylon 66 / having a constituent single yarn of 1.8d or less is used.
Nylon 6 blend fiber is not sufficient to solve the deterioration of physical properties over time due to the structural change due to the action of water, and the effect is very small without the method of the present invention.

【0031】[0031]

【実施例】以下実施例にて説明するが,これに限定され
るものではない。なお、 本発明での構造、特性評価法
を以下に説明する。 1.原糸光透過性 繊維を5cm×3cmの穴のあいた厚さ2mmの金属製
のプレートを、式(3)で表わされる回転数で回転させ
ながら、8.5cm /min の速度で均一平行にトラバース制
御により、2往復巻付けた後、日本電色工業(株)社製
のSZ−Σ90を用い、このプレートに対して垂直方向
から透過光を入射させ透過率をL*値として測定した。
EXAMPLES Examples will be described below, but the invention is not limited thereto. The structure and characteristic evaluation method of the present invention will be described below. 1. Raw yarn light transmissivity Fiber is traversed in a uniform and parallel manner at a speed of 8.5 cm / min while rotating a metal plate with a thickness of 5 cm x 3 cm and a thickness of 2 mm at the number of rotations represented by formula (3). Thus, after two reciprocal windings, SZ-Σ90 manufactured by Nippon Denshoku Industries Co., Ltd. was used, and transmitted light was made incident on this plate in the vertical direction, and the transmittance was measured as an L * value.

【0032】 プレート回転数(rpm) =13744.5/(総デニール)−−−−(3) 2.原糸光反射性 原糸透過率と同様測定基を用い、上記 1と同様なるプ
レート型サンプルを作製し、同プレートに対し0−45
°法で測定。 3.tanδ−T解析 粘弾性測定装置(オリエンテック社製:レオバイブロン
DDVー01FP型)を用い、昇温速度:3℃/分、測定周
波数:110Hz、初期過重:0.15g/d、加振振
幅:16.0μm、試料長:2cmにて測定する。 4.繊維物性 東洋ボールドウイン社製テンシロンRTA−100型機
を使用し、繊維糸長20cm、クロスヘッドスピード2
00mm/minで測定した。なおタフネスとは強度×
伸度で表わすものとする。 5.混合組成体の水分濃度 電気滴定方式水分測定装置(三菱CA−05型)、水分
気化装置(VA−05型)を用い、気化温度208℃、
N2 キャリアーガス流量300ml/min、ENDS
ENS;0,5μg/sec,遅延時間;5分、バック
グランド;0,05以下の条件でサンプル重量約1gの
チップについて測定した値である。 6.アミノ基末端濃度 ポリマー6gを小数点以下3桁まで正確に秤量し、これ
を90%フェノール水溶液50ccに溶解する。完全溶
解後溶液温度を25℃に安定させ、0.05Nー塩酸水
溶液でPH3までて滴定する。この時の0.05N塩酸
水溶液の滴下を記録し、以下の計算式にてポリマー1K
g当たりのアミノ基末端濃度(ミリ等量/Kgを算出す
る。
Plate rotation speed (rpm) = 13744.5 / (total denier) --- (3) 2. Raw yarn light reflectivity A plate type sample similar to the above 1 was prepared using the same measuring group as the raw yarn transmittance, and 0-45 was applied to the same plate.
Measured by the ° method. 3. tan δ-T analysis Using a viscoelasticity measuring device (manufactured by Orientec: Rheovibron DDV-01FP type), temperature rising rate: 3 ° C./min, measurement frequency: 110 Hz, initial load: 0.15 g / d, vibration amplitude: The measurement is performed at 16.0 μm and sample length: 2 cm. 4. Fiber physical properties Using a Toyo Baldwin Tensilon RTA-100 type machine, fiber yarn length 20 cm, crosshead speed 2
It was measured at 00 mm / min. Note that toughness is strength ×
It shall be expressed in terms of elongation. 5. Moisture Concentration of Mixed Composition Using an electric titration type moisture measuring device (Mitsubishi CA-05 type) and a moisture vaporizing device (VA-05 type), a vaporization temperature of 208 ° C.,
N2 carrier gas flow rate 300ml / min, ENDS
ENS: 0.5 μg / sec, delay time: 5 minutes, background: a value measured on a chip with a sample weight of about 1 g under conditions of 0.05 or less. 6. Amino group end concentration 6 g of the polymer is accurately weighed to the third decimal place and dissolved in 50 cc of 90% phenol aqueous solution. After complete dissolution, the solution temperature is stabilized at 25 ° C. and titrated to pH 3 with a 0.05N hydrochloric acid aqueous solution. The drop of 0.05N hydrochloric acid aqueous solution at this time was recorded, and the polymer 1K was calculated by the following calculation formula.
The amino group terminal concentration per gram (milliequivalent / Kg is calculated).

【0033】アミノ基末端濃度=A×F×50/B A:滴定に要した0.05Nー塩酸水溶液(ml) F:0.05Nー塩酸水溶液のファクター B:ポリマー重量(g) 7.カルボキシル基末端濃度 ポリマー6gを小数点以下3桁まで正確に秤量し、これ
を170℃のベンジルアルコール50ccに溶解する。
完全解後、ベンジルアルコール1リットル、フェノール
フタレイン5g、酢酸銅0,5g、二酸化チタン12g
から調整された指示薬を0,3ml添加する。その後、
0,1N−NaOエチレングリコール溶液を滴下し、液
色が紅色を呈した時点とする。この時の0,1N−Na
OHエチレングリコール溶液滴下量を記録し、以下の計
算式にてポリマー1Kg当たりのカルボキシル基末端濃
度(ミリ等量/Kg)を算出する。
Amino group terminal concentration = A × F × 50 / B A: 0.05 N-hydrochloric acid aqueous solution (ml) required for titration F: 0.05 N-hydrochloric acid aqueous solution factor B: Polymer weight (g) 7. Carboxyl group end concentration: 6 g of the polymer is accurately weighed to the third decimal place and dissolved in 50 cc of benzyl alcohol at 170 ° C.
After complete solution, 1 liter of benzyl alcohol, 5 g of phenolphthalein, 0.5 g of copper acetate, 12 g of titanium dioxide
Add 0.3 ml of the indicator prepared from. afterwards,
At the time when the 0,1N-NaO ethylene glycol solution was dropped, the liquid color became pink. 0,1N-Na at this time
The amount of OH ethylene glycol solution dropped is recorded, and the carboxyl group terminal concentration (milliequivalent / Kg) per 1 Kg of the polymer is calculated by the following formula.

【0034】 カルボキシル基末端濃度=A×F×100/B A:滴定に要した0,1N−NaOHエチレングリコー
ル溶液(ml) F:0.05Nー塩酸水溶液のファクター B:ポリマー重量(g)
Carboxyl group end concentration = A × F × 100 / BA A: 0,1N-NaOH ethylene glycol solution required for titration (ml) F: 0.05N-hydrochloric acid aqueous solution factor B: polymer weight (g)

【0035】[0035]

【実施例 1、比較例 1、2】アミノ末端基濃度 7
6.5(meq/kg)、カルボキシル末端基濃度 4
6.0(meq/kg)のポリヘキサメチレンアジパミ
ドと、Roam and Haas 社製のポリグルタルイミド EX
L4140[Mn:90000、イミド化率:56.1
%、]をチップとして、95:5の割合で混合し、この
混合組成体に対し、2000±100ppmの濃度で水
分を付与し、紡糸温度280℃で溶融吐出し、引取った
繊維を引き続き延伸し、7デニール、5フィラメントの
繊維を得た。
[Example 1, Comparative Example 1, 2] Amino end group concentration 7
6.5 (meq / kg), carboxyl end group concentration 4
6.0 (meq / kg) polyhexamethylene adipamide and Roam and Haas polyglutarimide EX
L4140 [Mn: 90,000, imidization ratio: 56.1
%,] As a chip and mixed at a ratio of 95: 5, water is added to this mixed composition at a concentration of 2000 ± 100 ppm, melt-discharged at a spinning temperature of 280 ° C., and the collected fiber is continuously drawn. Then, a fiber of 7 denier and 5 filaments was obtained.

【0036】さらに、比較例 1として上記実施例 1
と同様のアミノ末端基濃度、カルボキシル末端基濃度を
有するポリヘキサメチレンアジパミドとRoam and Haas
社製のポリグルタルイミド EXL4140[Mn:9
0000、イミド化率:56.1%、]をチップとして
95:5の割合で混合し、この混合体に対し、1000
±100ppmの濃度で水分を付与し、紡糸温度280
℃で溶融吐出し、引取った繊維を引き続き延伸し、7デ
ニール、5フィラメントの繊維を得た。
Further, as Comparative Example 1, the above Example 1 is used.
Roam and Haas with polyhexamethylene adipamide having similar amino end group and carboxyl end group concentrations
Polyglutarimide EXL4140 [Mn: 9
0000, imidization ratio: 56.1%,] was mixed as a chip at a ratio of 95: 5, and 1000 was added to this mixture.
Water is added at a concentration of ± 100 ppm, and the spinning temperature is 280.
The fibers were melt-discharged at 0 ° C., and the fibers collected were continuously drawn to obtain fibers of 7 denier and 5 filaments.

【0037】また、比較例 2として、上記実施例 1
と同様のアミノ末端基濃度、カルボキシル末端基濃度を
有するのポリヘキサメチレンアジパミドのみを、上記実
施例1と同様な条件で紡糸した。この繊維をパーン形状
のまま45℃×85%RH環境下で7日間処理し経時前後
での繊維物性を測定したところ、本発明である実施例
1のサンプルは表1に示すように極めて良好な経時安定
性が確認されたばかりではなく、経時後の物性保持率
(強度、伸度)も高く、さらに、得られた繊維の透明性
も格段に向上している。
As Comparative Example 2, the above Example 1
Only polyhexamethylene adipamide having the same amino terminal group concentration and carboxyl terminal group concentration as in Example 1 was spun under the same conditions as in Example 1 above. This fiber was treated in a pan shape in an environment of 45 ° C. and 85% RH for 7 days, and the physical properties of the fiber before and after aging were measured.
The sample of No. 1 was not only confirmed to have extremely good stability over time as shown in Table 1, but also had a high physical property retention rate (strength, elongation) after time, and the transparency of the obtained fiber was remarkably high. Has improved.

【0038】[0038]

【実施例 2】アミノ末端基濃度 76.5(meq/
kg)、カルボキシル末端基濃度 46.0(meq/
kg)のポリヘキサメチレンアジパミドと、Roam and H
aas 社製のポリグルタルイミド EXL4151[M
n:145000、イミド化率:76.6%、]をチッ
プとして、95:5の割合で混合し、この混合体に対
し、2000±100ppmの濃度で水分を付与し、紡
糸温度280℃で溶融吐出し、引取った繊維を引き続き
延伸し、7デニール、5フィラメントの繊維を得た。
Example 2 Amino end group concentration 76.5 (meq /
kg), carboxyl end group concentration 46.0 (meq /
kg) polyhexamethylene adipamide and Roam and H
aas polyglutarimide EXL4151 [M
n: 145000, imidization ratio: 76.6%] as a chip, and mixed at a ratio of 95: 5, and water is added to this mixture at a concentration of 2000 ± 100 ppm and melted at a spinning temperature of 280 ° C. The discharged and collected fibers were continuously stretched to obtain fibers of 7 denier and 5 filaments.

【0039】この繊維をパーン形状のまま45℃×85
%RH環境下で7日間処理し経時前後での繊維物性を測定
したところ、実施例 1のサンプルは表1に示すように
極めて良好な経時安定性が確認され、さらに、得られた
繊維の透明性も表1に示すように格段に向上している。
This fiber is formed into a bun shape at 45 ° C. × 85.
When the fiber properties were measured before and after the treatment for 7 days in a% RH environment, the sample of Example 1 was confirmed to have extremely good stability over time, as shown in Table 1, and the obtained fiber was transparent. As shown in Table 1, the sex has also improved markedly.

【0040】[0040]

【比較例 3】アミノ末端基濃度 46.7(meq/
kg)、カルボキシル末端基濃度 80.5(meq/
kg)のポリヘキサメチレンアジパミドと、Roam and H
aas 社製のポリグルタルイミド EXL4140[M
n:90000、イミド化率:56.1%、]をチップ
として、95:5の割合で混合し、この混合体に対し、
1000±100ppmの濃度で水分を付与し、紡糸温
度280℃で溶融吐出し、引取った繊維を引き続き延伸
し、7デニール、5フィラメントの繊維を得た。
Comparative Example 3 Amino end group concentration 46.7 (meq /
kg), carboxyl end group concentration 80.5 (meq /
kg) polyhexamethylene adipamide and Roam and H
aas polyglutarimide EXL4140 [M
n: 90000, imidization ratio: 56.1%,] as a chip and mixed at a ratio of 95: 5, and to this mixture,
Moisture was applied at a concentration of 1000 ± 100 ppm, melt-discharged at a spinning temperature of 280 ° C., and the collected fiber was continuously drawn to obtain a fiber of 7 denier and 5 filaments.

【0041】この繊維をパーン形状のまま45℃×85
%RH環境下で7日間処理し経時前後での繊維物性を測定
したところ、実施例 3のサンプルは、先の実施例1、
2に比べ、表1に示すように経時安定性、及び、透明感
ともに低下しているばかりではなく、紡糸安定性が低
く、糸切れ等の発生があり、得られた繊維の力学的物性
も満足できるのもではなかった。
This fiber is formed into a bun shape at 45 ° C. × 85.
When the fiber properties were measured before and after the treatment for 7 days in a% RH environment, the sample of Example 3 was
Compared with No. 2, as shown in Table 1, not only the stability over time and the transparency are lowered, but also the spinning stability is low, yarn breakage occurs, and the mechanical properties of the obtained fiber are also low. I wasn't satisfied.

【0042】このように、本発明のポリヘキサメチレン
アジパミド系繊維は、透明性、タフネス、染色性が改良
され、相対的にソフト感を備え、かつ、脂肪族ポリアミ
ド系繊維の欠点が解消できる。
As described above, the polyhexamethylene adipamide fiber of the present invention has improved transparency, toughness and dyeability, has a relatively soft feeling, and eliminates the drawbacks of the aliphatic polyamide fiber. it can.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明のポリヘキサメチレンアジパミド
系繊維は、透明性が高く、高湿度や高温度雰囲気下での
物性の経時安定性に優れ、高タフネス性の維持およびソ
フト風合いを要求される衣料、レッグ、一般産業資材分
野での機能向上を達成させるとともに、加工安定性を保
証するものである。
EFFECTS OF THE INVENTION The polyhexamethylene adipamide fiber of the present invention is highly transparent, has excellent stability over time in physical properties under high humidity and high temperature atmosphere, and requires maintenance of high toughness and soft texture. In addition to achieving improved functionality in the fields of garments, legs and general industrial materials, the processing stability is guaranteed.

【0045】また、本発明の製造方法は、ナイロン66
とポリグルタールイミドとの均一溶融混合法を確立し、
構成単糸デニールが1.8d以下のナイロン66とポリ
グルタールイミドとのブレンド繊維のポリヘキサメチレ
ンアジパミド系繊維を提供することができる。
Further, the manufacturing method of the present invention uses nylon 66
Established a uniform melt mixing method of polyglutarimide with
It is possible to provide a polyhexamethylene adipamide-based fiber, which is a blend fiber of nylon 66 and polyglutarimide having a single yarn denier of 1.8 d or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アミノ末端基濃度A(ミリ等量/kg;
meq/kg)とカルボキシル末端基濃度B(meq/
kg)の関係がA≧1.2xBであるポリヘキサメチレ
ンアジパミド99〜75重量部と下記一般式(1)で示
される酸無水物基を有すポリグルタルイミド1〜25重
量部の混合組成体からなるブレンド繊維であって、上記
繊維が(イ)構成単糸デニールが1.8d以下で、
(ロ)緊張状態で45℃、相対湿度85%の雰囲気で7
日処理し、処理前と処理後の繊維のtanδー温度
(T)曲線で現れるβ分散ピーク温度Tβ、とその値t
anδβの差が3℃以下、および0.005以下で、
(ハ)原糸透過率及び原糸反射率が以下の式(2)
(3)を満足することを特徴とするポリヘキサメチレン
アジパミド系繊維。 【化1】 原糸透過率(%) >−15.6×Log(総デニール)+35.0 ……(2) ただし、0.1 ≦(総デニール)≦ 30であるこ
と。 原糸反射率(%) <−58.7×(原糸透過率(%) )+151.4……(3)
1. An amino terminal group concentration A (milliequivalent / kg;
meq / kg) and carboxyl end group concentration B (meq / kg)
a mixture of 99 to 75 parts by weight of polyhexamethylene adipamide having a relationship of A ≧ 1.2 × B and 1 to 25 parts by weight of polyglutarimide having an acid anhydride group represented by the following general formula (1). A blend fiber composed of a composition, wherein the fiber has (a) constituent single yarn denier of 1.8 d or less,
(B) 7 in an atmosphere of 45 ° C and 85% relative humidity under tension
The β-dispersion peak temperature Tβ appearing in the tan δ-temperature (T) curve of the fiber after the day treatment and before and after the treatment, and its value t
When the difference in an δβ is 3 ° C or less and 0.005 or less,
(C) The raw yarn transmittance and the raw yarn reflectance are expressed by the following equation (2).
A polyhexamethylene adipamide-based fiber characterized by satisfying (3). [Chemical 1] Raw yarn transmittance (%)>-15.6 × Log (total denier) +35.0 (2) However, 0.1 ≦ (total denier) ≦ 30. Raw yarn reflectance (%) <-58.7 x (raw yarn transmittance (%)) +151.4 (3)
【請求項2】 ポリヘキサメチレンアジパミドと下記一
般式(1)で示される酸無水物基を有すポリグルタルイ
ミドとのブレンド繊維の製造法であって、上記ポリヘキ
サメチレンアジパミドのアミノ末端基濃度A(ミリ等量
/kg;meq/kg)とカルボキシル末端基濃度B
(meq/kg)の関係がA≧1.2xBであり、上記
ポリヘキサメチレンアジパミドを99〜75重量部と上
記ポリグルタルイミドを1〜25重量部との混合組成体
に対し1600〜5000ppmの濃度で水分を付与
し、270℃以上で溶融吐出し繊維とし、上記吐出した
繊維をそのまま引取り、または引き続き該引取った繊維
を延伸することを特徴とするポリヘキサメチレンアジパ
ミド系繊維の製造法。 【化2】
2. A method for producing a blended fiber of polyhexamethylene adipamide and polyglutarimide having an acid anhydride group represented by the following general formula (1), which comprises: Amino end group concentration A (milliequivalent / kg; meq / kg) and carboxyl end group concentration B
The relationship of (meq / kg) is A ≧ 1.2 × B, and 1600 to 5000 ppm with respect to a mixed composition of 99 to 75 parts by weight of the polyhexamethylene adipamide and 1 to 25 parts by weight of the polyglutarimide. A polyhexamethylene adipamide-based fiber, characterized in that the fiber is melt-discharged at a temperature of 270 ° C. or higher to form a fiber, and the discharged fiber is directly drawn or the drawn fiber is subsequently drawn. Manufacturing method. [Chemical 2]
JP12038494A 1994-06-01 1994-06-01 Polyhexamethylene adipamide fiber and its production Withdrawn JPH07331529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12038494A JPH07331529A (en) 1994-06-01 1994-06-01 Polyhexamethylene adipamide fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12038494A JPH07331529A (en) 1994-06-01 1994-06-01 Polyhexamethylene adipamide fiber and its production

Publications (1)

Publication Number Publication Date
JPH07331529A true JPH07331529A (en) 1995-12-19

Family

ID=14784882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12038494A Withdrawn JPH07331529A (en) 1994-06-01 1994-06-01 Polyhexamethylene adipamide fiber and its production

Country Status (1)

Country Link
JP (1) JPH07331529A (en)

Similar Documents

Publication Publication Date Title
US5194210A (en) Process for making polyketone fibers
TWI286561B (en) Composition stabilized with respect to light and/or heat
RU2285761C1 (en) Method of manufacturing high-strength heat-resistant threads from aromatic copolyamide having heterocycles in the chain
JPH10130497A (en) Polyamide resin composition
US5646234A (en) Production of fibers or films using specific forming solutions and the fibers of films obtainable thereby
US4202962A (en) Fibers of arylene oxadiazole/arylene N-alkylhydrazide copolymer
KR102562240B1 (en) Stain-resistant polyamide polymer obtained through high end group termination
CN108048946B (en) Hydrophilic flame-retardant polyester fiber material and preparation method thereof
US4061621A (en) Production of polycaproamide fiber from polycaproamide reacted with cyclic tetracarboxylic acid dianhydride
US5929148A (en) Polyhexamethylene adipamide fibers and process for producing the same
US5349044A (en) Polyamide monofilament suture manufactured from higher order polyamide
US5399431A (en) Fiber materials from homogeneous blends of aromatic polyamides and poly-N-vinylpyrrolidone, production thereof, and use thereof
US3300448A (en) Polyamide of enhanced dyeability containing phenyl phosphonic acid and nu-amino ethylpiperazine
TWI222476B (en) Process for manufacturing yarns, fibres and filaments
JPS62263320A (en) Fiber and yarn comprising aromatic polyamide mixture
US5389327A (en) Polyamide pigment dispersion
JPH07331529A (en) Polyhexamethylene adipamide fiber and its production
US6274697B1 (en) Process and product for making polyamides
JPH07324226A (en) Production of blend fiber of polyhexamethylene adipamide with polyepsilon-caproamide having high stability with time
JPH042814A (en) Polyamide multifilament yarn having high shrinkage and production thereof
JPH07316917A (en) Polyhexamethylene adipamide yarn having high stability with time and its production
US5820806A (en) Process for the preparation of polyketone fibers
KR100855696B1 (en) Method for producing polyamide 6 having improved dyeability and spinnability
KR20070071771A (en) Continuous manufacturing method of nylon 6 copolymer and nylon fiber therefrom
JP3814078B2 (en) Polyester filament and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904