JPH0733096Y2 - Bleeding device - Google Patents

Bleeding device

Info

Publication number
JPH0733096Y2
JPH0733096Y2 JP4800588U JP4800588U JPH0733096Y2 JP H0733096 Y2 JPH0733096 Y2 JP H0733096Y2 JP 4800588 U JP4800588 U JP 4800588U JP 4800588 U JP4800588 U JP 4800588U JP H0733096 Y2 JPH0733096 Y2 JP H0733096Y2
Authority
JP
Japan
Prior art keywords
tank
bleeding
pipe
gas
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4800588U
Other languages
Japanese (ja)
Other versions
JPH01151171U (en
Inventor
幸子 井浦
永一 尾崎
恒雄 弓倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4800588U priority Critical patent/JPH0733096Y2/en
Publication of JPH01151171U publication Critical patent/JPH01151171U/ja
Application granted granted Critical
Publication of JPH0733096Y2 publication Critical patent/JPH0733096Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/046Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for sorption type systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は吸収式ヒートポンプ等において、能力維持に有
害な空気や、腐食により発生する不凝縮ガスを抽気する
抽気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an extraction heat pump or the like for extracting air that is harmful to maintaining capacity and non-condensable gas generated by corrosion.

〔従来の技術〕 この種の抽気装置としては、例えば特開昭57−136076号
公報や実公昭59−67778号公報に開示されているものが
知られており、第6図はその概要構成図である。図にお
いて、気液分離器1と、ノズル2を備えたエゼクタ3と
は、ポンプ4を有する配管5で連結されており、エゼク
タ3の開口部には、混合部6,喉部7,拡大部8からなるデ
ィフューザ9が接続されている。ディフューザ9の拡大
部8に接続された配管10は前記気液分離器1に開口され
ている。11は配管12で気液分離器1に連結された貯気槽
であり、また13は配管14でエゼクタ3に連結された吸収
式ヒートポンプの凝縮器または吸収器である。
[Prior Art] As this type of bleeding device, those disclosed in, for example, JP-A-57-136076 and JP-B-59-67778 are known, and FIG. 6 is a schematic configuration diagram thereof. Is. In the figure, a gas-liquid separator 1 and an ejector 3 provided with a nozzle 2 are connected by a pipe 5 having a pump 4, and at the opening of the ejector 3, a mixing portion 6, a throat portion 7, and an enlarged portion are provided. A diffuser 9 consisting of 8 is connected. A pipe 10 connected to the enlarged portion 8 of the diffuser 9 is opened to the gas-liquid separator 1. Reference numeral 11 is a storage tank connected to the gas-liquid separator 1 via a pipe 12, and 13 is a condenser or absorber of an absorption heat pump connected to the ejector 3 via a pipe 14.

以上のように構成された抽気装置の動作を、13が凝縮器
の場合を例にとって説明する。ポンプ4を運転すると、
これで送り出され溶液は、エゼクタ3のノズル2からデ
ィフューザ9の混合部6に向って噴出され、混合部6の
圧力が下がるので、冷媒蒸気と不凝縮ガスとの混合ガス
が、凝縮器13から混合部6内に吸入されたのち、喉部7
と拡大部8および配管10を経て気液分離器1へ流れる。
気液分離器1内においては、混合ガス中の冷媒蒸気が溶
液に吸収され、不凝縮ガスは貯気槽11へ流れる。このあ
と、気液分離器1内の溶液は再びポンプ4によって循環
され、上記の抽気動作を繰返す。一方、貯気槽11内へ流
れて貯えられた不凝縮ガスは、図示しない真空ポンプに
より機外へ排出される。
The operation of the extraction device configured as described above will be described by taking the case where 13 is a condenser as an example. When pump 4 is operated,
The solution thus delivered is ejected from the nozzle 2 of the ejector 3 toward the mixing section 6 of the diffuser 9, and the pressure of the mixing section 6 is lowered, so that the mixed gas of the refrigerant vapor and the non-condensable gas is discharged from the condenser 13. After being sucked into the mixing part 6, the throat part 7
Then, it flows to the gas-liquid separator 1 through the enlarged portion 8 and the pipe 10.
In the gas-liquid separator 1, the refrigerant vapor in the mixed gas is absorbed by the solution, and the non-condensed gas flows into the gas storage tank 11. After that, the solution in the gas-liquid separator 1 is circulated again by the pump 4, and the extraction operation is repeated. On the other hand, the non-condensable gas that has flowed and stored in the storage tank 11 is discharged to the outside of the machine by a vacuum pump (not shown).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、このような従来の抽気装置においては、
上記のようにノズル2から混合部6に溶液を噴出させて
混合部6に冷媒蒸気と不凝縮ガスとの混合気を吸入させ
る構成となっているため、溶液の流量が増加したり、ポ
ンプ4の吐出圧力上昇により消費電力が増加したりする
ばかりでなく、吸収式ヒートポンプのCOPが低下すると
いう問題があった。
However, in such a conventional extraction device,
As described above, since the solution is ejected from the nozzle 2 to the mixing section 6 and the mixture of the refrigerant vapor and the non-condensable gas is sucked into the mixing section 6, the flow rate of the solution is increased or the pump 4 is used. There is a problem that not only the power consumption increases due to the increase of the discharge pressure of the, but also the COP of the absorption heat pump decreases.

本考案は上記のような課題を解決するためになされたも
ので、少ない溶液の流量で効果的に不凝縮ガスを抽気す
ることを可能にした抽気装置を提供することを目的とし
ている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an bleeding device capable of effectively bleeding a non-condensable gas with a small flow rate of a solution.

〔課題を解決するための手段〕[Means for Solving the Problems]

このような課題を解決するために本考案に係る抽気装置
は、抽気槽に挿入される溶液流入管を、熱交換器との間
を抽気配管で連結された抽気槽の中心に対する偏心位置
へ先端の噴出口を臨ませて挿入するとともに、この先端
の噴出口を、抽気槽内で略水平方向に向けて開口させた
ものである。
In order to solve such a problem, the bleeding device according to the present invention is configured such that a solution inflow pipe inserted into a bleeding tank is tipped to an eccentric position with respect to the center of a bleeding tank connected to a heat exchanger by a bleeding pipe. Is inserted so as to face the nozzle, and the nozzle at the tip is opened in the extraction tank in a substantially horizontal direction.

〔作用〕[Action]

気液分離器から送液配管で送られた溶液が溶液流入管の
噴出口から抽気槽内へ噴出すると、熱交換器と抽気槽と
の間に圧力差ができることにより熱交換器内の混合ガス
が吸引され、この混合ガスは気液分離器へ送られて不燃
焼ガスと溶液とに分離される。この場合、溶液流入管の
噴出口が抽気槽内の偏心位置で水平または水平より斜め
下向きになるように略水平方向に向けて開口しているた
め、この抽気槽内で渦が発生し、この渦の作用で安定し
た抽気が行われる。
When the solution sent from the gas-liquid separator through the liquid delivery pipe is ejected from the ejection port of the solution inflow pipe into the extraction tank, a pressure difference is created between the heat exchanger and the extraction tank, so that the mixed gas in the heat exchanger is generated. Is sucked, and this mixed gas is sent to a gas-liquid separator and separated into a non-combustible gas and a solution. In this case, since the jet outlet of the solution inflow pipe is opened in the eccentric position in the bleeding tank in a substantially horizontal direction so as to be horizontal or obliquely downward from the horizontal, a vortex is generated in this bleeding tank. Stable extraction is performed by the action of the vortex.

〔実施例〕〔Example〕

第1図および第2図は本考案に係る抽気装置の実施例を
示し、第1図はその概要構成図、第2図は第1図のII I
I断面図である。図において第6図に示す従来の抽気装
置と同構成の部材にはこれと同符号を付してその詳しい
説明を省略し、以下簡単に説明する。貯気槽11との間を
配管12で連結された気液分離器1には、ポンプ4を有す
る送液配管5と送気配管10とが接続されており、送液配
管5の先端部には溶液流入管20が接続されている。21は
密閉筒状に形成された抽気槽であって、熱交換器として
の凝縮器13との間を抽気配管14で連結されており、この
抽気槽21内には前記溶液流入管20が上方から挿入されて
いる。そして、溶液流入管20は先端がL字状に屈曲され
て噴出口20aを有しており、この噴出口20aは、第2図に
示すように、符号Oで示す抽気槽21の中心に対する偏心
位置に臨ませて開口されている。
1 and 2 show an embodiment of the extraction device according to the present invention, FIG. 1 is a schematic configuration diagram thereof, and FIG. 2 is II I of FIG.
FIG. In the figure, members having the same construction as those of the conventional air extraction device shown in FIG. The gas-liquid separator 1 which is connected to the gas storage tank 11 by a pipe 12 is connected with a liquid-feeding pipe 5 having a pump 4 and an air-feeding pipe 10, and at the tip of the liquid-feeding pipe 5. Is connected to a solution inflow pipe 20. Reference numeral 21 is an extraction tank formed in a closed cylindrical shape, and is connected to a condenser 13 as a heat exchanger by an extraction pipe 14, and inside the extraction tank 21, the solution inflow pipe 20 is upward. Has been inserted from. Further, the solution inflow pipe 20 is bent into an L-shape at its tip and has an ejection port 20a. As shown in FIG. 2, this ejection port 20a is eccentric with respect to the center of the bleed tank 21 indicated by the symbol O. It is opened to face the position.

以上のように構成された抽気装置の動作を説明する。ポ
ンプ4を運転すると、気液分離器1内の溶液は、送液配
管5を通って溶液流入管20へ送られ、噴出口20aから抽
気槽21内へ噴出される。この場合、溶液流入管20の先端
が抽気槽21の底面に沿って折り曲げられ、かつ溶液が抽
気槽21の円周方向に噴出するように噴出口20aが開口さ
れているので、抽気槽21内には渦が発生する。このと
き、抽気槽21に流入した溶液の飽和蒸気圧は凝縮器13内
の蒸気圧より低く保たれているために、この圧力差によ
り凝縮器13内から冷媒蒸気と不凝縮性ガスとの混合ガス
が抽気配管14を通って抽気槽21内へ流入する。
The operation of the extraction device configured as above will be described. When the pump 4 is operated, the solution in the gas-liquid separator 1 is sent to the solution inflow pipe 20 through the liquid sending pipe 5 and jetted from the jet outlet 20a into the extraction tank 21. In this case, the tip of the solution inflow pipe 20 is bent along the bottom surface of the extraction tank 21, and the ejection port 20a is opened so that the solution is ejected in the circumferential direction of the extraction tank 21. A vortex is generated in. At this time, since the saturated vapor pressure of the solution that has flowed into the extraction tank 21 is kept lower than the vapor pressure in the condenser 13, this pressure difference causes mixing of the refrigerant vapor and the noncondensable gas from the inside of the condenser 13. Gas flows into the extraction tank 21 through the extraction pipe 14.

次に、抽気槽21内での渦の表面では、冷媒蒸気の一部が
吸収され、さらに渦の作用により不凝縮性ガスと未吸収
の冷媒蒸気とが溶液に同伴して送気配管10から気液分離
器1へ流れ、未吸収の冷媒蒸気は、送気配管10と気液分
離器1内で吸収される。
Next, on the surface of the vortex in the extraction tank 21, a part of the refrigerant vapor is absorbed, and further the action of the vortex causes the non-condensable gas and the unabsorbed refrigerant vapor to accompany the solution from the air supply pipe 10. The unabsorbed refrigerant vapor flowing to the gas-liquid separator 1 is absorbed in the air supply pipe 10 and the gas-liquid separator 1.

不凝縮性ガスは気液分離器1内で溶液と分離され、配管
12を通って貯気槽11に貯えられたのち、図示しない真空
ポンプにより機外へ排出される。このあと上記動作を繰
返して循環する。
The non-condensable gas is separated from the solution in the gas-liquid separator 1 and the piping
After being stored in the air storage tank 11 through 12, it is discharged to the outside by a vacuum pump (not shown). After that, the above operation is repeated to circulate.

なお、前記実施例では、溶液流入管20を抽気槽21の上部
から偏心位置を下方へ垂下させ、その先端を抽気槽21の
底面に平行させかつ抽気槽21の半径直交方向に曲げた例
を示したが、これに限定するものではない。
In the above embodiment, the solution inflow pipe 20 is hung from the upper part of the extraction tank 21 at an eccentric position downward, and its tip is parallel to the bottom surface of the extraction tank 21 and is bent in a direction orthogonal to the radius of the extraction tank 21. Although shown, it is not limited thereto.

すなわち、第3図は本考案の他の実施例を示す抽気槽の
縦断面図、第4図は第3図のIV IV断面図であって、本
実施例においては、溶液流入管30が抽気槽21の側方から
接線方向に挿入されており、直線状の噴出口30aは前記
実施例と同じく抽気槽21の中心に対する偏心位置に開口
されている。したがって、溶液の噴出により渦が発生す
ることは、前記実施例と同じである。
That is, FIG. 3 is a vertical sectional view of an extraction tank showing another embodiment of the present invention, and FIG. 4 is a sectional view taken along line IV-IV of FIG. It is inserted from the side of the tank 21 in the tangential direction, and the linear ejection port 30a is opened at an eccentric position with respect to the center of the extraction tank 21 as in the above-mentioned embodiment. Therefore, vortices are generated by jetting the solution, as in the above-described embodiment.

さらに第5図は本考案の他の実施例を示す抽気槽の縦断
面図であって、本実施例においては、前記実施例と同じ
く抽気槽21の上部から挿入されて垂下された溶液流入管
40の先端部が斜めに屈曲されている。横断面は第2図と
ほゞ同じであって、噴出口40aが抽気槽21の中心に対す
る偏心位置に開口されているので、渦が発生することは
前記各実施例と同じである。
Further, FIG. 5 is a vertical cross-sectional view of an extraction tank showing another embodiment of the present invention. In this embodiment, like the previous embodiment, the solution inflow pipe inserted from the upper portion of the extraction tank 21 and hung down.
The tip of 40 is bent obliquely. The cross section is almost the same as that in FIG. 2, and since the ejection port 40a is opened at an eccentric position with respect to the center of the extraction tank 21, the generation of vortices is the same as in each of the above-described embodiments.

なお、前記各実施例は熱交換器として凝縮器を例示した
が、吸収器でもよく、この場合も同じように冷媒蒸気と
不凝縮性ガスとの混合ガスを前述した圧力差により抽気
槽21に吸引し、以下同じ動作で抽気が行われる。
Incidentally, in each of the above embodiments, the condenser was illustrated as the heat exchanger, but it may be an absorber, and in this case as well, the mixed gas of the refrigerant vapor and the non-condensable gas is similarly extracted into the extraction tank 21 by the pressure difference. After sucking, the same operation is performed to extract air.

〔考案の効果〕[Effect of device]

以上の説明により明らかなように本考案によれば抽気装
置において、抽気槽に挿入される溶液流入管を、熱交換
器との間を抽気配管で連結された抽気槽の中心に対する
偏心位置へ先端の噴出口を臨ませて挿入するとともに、
この先端の噴出口を、抽気槽内で略水平方向に向けて開
口させるようにしたので、抽気に際しては、少ない流量
でも抽気槽内に渦が発生し、この渦の作用により冷媒蒸
気の吸収と不凝縮性ガスとの同伴が可能となり、安定し
た抽気能力が得られるので、吸収式ヒートポンプのCOP
を大きくすることができ、また、溶液ポンプの消費電力
を小さくすることができ運転費の節減が計れる。
As apparent from the above description, according to the present invention, in the bleeding device, the solution inflow pipe inserted into the bleeding tank is tipped to the eccentric position with respect to the center of the bleeding tank connected to the heat exchanger by the bleeding pipe. Insert while facing the spout of
Since the jet outlet at this tip is opened in the extraction tank in a substantially horizontal direction, a vortex is generated in the extraction tank even at a small flow rate during extraction, and the action of this vortex absorbs the refrigerant vapor. Since it is possible to accompany with non-condensable gas and stable extraction capacity is obtained, COP of absorption heat pump
Can be increased, the power consumption of the solution pump can be reduced, and the operating cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第5図は本考案に係る抽気装置の実施例を
示し、第1図はその概要構成図、第2図は第1図のII I
I断面図、第3図および第4図は本考案の他の実施例を
示し、第3図は抽気槽の縦断面図、第4図は第3図のIV
IV断面図、第5図はさらに本考案の他の実施例を示す
抽気槽の縦断面図、第6図は従来の抽気装置の概要構成
図である。 1……気液分離器、5……送液配管、10……送気配管、
13……凝縮器、14……抽気配管、20,30,40……溶液流入
管、20a,30a,40a……噴出口、21……抽気槽。
1 to 5 show an embodiment of the extraction apparatus according to the present invention, FIG. 1 is a schematic configuration diagram thereof, and FIG. 2 is II I of FIG.
I sectional view, FIG. 3 and FIG. 4 show another embodiment of the present invention, FIG. 3 is a vertical sectional view of the extraction tank, and FIG. 4 is IV of FIG.
IV sectional view, FIG. 5 is a vertical sectional view of an extraction tank showing another embodiment of the present invention, and FIG. 6 is a schematic configuration diagram of a conventional extraction apparatus. 1 ... Gas-liquid separator, 5 ... Liquid supply pipe, 10 ... Air supply pipe,
13 …… Condenser, 14 …… Bleed pipe, 20,30,40 …… Solution inlet pipe, 20a, 30a, 40a …… Spout port, 21 …… Bleed tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】熱交換器との間を抽気配管で連結された抽
気槽と、この抽気槽に挿入された溶液流入管と、前記抽
気槽と気液分離器との間を連結する混合ガス送入管とを
備えた抽気装置において、 前記溶液流入管を、前記抽気槽の中心に対する偏心位置
へ先端の噴出口を臨ませて挿入するとともに、この先端
の噴出口を、前記抽気槽内で略水平方向に向けて開口さ
せたことを特徴とする抽気装置。
1. A bleeding tank connected to a heat exchanger by a bleeding pipe, a solution inflow pipe inserted into the bleeding tank, and a mixed gas connecting the bleeding tank and a gas-liquid separator. In the bleeding device having a delivery pipe, the solution inflow pipe is inserted with the ejection port of the tip facing the eccentric position with respect to the center of the bleeding tank, and the ejection port of the tip is in the bleeding tank. An bleed device which is opened in a substantially horizontal direction.
JP4800588U 1988-04-08 1988-04-08 Bleeding device Expired - Lifetime JPH0733096Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4800588U JPH0733096Y2 (en) 1988-04-08 1988-04-08 Bleeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4800588U JPH0733096Y2 (en) 1988-04-08 1988-04-08 Bleeding device

Publications (2)

Publication Number Publication Date
JPH01151171U JPH01151171U (en) 1989-10-18
JPH0733096Y2 true JPH0733096Y2 (en) 1995-07-31

Family

ID=31274179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4800588U Expired - Lifetime JPH0733096Y2 (en) 1988-04-08 1988-04-08 Bleeding device

Country Status (1)

Country Link
JP (1) JPH0733096Y2 (en)

Also Published As

Publication number Publication date
JPH01151171U (en) 1989-10-18

Similar Documents

Publication Publication Date Title
WO2023221477A1 (en) High-suction-lift shell structure for self-priming pump
CN106039916B (en) The system for reducing non-methane total hydrocarbons waste gas content in polymerisation in solution rubber process
JPH062964A (en) Ejector
RU97109381A (en) METHOD FOR WORKING A LIQUID-GAS EJECTOR
JPH07139489A (en) Self-priming centrifugal pump device
JPH11257299A (en) Ejector for air bleeding
JPH0733096Y2 (en) Bleeding device
CN206290499U (en) A kind of novel injection pump
CN201292950Y (en) Injection self-priming pump
JP5627952B2 (en) Waste steam recovery device
JP4330308B2 (en) High speed swivel evaporator
CN213546369U (en) Hydrogen return device of fuel cell
WO2022007343A1 (en) Air conditioning unit
JPS645120Y2 (en)
CN216114792U (en) Heat pump evaporator and evaporation treatment system
US5246633A (en) Device for collecting used steam
RU2142070C1 (en) Liquid and-gas ejector
CN215257026U (en) Water jet vacuum generating device
CN217929851U (en) Vacuum type steam condensate and low-pressure exhaust steam recovery device
CN215939501U (en) Oil gas absorption device
CN210769344U (en) High-efficient self priming jar
CN216114793U (en) Heat pump evaporator and evaporation treatment system
JPH08312600A (en) Vacuum pump device
CN219615260U (en) Yeast fermentation tank tail gas treatment device
CN209898286U (en) Electron smog steam condensate water and atomized liquid dispersion separation system