JPH07331421A - Vacuum deposition device - Google Patents
Vacuum deposition deviceInfo
- Publication number
- JPH07331421A JPH07331421A JP12216394A JP12216394A JPH07331421A JP H07331421 A JPH07331421 A JP H07331421A JP 12216394 A JP12216394 A JP 12216394A JP 12216394 A JP12216394 A JP 12216394A JP H07331421 A JPH07331421 A JP H07331421A
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- evaporation
- temperature
- film thickness
- deposition material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、蒸着物質を真空中で加
熱して蒸発させ、ガラス基板などの被蒸着物に蒸着する
真空蒸着装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vapor deposition apparatus for heating a vapor deposition substance in a vacuum to evaporate it and deposit it on an object to be vapor deposited such as a glass substrate.
【0002】[0002]
【従来の技術】従来、真空蒸着装置において、ガラス基
板などの被蒸着物に蒸着する蒸着物質の蒸発量は、例え
ば、抵抗加熱方式では蒸着物質を加熱して蒸発させる蒸
着源の電流値を可変にして蒸発量を制御している。この
蒸発量の制御は、通常、真空槽内の適宜位置に設置され
ている、例えば水晶振動子からなる膜厚測定手段などに
蒸着された物質の膜厚を間接的に測定し、この測定値を
基に蒸着源の電流値を変化させて蒸発量を制御してい
た。2. Description of the Related Art Conventionally, in a vacuum vapor deposition apparatus, the evaporation amount of a vapor deposition material deposited on an object to be vapor-deposited such as a glass substrate is variable, for example, in a resistance heating method, by changing the current value of a vapor deposition source for heating and vaporizing the vapor deposition material. The evaporation amount is controlled. The control of this evaporation amount is usually carried out by indirectly measuring the film thickness of the substance deposited on a film thickness measuring means such as a crystal oscillator, which is installed at an appropriate position in the vacuum chamber. Based on the above, the amount of evaporation was controlled by changing the current value of the vapor deposition source.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記し
た蒸発量の制御方法では以下のように欠点があった。す
なわち、 (1)膜厚測定手段を取付ける位置が実際に蒸着が行な
われるべきガラス基板の位置と相違している場合には、
ガラス基板に対する成膜は測定手段のデータに基づく成
膜とは異なった成膜になってしまう。 (2)2個以上の蒸発源による蒸着においては、個々の
蒸発源の蒸発量を正確に制御することは困難である。 (3)2個以上の蒸発源により蒸着を行なう場合、膜厚
測定手段のデータに基づいて蒸発源の制御を行なうと、
各蒸着物質の最適蒸発条件で蒸着を行なうことができ
ず、安定した蒸着が困難となる。 などの欠点を有している。However, the above-mentioned method of controlling the evaporation amount has the following drawbacks. That is, (1) when the position where the film thickness measuring means is mounted is different from the position of the glass substrate on which vapor deposition is actually performed,
The film formation on the glass substrate is different from the film formation based on the data of the measuring means. (2) In vapor deposition using two or more evaporation sources, it is difficult to accurately control the evaporation amount of each evaporation source. (3) When vapor deposition is performed by two or more vaporization sources, if the vaporization sources are controlled based on the data of the film thickness measuring means,
Deposition cannot be performed under optimum evaporation conditions for each deposition material, making stable deposition difficult. It has drawbacks such as
【0004】本発明は、上記事情に鑑みてなされたもの
で、単一の蒸発源による蒸着だけではなく、複数の蒸発
源による蒸着であっても、個々の蒸着物質に対して最適
な蒸発制御を可能とする真空蒸着装置を提供することを
目的とする。The present invention has been made in view of the above circumstances, and optimal evaporation control for individual vapor deposition substances is achieved not only by vapor deposition by a single evaporation source but also by vaporization by a plurality of evaporation sources. It is an object of the present invention to provide a vacuum vapor deposition apparatus that enables the above.
【0005】[0005]
【課題を解決するための手段】本発明は、上記目的を達
成するために、真空槽内で被蒸着物に蒸着膜を成膜する
真空蒸着装置において、上記真空槽内に設置され蒸着物
質を可変可能に加熱して蒸発させ上記被蒸着物に蒸着膜
を成膜する少なくとも1個の蒸発源と、この蒸発源にお
ける上記蒸着物質の蒸発温度を測定する非接触の温度測
定手段と、この温度測定手段の測定温度に基づいて上記
蒸発源の上記蒸着物質を加熱する温度を制御して蒸発量
を制御する制御手段とを具備したことを特徴とする。In order to achieve the above-mentioned object, the present invention provides a vacuum vapor deposition apparatus for forming a vapor deposition film on an object to be vapor-deposited in a vacuum chamber, wherein the vapor deposition material is installed in the vacuum chamber. At least one evaporation source that variably heats and evaporates to form an evaporation film on the object to be evaporated, non-contact temperature measuring means for measuring the evaporation temperature of the evaporation material in the evaporation source, and this temperature And a control means for controlling a temperature for heating the vapor deposition material of the evaporation source based on a measurement temperature of the measurement means to control an evaporation amount.
【0006】また、本発明の真空蒸着装置は、複数の蒸
発源を設置し、これら複数の蒸発源に対応して複数の温
度測定手段を設けたことを特徴とする。Further, the vacuum vapor deposition apparatus of the present invention is characterized in that a plurality of evaporation sources are installed and a plurality of temperature measuring means are provided corresponding to the plurality of evaporation sources.
【0007】また、本発明の真空蒸着装置は、被蒸着物
の近傍に蒸着された蒸着物質の膜厚を測定する膜厚測定
手段を設置し、この膜厚測定手段によって測定された膜
厚と温度測定手段によって測定された測定温度に基づい
て制御手段は蒸発源の蒸着物質を加熱する温度を制御し
て蒸発量を制御することを特徴とする。Further, the vacuum vapor deposition apparatus of the present invention is provided with a film thickness measuring means for measuring the film thickness of the vapor deposition material deposited near the object to be vapor-deposited, and the film thickness measuring means The control means controls the temperature for heating the evaporation material of the evaporation source to control the evaporation amount based on the measured temperature measured by the temperature measuring means.
【0008】[0008]
【作用】本発明は上記のように構成したので、蒸着源に
よる蒸着物質の加熱時の蒸発温度を測定する温度測定手
段の測定温度に基づいて、制御手段が蒸発源の蒸着物質
を加熱する温度を制御し蒸発量を制御することにより、
蒸発物質は最適蒸発温度にて加熱・蒸発され、蒸発量を
安定化することができるとともに基板の蒸着状態の安定
化を図ることができる。Since the present invention is configured as described above, the temperature at which the control means heats the vapor deposition material of the evaporation source is based on the temperature measured by the temperature measuring means for measuring the vaporization temperature when the vapor deposition material is heated by the vapor deposition source. And by controlling the evaporation amount,
The evaporation material is heated and evaporated at the optimum evaporation temperature, so that the evaporation amount can be stabilized and the deposition state of the substrate can be stabilized.
【0009】また、本発明は、複数の蒸発源に対応して
複数の温度測定手段を設けたので、各蒸発源の加熱温度
が蒸発物質の最適蒸発温度に設定されることにより、各
蒸発源による蒸着物質の蒸発量を安定化することができ
るとともに基板の蒸着状態の安定化を図ることができ
る。Further, in the present invention, since a plurality of temperature measuring means are provided corresponding to a plurality of evaporation sources, the heating temperature of each evaporation source is set to the optimum evaporation temperature of the evaporation substance, so that each evaporation source is It is possible to stabilize the amount of evaporation of the vapor deposition material due to and to stabilize the vapor deposition state of the substrate.
【0010】また、本発明は、膜厚測定手段によって測
定された膜厚と温度測定手段によって測定された測定温
度に基づいて、制御手段が蒸発源の蒸着物質を加熱する
温度を制御して蒸発量を制御するので、成膜される蒸着
膜の膜厚と連動して蒸発源の加熱温度を制御することに
より、蒸着物質の蒸発量をより精密に制御することがで
き、蒸着膜の蒸着状態をより安定化することができる。Further, according to the present invention, based on the film thickness measured by the film thickness measuring means and the measured temperature measured by the temperature measuring means, the control means controls the temperature at which the vapor deposition material of the evaporation source is heated to evaporate. Since the amount is controlled, it is possible to control the evaporation temperature of the evaporation material more precisely by controlling the heating temperature of the evaporation source in conjunction with the film thickness of the evaporated film to be formed. Can be more stable.
【0011】[0011]
【実施例】以下、図面を参照して本発明の実施例を説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】図1は本発明の一実施例の真空蒸着装置の
概略構成を示す図である。FIG. 1 is a view showing the schematic arrangement of a vacuum vapor deposition apparatus according to an embodiment of the present invention.
【0013】同図において、1 は、例えば径が1200
mm以上の大型の真空槽で、この真空槽1 の上方には被蒸
着物であるガラス基板などの基板2 が装着されるドーム
3 が配設されており、このドーム3 には真空槽1 外のド
ーム回転モータ(不図示)からリングギアなどからなる
適宜手段を介して駆動力が与えられ、ドーム2 はガイド
レール4 に案内されて回転する。ドーム回転モータは、
例えばコンピュータからなり真空蒸着装置全体の動作の
制御を司る制御部5 に制御され、その回転周期が設定さ
れている。In the figure, 1 has a diameter of 1200, for example.
Dome in which a substrate 2 such as a glass substrate to be deposited is mounted above the vacuum chamber 1 with a large vacuum chamber of mm or more.
The dome 3 is provided with a driving force from a dome rotation motor (not shown) outside the vacuum chamber 1 through an appropriate means such as a ring gear, and the dome 2 is guided to the guide rail 4. Being rotated. Dome rotation motor
For example, it is controlled by the control unit 5 which is composed of a computer and controls the operation of the entire vacuum vapor deposition apparatus, and the rotation cycle thereof is set.
【0014】また、真空槽1 の下方にはドーム3 に装着
されている基板2 に蒸着される蒸着物質6 を蒸発する、
例えば抵抗加熱方式の蒸発源7 が設置されている。この
蒸発源7 は蒸着物質6 を加熱する際の電流値を可変にす
る電気信号を制御部5 からケーブル8 を介して供給さ
れ、蒸着物質6 を加熱する加熱温度が可変になるように
構成されている。Below the vacuum chamber 1, the evaporation material 6 evaporated on the substrate 2 mounted on the dome 3 is evaporated.
For example, a resistance heating type evaporation source 7 is installed. The evaporation source 7 is configured so that an electric signal for varying the current value when heating the vapor deposition material 6 is supplied from the control unit 5 via the cable 8 and the heating temperature for heating the vapor deposition material 6 is variable. ing.
【0015】また、真空槽1 内の側壁部には蒸発源7 に
おける蒸着物質6 の蒸発温度を測定するために、温度
計、例えば放射温度計9 が設置されている。この放射温
度計9は、蒸着物質6 の表面から放射されるエネルギー
を光−エネルギー変換手段9aに受け、光−エネルギー変
換手段9aの出力に基づいて温度検出部9bが蒸着物質6 の
表面温度を検出することにより、蒸着物質6 の蒸発温度
を測定している。このようにして放射温度計9 により測
定された蒸着物質6 の蒸発温度の監視状態を示す温度デ
ータS1が制御部5 を構成する温度コントローラ(不図
示)に送信・入力される。制御部5 は、蒸着物質6 の蒸
発温度を一定の温度に維持するために、入力された温度
データS1に基づいて蒸発源7 に蒸着物質6 を加熱する温
度を制御する制御信号をケーブル8 を介して出力する。A thermometer, for example, a radiation thermometer 9 is installed on the side wall of the vacuum chamber 1 to measure the evaporation temperature of the vapor deposition material 6 in the evaporation source 7. This radiation thermometer 9 receives the energy radiated from the surface of the vapor deposition material 6 in the light-energy conversion means 9a, and the temperature detection unit 9b detects the surface temperature of the vapor deposition material 6 based on the output of the light-energy conversion means 9a. By detecting, the evaporation temperature of the vapor deposition material 6 is measured. In this way, the temperature data S1 indicating the monitoring state of the evaporation temperature of the vapor deposition material 6 measured by the radiation thermometer 9 is transmitted and input to the temperature controller (not shown) which constitutes the control unit 5. In order to maintain the evaporation temperature of the vapor deposition material 6 at a constant temperature, the control unit 5 sends a control signal for controlling the temperature at which the vapor deposition material 6 is heated to the vaporization source 7 to the cable 8 based on the input temperature data S1. Output through.
【0016】ところで、蒸着物質6 の蒸発温度を測定す
る温度計は本実施例で適用している放射温度計9 のよう
な非接触式の温度計が好ましい。その理由は、蒸着物質
6 が蒸発源7 によって加熱されて蒸発するので、接触式
の温度計を適用すると、その温度計の接触部が溶融して
蒸着物質6 に混入してしまい、基板2 に成膜された蒸着
膜に悪影響を及ぼしてしまうためである。要するに、温
度計としては非接触で温度検出が可能なものであればよ
く、放射温度計9 以外には、例えば、被加熱体から放射
される電磁波を赤外線検出器で検知して被加熱体表面の
温度を検出するサーモグラフィを適用するようにしても
よい。By the way, the thermometer for measuring the evaporation temperature of the vapor deposition substance 6 is preferably a non-contact type thermometer such as the radiation thermometer 9 applied in this embodiment. The reason is vapor deposition material
Since 6 is heated by the evaporation source 7 and evaporates, when a contact type thermometer is applied, the contact part of the thermometer melts and mixes into the vapor deposition substance 6, and the vapor deposition film formed on the substrate 2 This is because it will adversely affect. In short, the thermometer may be anything that can detect the temperature in a non-contact manner.In addition to the radiation thermometer 9, for example, the electromagnetic wave radiated from the object to be heated is detected by an infrared detector and the surface of the object to be heated is detected. You may make it apply the thermography which detects the temperature of.
【0017】また、真空槽1 の天井中央部には基板2 に
蒸着される蒸着膜の膜厚を検出・監視するために、膜厚
計、例えば水晶振動子式膜厚監視装置10が設置されてい
る。この水晶振動子式膜厚監視装置10は、ドーム3 の曲
面近傍、つまり、ドーム3 に装着されている基板2 の近
傍に設置され、基板2 と同様の蒸着膜が付着する水晶振
動子からなる水晶膜厚センサ10a と、この水晶膜厚セン
サ10a に付着した蒸着膜の厚さを水晶振動子の振動数の
変化として読取る水晶膜厚計10b とからなり、基板2 に
付着した蒸着膜の厚さを水晶膜厚センサ10a に付着した
蒸着膜の厚さと見做して水晶膜厚計10b が基板2 に成膜
された膜厚を検出し、水晶膜厚計10b が検出した膜厚デ
ータS2は、放射温度計9 により測定された温度データと
同様に、制御部5 を構成する膜厚コントローラ(不図
示)に送信・入力される。制御部5は、基板2 に成膜さ
れる膜厚の制御のための蒸着速度制御用として、入力さ
れた膜厚データS2に基づいて蒸発源7 に蒸着物質6 を加
熱する温度を制御する制御信号をケーブル8 を介して出
力する。Further, a film thickness meter, for example, a crystal oscillator type film thickness monitoring device 10 is installed in the central portion of the ceiling of the vacuum chamber 1 in order to detect and monitor the film thickness of the deposited film deposited on the substrate 2. ing. This crystal oscillator type film thickness monitoring device 10 is installed in the vicinity of the curved surface of the dome 3, that is, in the vicinity of the substrate 2 mounted on the dome 3, and is composed of a crystal oscillator to which a vapor deposition film similar to the substrate 2 is attached. It consists of a quartz film thickness sensor 10a and a quartz film thickness meter 10b that reads the thickness of the deposited film attached to this quartz film thickness sensor 10a as a change in the frequency of the quartz resonator. The thickness is regarded as the thickness of the vapor deposition film attached to the crystal film thickness sensor 10a, the crystal film thickness meter 10b detects the film thickness formed on the substrate 2, and the film thickness data S2 detected by the crystal film thickness meter 10b is detected. Is transmitted and input to a film thickness controller (not shown) that constitutes the control unit 5, similarly to the temperature data measured by the radiation thermometer 9. The control unit 5 controls the temperature at which the vapor deposition material 6 is heated by the evaporation source 7 based on the input film thickness data S2 for controlling the vapor deposition rate for controlling the film thickness formed on the substrate 2. The signal is output via cable 8.
【0018】なお、本実施例では膜厚計として水晶振動
子式膜厚監視装置10を適用したが、水晶振動子式膜厚監
視装置10の代わりにモニター用ガラスに付着した蒸着膜
の厚さを光学的に読取る光学膜厚計を適用することも可
能である。In this embodiment, the crystal oscillator type film thickness monitoring device 10 was applied as the film thickness meter, but instead of the crystal oscillator type film thickness monitoring device 10, the thickness of the vapor deposition film attached to the monitor glass It is also possible to apply an optical film thickness meter that optically reads.
【0019】次に、上記構成の本発明の作用について説
明する。Next, the operation of the present invention having the above construction will be described.
【0020】まず、基板2 への成膜の前準備として、ド
ーム3 への所定数の基板2 の装着、および蒸発源7 への
蒸発物質6 のセットが行なわれる。First, as a preparation for film formation on the substrate 2, a predetermined number of substrates 2 are mounted on the dome 3 and the evaporation material 6 is set on the evaporation source 7.
【0021】前準備の完了後、蒸着物質6 を加熱する温
度が予め設定されている一定の温度、例えば蒸発物質6
の最適蒸発温度になるように、制御部5 から蒸発源7 に
制御信号が出力され、蒸発源7 は制御信号に従った電流
値で蒸着物質6 を加熱する。蒸発源7 による蒸着物質6
の加熱が始まると、蒸着物質6 は蒸発され、蒸発源7側
に面している基板2 および水晶膜厚センサ10a の面上に
蒸着膜が付着する。After the preparation is completed, the temperature for heating the vapor deposition material 6 is a preset constant temperature, for example, the vaporization material 6
A control signal is output from the control unit 5 to the evaporation source 7 so that the optimum evaporation temperature is obtained, and the evaporation source 7 heats the vapor deposition material 6 with a current value according to the control signal. Deposition material 6 by evaporation source 7
When heating is started, the vapor deposition material 6 is vaporized, and the vapor deposition film adheres to the surfaces of the substrate 2 and the crystal film thickness sensor 10a facing the evaporation source 7 side.
【0022】一方、放射温度計9 は、蒸着物質6 の表面
温度を検出して蒸発温度を測定し、その測定した温度デ
ータS1を制御部5 に送信する。制御部5 は、入力された
温度データS1に基づいて蒸発源7 に蒸着物質6 を加熱す
る温度を制御する制御信号を出力し、蒸着物質6 の蒸発
温度を最適蒸発温度に維持する。On the other hand, the radiation thermometer 9 detects the surface temperature of the vapor deposition material 6 to measure the evaporation temperature, and sends the measured temperature data S1 to the control unit 5. The control unit 5 outputs a control signal for controlling the temperature for heating the vapor deposition material 6 to the evaporation source 7 based on the input temperature data S1, and maintains the vaporization temperature of the vapor deposition material 6 at the optimum vaporization temperature.
【0023】また、水晶振動子式膜厚監視装置10は水晶
膜厚センサ10a に付着した蒸着膜の膜厚、つまり基板2
に付着した蒸着膜の膜厚に対応した膜厚データS2を制御
部5に送信する。制御部5 は、入力された膜厚データS2
に基づいて蒸発源7 に蒸着物質6 を加熱する温度を制御
する制御信号を出力し、基板2 に成膜される膜厚の蒸着
速度を制御する。そして、基板2 に付着した蒸着膜の膜
厚が所定の厚さに到達すると、制御部5 は蒸発部7 に蒸
着物質6 の加熱を停止する制御信号を出力し、基板2 へ
の蒸着物質6 の蒸着を停止する。Further, the crystal oscillator type film thickness monitoring device 10 has a film thickness of the vapor deposition film attached to the crystal film thickness sensor 10a, that is, the substrate 2
The film thickness data S2 corresponding to the film thickness of the vapor deposition film attached to is transmitted to the control unit 5. The control unit 5 controls the input film thickness data S2
Based on the above, a control signal for controlling the temperature for heating the vapor deposition material 6 is output to the evaporation source 7 to control the vapor deposition rate of the film thickness formed on the substrate 2. Then, when the thickness of the vapor deposition film attached to the substrate 2 reaches a predetermined thickness, the control unit 5 outputs a control signal to the evaporation unit 7 to stop the heating of the vapor deposition substance 6, and the vapor deposition substance 6 on the substrate 2 is controlled. Stop the vapor deposition of.
【0024】上記したように、本発明の実施例によれ
ば、放射温度計9 が蒸着物質6 の表面温度を検出して蒸
発温度を測定することにより、蒸着物質6 を最適蒸発温
度で加熱することが可能となって蒸着物質6 の蒸発量を
安定化することができ、基板2の蒸着状態の安定化を図
ることができる。As described above, according to the embodiment of the present invention, the radiation thermometer 9 detects the surface temperature of the vapor deposition material 6 and measures the vaporization temperature to heat the vapor deposition material 6 at the optimum vaporization temperature. This makes it possible to stabilize the evaporation amount of the vapor deposition material 6 and stabilize the vapor deposition state of the substrate 2.
【0025】また、制御部5 が入力された温度データS1
に基づいて蒸着物質6 を加熱する温度を制御しているこ
とにより、蒸着物質6 を一定温度の最適蒸発温度まで昇
温させる時間を短時間で行なうことができる。Further, the temperature data S1 input by the control unit 5
By controlling the temperature for heating the vapor deposition material 6 based on the above, it is possible to shorten the time for raising the vapor deposition material 6 to the optimum evaporation temperature of a constant temperature.
【0026】また、放射温度計9 による蒸着物質6 の蒸
発温度の測定に連動して、水晶振動子式膜厚監視装置10
による基板2 に成膜される膜厚の測定を行なっているこ
とにより、蒸着物質の蒸発量をより精密に制御すること
ができ、蒸着膜の蒸着状態をより安定化することができ
る。Further, in conjunction with the measurement of the evaporation temperature of the vapor deposition material 6 by the radiation thermometer 9, a crystal oscillator type film thickness monitoring device 10
By measuring the film thickness formed on the substrate 2 by means of the method described above, the evaporation amount of the evaporation material can be controlled more precisely, and the evaporation state of the evaporation film can be further stabilized.
【0027】なお、本発明は、上記実施例では、単一の
蒸発源7 と単一の放射温度計9 としたが、これに限るこ
とはなく、複数の蒸発源7 を設置し、これらの蒸発源7
にそれぞれ対応して放射温度計9 を設ける構成としても
よく、このように構成することにより、各蒸発源7 の加
熱温度が蒸発物質の最適蒸発温度に設定されることによ
り、各蒸発源7 による蒸着物質6 の蒸発量を安定化する
ことができるとともに基板7 の蒸着状態の安定化を図る
ことができる。Although the present invention uses a single evaporation source 7 and a single radiation thermometer 9 in the above embodiment, the present invention is not limited to this, and a plurality of evaporation sources 7 are installed and these Evaporation source 7
A radiation thermometer 9 may be provided for each of the above, and by configuring in this way, the heating temperature of each evaporation source 7 is set to the optimum evaporation temperature of the evaporation material, It is possible to stabilize the evaporation amount of the vapor deposition material 6 and stabilize the vapor deposition state of the substrate 7.
【0028】また、本発明は、上記実施例では、放射温
度計9 による蒸着物質6 の蒸発温度の測定と水晶振動子
式膜厚監視装置10による基板2 に成膜される膜厚の測定
を連動して蒸発源7 による蒸着物質6 の加熱温度を制御
するようにしたが、放射温度計9 による蒸着物質6 の蒸
発温度の測定のみを単独で行なうようにしてもよく、蒸
発温度の測定のみで加熱温度を制御するようにしても、
蒸発源7 による蒸着物質6 の蒸発量の安定化を十分に図
ることができる。Further, in the above-mentioned embodiment, according to the present invention, the evaporation temperature of the vapor deposition material 6 is measured by the radiation thermometer 9 and the film thickness formed on the substrate 2 by the crystal oscillator type film thickness monitoring device 10. Although the heating temperature of the evaporation material 6 by the evaporation source 7 is controlled in conjunction with this, the evaporation temperature of the evaporation material 6 may be measured by the radiation thermometer 9 alone, and only the evaporation temperature is measured. Even if you control the heating temperature with
It is possible to sufficiently stabilize the evaporation amount of the vapor deposition material 6 by the evaporation source 7.
【0029】また、本発明は上記実施例に限定されるこ
となく、本発明の要旨を逸脱しない範囲において、種々
変形可能なことは勿論である。Further, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
【0030】[0030]
【発明の効果】以上詳述したように、本発明の真空蒸着
装置によれば、蒸着源による蒸着物質の加熱時の蒸発温
度を測定する温度測定手段の測定温度に基づいて、制御
手段が蒸発源の蒸着物質を加熱する温度を制御し蒸発量
を制御することにより、蒸発物質は最適蒸発温度にて加
熱・蒸発され、蒸発量を安定化することができるととも
に基板の蒸着状態の安定化を図ることができる。As described in detail above, according to the vacuum vapor deposition apparatus of the present invention, the control means evaporates based on the measured temperature of the temperature measuring means for measuring the evaporation temperature when the vapor deposition material is heated by the vapor deposition source. By controlling the heating temperature of the source evaporation material and controlling the evaporation amount, the evaporation material is heated and evaporated at the optimum evaporation temperature, and it is possible to stabilize the evaporation amount and stabilize the evaporation state of the substrate. Can be planned.
【0031】また、本発明は、複数の蒸発源に対応して
複数の温度測定手段を設けたので、各蒸発源の加熱温度
が蒸発物質の最適蒸発温度に設定されることにより、各
蒸発源による蒸着物質の蒸発量を安定化することができ
るとともに基板の蒸着状態の安定化を図ることができ
る。Further, according to the present invention, since a plurality of temperature measuring means are provided corresponding to a plurality of evaporation sources, the heating temperature of each evaporation source is set to the optimum evaporation temperature of the evaporation substance, so that each evaporation source is set. It is possible to stabilize the amount of evaporation of the vapor deposition material due to and to stabilize the vapor deposition state of the substrate.
【0032】また、本発明は、膜厚測定手段によって測
定された膜厚と温度測定手段によって測定された測定温
度に基づいて、制御手段が蒸発源の蒸着物質を加熱する
温度を制御して蒸発量を制御するので、成膜される蒸着
膜の膜厚と連動して蒸発源の加熱温度を制御することに
より、蒸着物質の蒸発量をより精密に制御することがで
き、蒸着膜の蒸着状態をより安定化することができる。Further, according to the present invention, the control means controls the temperature for heating the vapor deposition material of the evaporation source on the basis of the film thickness measured by the film thickness measuring means and the measured temperature measured by the temperature measuring means. Since the amount is controlled, it is possible to control the evaporation temperature of the evaporation material more precisely by controlling the heating temperature of the evaporation source in conjunction with the film thickness of the evaporated film to be formed. Can be more stable.
【図1】本発明の一実施例の真空蒸着装置の概略構成を
示す図である。FIG. 1 is a diagram showing a schematic configuration of a vacuum vapor deposition apparatus according to an embodiment of the present invention.
1 …真空槽 2 …基板(被蒸着物) 5 …制御部(制御手段) 6 …蒸着物質 7 …蒸発源 9 …放射温度計(温度測定手段) 10…水晶振動子式膜厚監視装置(膜厚測定手段) 1 ... Vacuum chamber 2 ... Substrate (deposition object) 5 ... Control unit (control means) 6 ... Evaporation material 7 ... Evaporation source 9 ... Radiation thermometer (temperature measurement means) 10 ... Quartz crystal type film thickness monitoring device (film Thickness measuring means)
Claims (3)
真空蒸着装置において、上記真空槽内に設置され蒸着物
質を可変可能に加熱して蒸発させ上記被蒸着物に蒸着膜
を成膜する少なくとも1個の蒸発源と、この蒸発源にお
ける上記蒸着物質の蒸発温度を測定する非接触の温度測
定手段と、この温度測定手段の測定温度に基づいて上記
蒸発源の上記蒸着物質を加熱する温度を制御して蒸発量
を制御する制御手段とを具備したことを特徴とする真空
蒸着装置。1. A vacuum vapor deposition apparatus for depositing a vapor deposition film on an object to be vapor-deposited in a vacuum chamber, wherein the vapor deposition material is variably heated and vaporized in the vacuum chamber to vaporize the vapor-deposited film on the substance to be vapor-deposited. At least one evaporation source for film formation, non-contact temperature measuring means for measuring the evaporation temperature of the vapor deposition material in the evaporation source, and the vapor deposition material of the evaporation source based on the temperature measured by the temperature measuring means. A vacuum vapor deposition apparatus comprising: a control unit that controls a heating temperature to control an evaporation amount.
発源に対応して複数の温度測定手段を設けたことを特徴
とする請求項1記載の真空蒸着装置。2. The vacuum vapor deposition apparatus according to claim 1, wherein a plurality of evaporation sources are installed and a plurality of temperature measuring means are provided corresponding to the plurality of evaporation sources.
膜厚を測定する膜厚測定手段を設置し、この膜厚測定手
段によって測定された膜厚と温度測定手段によって測定
された測定温度に基づいて制御手段は蒸発源の蒸着物質
を加熱する温度を制御して蒸発量を制御することを特徴
とする請求項1および2記載の真空蒸着装置。3. A film thickness measuring means for measuring the film thickness of the vapor deposition material deposited near the object to be vapor-deposited, and a film thickness measured by the film thickness measuring means and a measurement measured by the temperature measuring means. The vacuum vapor deposition apparatus according to claim 1 or 2, wherein the control means controls the temperature for heating the vapor deposition material of the vaporization source based on the temperature to control the vaporization amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12216394A JPH07331421A (en) | 1994-06-03 | 1994-06-03 | Vacuum deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12216394A JPH07331421A (en) | 1994-06-03 | 1994-06-03 | Vacuum deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07331421A true JPH07331421A (en) | 1995-12-19 |
Family
ID=14829150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12216394A Pending JPH07331421A (en) | 1994-06-03 | 1994-06-03 | Vacuum deposition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07331421A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998052075A1 (en) * | 1997-05-16 | 1998-11-19 | Hoya Kabushiki Kaisha | Mechanism for imparting water repellency to both sides simultaneously |
US6264751B1 (en) * | 1998-05-18 | 2001-07-24 | Hoya Corporation | Mechanism for performing water repellency processing on both sides simultaneously |
JP2010037627A (en) * | 2008-08-07 | 2010-02-18 | Showa Shinku:Kk | Film deposition system and film thickness measurement method |
JP2012502177A (en) * | 2008-09-05 | 2012-01-26 | エスエヌユー プレシジョン カンパニー,リミテッド | Vapor deposition apparatus and vapor deposition method using the same |
WO2017195674A1 (en) * | 2016-05-13 | 2017-11-16 | 株式会社アルバック | Apparatus for manufacturing organic thin film, and method for manufacturing organic thin film |
-
1994
- 1994-06-03 JP JP12216394A patent/JPH07331421A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998052075A1 (en) * | 1997-05-16 | 1998-11-19 | Hoya Kabushiki Kaisha | Mechanism for imparting water repellency to both sides simultaneously |
US6264751B1 (en) * | 1998-05-18 | 2001-07-24 | Hoya Corporation | Mechanism for performing water repellency processing on both sides simultaneously |
JP2010037627A (en) * | 2008-08-07 | 2010-02-18 | Showa Shinku:Kk | Film deposition system and film thickness measurement method |
JP2012502177A (en) * | 2008-09-05 | 2012-01-26 | エスエヌユー プレシジョン カンパニー,リミテッド | Vapor deposition apparatus and vapor deposition method using the same |
WO2017195674A1 (en) * | 2016-05-13 | 2017-11-16 | 株式会社アルバック | Apparatus for manufacturing organic thin film, and method for manufacturing organic thin film |
JPWO2017195674A1 (en) * | 2016-05-13 | 2018-11-22 | 株式会社アルバック | Organic thin film manufacturing apparatus, organic thin film manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4311725A (en) | Control of deposition of thin films | |
JP5280542B2 (en) | Vapor deposition apparatus and vapor deposition method using the same | |
KR100881244B1 (en) | Method and device for controlling the surface temperatures of substrates in a chemical vapour deposition reactor | |
US7871667B2 (en) | Method of operating vacuum deposition apparatus and vacuum deposition apparatus | |
CN107805783B (en) | Evaporation source, evaporation equipment and evaporation control method | |
JP2004091858A (en) | Vacuum evaporation system and method for manufacturing evaporated film-applied product | |
JPH07331421A (en) | Vacuum deposition device | |
US20030029382A1 (en) | Thin film forming method and apparatus | |
JP2007039762A (en) | Vapor deposition apparatus and vapor deposition method | |
JP2008269765A (en) | Method of and apparatus for monitoring mass flow rate of lubricant vapor forming lubricant coating of magnetic disk | |
KR20130041454A (en) | Apparatus for coating parylene thin film and method for coating parylene thin film using the apparatus | |
US6082296A (en) | Thin film deposition chamber | |
JP4139158B2 (en) | Vacuum deposition method | |
JP2009221496A (en) | Thin film deposition apparatus, and method of manufacturing thin film | |
JP4260229B2 (en) | Method for coating a transparent metal oxide on a film | |
JP2009174027A (en) | Vacuum deposition apparatus | |
KR20140009951A (en) | Apparatus for coating parylene thin film and method for coating parylene thin film using the apparatus | |
JP5180469B2 (en) | Vacuum deposition equipment | |
JP2825298B2 (en) | Film thickness measuring device | |
US6086963A (en) | Method and device for control of a vacuum vaporization process | |
KR101499228B1 (en) | Vapor deposition apparatus and vapor deposition method | |
US20090258134A1 (en) | Method for controlling thin-film forming velocity, method for manufacturing thin-film using the same and system for manufacturing a thin-film using the same | |
JP5044223B2 (en) | Vacuum deposition equipment | |
JPS6328862A (en) | Method for controlling film thickness | |
JP2013173965A (en) | Vapor deposition apparatus |