JPH07330527A - Antimicrobial ceramic - Google Patents

Antimicrobial ceramic

Info

Publication number
JPH07330527A
JPH07330527A JP12500594A JP12500594A JPH07330527A JP H07330527 A JPH07330527 A JP H07330527A JP 12500594 A JP12500594 A JP 12500594A JP 12500594 A JP12500594 A JP 12500594A JP H07330527 A JPH07330527 A JP H07330527A
Authority
JP
Japan
Prior art keywords
antibacterial
ceramic
antimicrobial
layered clay
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12500594A
Other languages
Japanese (ja)
Inventor
Shunji Takeda
俊二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP12500594A priority Critical patent/JPH07330527A/en
Publication of JPH07330527A publication Critical patent/JPH07330527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain an antimicrobial ceramic excellent in the safety, having a wide- ranging antimicrobial activity and a long-term durability and suitable for environmental use, e.g. sterilization of a sandbox or sterilization in water treatment by making an antimicrobial substance adhere through an expansible layered clay mineral to the surface of a ceramic base material. CONSTITUTION:This antimicrobial ceramic is obtained by making an antimicrobial substance adhere through an expansible layered clay mineral to the surface of a ceramic base material (preferably <=150 mesh particle diameter) and then calcining it at >= the temperature where the expansible layered clay mineral is converted to a semi-ceramic. As the antimicrobial substance, an antimicrobial metal such as silver, copper, zinc, tin or nickel or an inorganic antimicrobial agent composed of one of these anti-microbial metals supported on a ceramic is used. As the expansible layered clay mineral, a smectite-type mineral or a vermiculite-type mineral is preferably used. This antimicrobial ceramic is excellent in water resistance, chemical resistance and heat resistance and suitable for environmental use, e.g. sterilization of a sandbox, sterilization, fungusproofing and chemicalproofing in water treatment of exhausted water, city water, etc., fungus-proofing and algaproofing of a cooling tower and sterilization of toilet sand for pet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用の分野】安全性が高く、広範囲の抗菌能
力をもち、持続性が長く、耐水性、耐薬品性、耐熱性が
高く、砂場の除菌、排水や用水等の水処理の除菌・防カ
ビ・防藻、クーリングタワーの防カビ・防藻、ペットの
トイレ砂の除菌等の環境的な用途に適した抗菌性セラミ
ックスに関する。
[Field of industrial application] Highly safe, having a wide range of antibacterial ability, long-lasting, high water resistance, chemical resistance, and high heat resistance, for sterilizing sandboxes, for treating water such as drainage and water. The present invention relates to antibacterial ceramics suitable for environmental purposes such as disinfection / mold / algae prevention, mold / algae for cooling towers, and disinfection of pet toilet sand.

【0002】[0002]

【従来の技術】樹脂加工等の工業分野では抗菌性フィル
ム、成形品、繊維向けの樹脂練り込み等に使用するため
に、ゼオライト、燐酸ジルコニウム、膨潤性層状粘土鉱
物等のセラミックスに吸着またはイオン交換の手段によ
って抗菌性金属イオンを担持した無機系抗菌剤が好んで
使用されている。これらの無機系抗菌剤は安全性が高
く、広範囲の抗菌能力を持ち、効力の持続性が長く、且
つ耐水性、耐薬品性、耐熱性が高いという特徴を持つ。
一方、これらは微粉末で、非常に高価である。これらの
無機系抗菌剤には、銀燐酸ジルコニウム、銀ゼオライ
ト、銅ゼオライトや銀モンモリロナイト、銀ガラス等が
ある。これらの中には金属イオンを徐放させるものもあ
れば遊離しないものもある。
In the industrial field such as resin processing, it is adsorbed or ion-exchanged with zeolite, zirconium phosphate, swelling layered clay minerals, etc. for use in kneading resins for antibacterial films, molded products and fibers. Inorganic antibacterial agents carrying antibacterial metal ions by these means are preferably used. These inorganic antibacterial agents are characterized by high safety, broad antibacterial ability, long-lasting efficacy, and high water resistance, chemical resistance, and heat resistance.
On the other hand, these are fine powders and are very expensive. Examples of these inorganic antibacterial agents include zirconium phosphate, silver zeolite, copper zeolite, silver montmorillonite, and silver glass. Some of these release the metal ions slowly and some do not.

【0003】近年、工業用途だけでなく、身近な生活環
境、例えば砂場の除菌、排水や用水等の水処理の除菌・
防カビ・防藻、クーリングタワーの防カビ・防藻、ペッ
トのトイレ砂の除菌等で安全で安価な抗菌剤が必要とさ
れるようになった。しかしこのような用途には、高価で
あることに加えて、平均粒径が10μm以下の微粉末で
あるために従来の上記無機系抗菌剤は取り扱いが困難で
あるため充分に適したものではなかった。例えば、砂場
に適用すると砂との粒度差が大きいため砂中に均一に混
ざらずに偏在して、砂場全体には抗菌効果が現れなかっ
た。また水処理用途では、水に添加して沈降しがたく水
の流れと共に相当部分が流出してしまった。
In recent years, not only for industrial use but also in familiar living environments, such as sanitization of sand pits, water treatment of waste water and water, etc.
Antibacterial agents that are safe and inexpensive have come to be required for the prevention of mold and algae, the prevention of mold and algae in cooling towers, and the disinfection of pet toilet sand. However, in addition to being expensive, the above-mentioned conventional inorganic antibacterial agents are not suitable for such applications because they are difficult to handle because they are fine powders having an average particle size of 10 μm or less. It was For example, when applied to a sandbox, the difference in particle size from the sand was large, so the particles were not uniformly mixed in the sand and were unevenly distributed, and no antibacterial effect appeared in the entire sandbox. In addition, in water treatment applications, a considerable portion of the water was discharged along with the flow of water that was difficult to settle when added to water.

【0004】このような不都合をなくし、上記のような
生活環境に適する抗菌性セラミックスとして、150メ
ッシュ以下の粒径を持つものが望まれる。150メッシ
ュ以下の粒径をもつ担体セラミックス、例えば平均粒径
1mmの天然ゼオライトに抗菌性金属をイオン交換によ
り担持させることができる。しかし担持された金属イオ
ンの大部分がゼオライトの内部に存在し、表面近くには
担持された金属イオンの一部だけが存在するに過ぎな
い。そのため同じ量の金属イオンを使用しても従来の無
機系抗菌剤に較べて抗菌効果は著しく低下する。
It is desired that the antibacterial ceramics which eliminates such inconvenience and is suitable for the above living environment has a particle size of 150 mesh or less. An antibacterial metal can be supported by ion exchange on carrier ceramics having a particle size of 150 mesh or less, for example, natural zeolite having an average particle size of 1 mm. However, most of the supported metal ions are present inside the zeolite, and only a part of the supported metal ions are present near the surface. Therefore, even if the same amount of metal ion is used, the antibacterial effect is significantly reduced as compared with the conventional inorganic antibacterial agents.

【0005】[0005]

【発明が解決しようとする課題】水処理や砂場の砂のよ
うな生活環境の除菌に好都合に使用できる、粒径の大き
い無機担体の表面に偏在して高密度に抗菌性金属イオン
を担持した抗菌作用の大きい抗菌性セラミックスの提供
が期待されている。
[Problems to be Solved by the Invention] An inorganic carrier having a large particle size, which can be conveniently used for water treatment and sterilization of a living environment such as sand in a sandbox, is unevenly distributed and carries antibacterial metal ions at a high density. It is expected to provide antibacterial ceramics having a large antibacterial action.

【0006】[0006]

【課題を解決するための手段】本発明はセラミックス母
体表面に、膨潤性層状粘土鉱物により抗菌性物質を付着
させることにより目的とする抗菌性セラミックスを提供
するものである。
The present invention provides an objective antibacterial ceramic by adhering an antibacterial substance by a swelling layered clay mineral to the surface of a ceramic matrix.

【0007】セラミックス母体としてはその大きさが必
要とされるものであって、吸着能、イオン交換能等の特
性は必ずしも必要とされず、膨潤性層状粘土鉱物の焼成
温度で溶融しない無機物質であればよい。本発明にとっ
て好ましいセラミックス母体として天然ゼオライト、
砂、セラミックス成形体、ガラス、パーライト、アルミ
ナ、チタニア、シリカ、およびその他のケイ酸塩を挙げ
ることができる。本発明で使用するセラミックス母体
は、粒径が150メッシュ以下、好ましくは100メッ
シュ以下であるセラミックスを用いるのが好ましい。こ
のような粒径のセラミックスを抗菌性セラミックスの母
体として用いることにより、砂場や水処理の除菌に便利
に使用することができるようになる。
The ceramic matrix is required to be large in size, does not necessarily require characteristics such as adsorption capacity and ion exchange capacity, and is an inorganic substance that does not melt at the firing temperature of the swellable layered clay mineral. I wish I had it. Natural zeolite as a preferred ceramic matrix for the present invention,
Mention may be made of sand, ceramic compacts, glass, pearlite, alumina, titania, silica and other silicates. As the ceramic matrix used in the present invention, it is preferable to use a ceramic having a particle size of 150 mesh or less, preferably 100 mesh or less. By using the ceramics having such a particle size as the matrix of the antibacterial ceramics, the ceramics can be conveniently used for sanitization in a sandbox or water treatment.

【0008】本発明で用いる抗菌性物質としては従来の
無機系抗菌剤に使用されている銀、銅、亜鉛、錫、ニッ
ケル等の抗菌性金属またはこれらの抗菌性金属をセラミ
ックスに担持した無機系抗菌剤を用いる。抗菌性金属を
直接用いる場合には、塩化物または硝酸塩のような水溶
性イオンの形で水溶液から直接担体としてのセラミック
ス母体に吸着して使用することもできるが、一般には、
水中で抗菌性金属イオンを膨潤性層状粘土鉱物に担持さ
せた後、その分散液をそのままセラミックス母体に付着
させることができる。抗菌性金属イオンをセラミックス
に担持した無機系抗菌剤は、同じように水中から金属イ
オンを吸着して作ることができる。このセラミックスに
は、例えばゼイライト、リン酸ジルコニウム、モンモリ
ロナイト、バーミキュライト等が使用できる。これらの
無機系抗菌剤の平均粒径は約0.1〜10μmである。
The antibacterial substance used in the present invention is an antibacterial metal such as silver, copper, zinc, tin, nickel or the like used in conventional inorganic antibacterial agents, or an inorganic antibacterial metal supported on ceramics. Use antibacterial agents. When the antibacterial metal is directly used, it can be directly adsorbed from the aqueous solution to the ceramic matrix as a carrier in the form of water-soluble ions such as chloride or nitrate, but generally,
After the antibacterial metal ions are supported on the swellable layered clay mineral in water, the dispersion can be directly attached to the ceramic matrix. An inorganic antibacterial agent in which antibacterial metal ions are supported on ceramics can be similarly prepared by adsorbing metal ions from water. For this ceramic, for example, zelite, zirconium phosphate, montmorillonite, vermiculite, etc. can be used. The average particle size of these inorganic antibacterial agents is about 0.1 to 10 μm.

【0009】これらの抗菌性物質を、膨潤性層状粘土鉱
物を接着剤として用いて、セラミックス母体の表面に付
着させることにより、セラミックス母体の表面に高密度
に抗菌性物質を存在させる。膨潤性層状粘土鉱物は、一
般に水により膨潤し、それによって層間空隙が変化して
種々の大きさの粒子をその層間に取り込むことができる
性質を有する。更に膨潤した後乾燥することにより成膜
性を示すという特徴をもっているとともに、種々のセラ
ミックスと親和性があるため、セラミックス母体と抗菌
性物質との接着剤として働くことができる。この接着力
は焼成により一層増すことができる。一方、膨潤性層状
粘土鉱物は微細孔を多数持っているため有効表面積が大
きく、膨潤性層状粘土鉱物内に取り込まれた金属の抗菌
作用を効果的に発揮することができる。膨潤性層状粘土
鉱物としては、モンモリロナイト、ヘクトライト、バイ
デライト、ノントロナイト、サポナイト、クロライト等
のスメクタイト型鉱物、バーミキュライトだけでなく、
膨潤性フッ素系雲母やその同型置換体を含む。また、ス
メクタイト型鉱物を主成分とする粘度等、例えば酸性白
土やベントナイトも使用できる。
By adhering these antibacterial substances to the surface of the ceramic matrix by using a swelling layered clay mineral as an adhesive, the antibacterial substances are made to exist on the surface of the ceramic matrix at a high density. The swellable layered clay mineral generally has a property of being swollen by water, whereby the interlayer voids are changed and particles of various sizes can be taken in between the layers. Further, it has a characteristic of exhibiting a film-forming property by swelling and then drying, and since it has an affinity with various ceramics, it can act as an adhesive between a ceramic base and an antibacterial substance. This adhesion can be further increased by firing. On the other hand, since the swelling layered clay mineral has a large number of fine pores, it has a large effective surface area and can effectively exhibit the antibacterial action of the metal taken into the swelling layered clay mineral. As the swelling layered clay mineral, not only montmorillonite, hectorite, beidellite, nontronite, saponite, chlorite and other smectite type minerals, vermiculite,
Includes swellable fluoromica and its homomorphic substitutes. Further, viscosity such as a smectite type mineral as a main component, for example, acid clay or bentonite can also be used.

【0010】こうして粒径が大きくて表面積が比較的小
さい、粒径150メッシュ以下の粒子に効果的な抗菌力
を付与することができる。得られる抗菌性セラミックス
の大きさは、略セラミックス母体と同じであり、粒径は
150メッシュ以下である。得られる抗菌性セラミック
ス中に、抗菌性金属が0.01〜10重量%、好ましく
は0.1〜3重量%含まれるように菌抗菌性物質とセラ
ミックス母体との使用割合を選ぶことができる。
Thus, effective antibacterial activity can be imparted to particles having a large particle size and a relatively small surface area and having a particle size of 150 mesh or less. The size of the obtained antibacterial ceramic is substantially the same as that of the ceramic matrix, and the particle size is 150 mesh or less. The use ratio of the bacterial antibacterial substance and the ceramic matrix can be selected so that the antibacterial metal is contained in the obtained antibacterial ceramic in an amount of 0.01 to 10% by weight, preferably 0.1 to 3% by weight.

【0011】抗菌性セラミックスは次のいずれかの方法
によってつくることができる。 (イ)抗菌性物質および膨潤性層状粘土鉱物の分散水に
セラミックス母体を浸漬後、引き上げ乾燥させる (ロ)抗菌性物質および膨潤性層状粘土鉱物の分散水を
セラミックス母体の表面に塗布後乾燥させる。 (ハ)抗菌性物質、膨潤性層状粘土鉱物およびセラミッ
クス母体を乾式混合後、水を添加し、湿式混合後乾燥さ
せる。 膨潤性層状粘土鉱物は一般に水に膨潤すれば乾燥後成膜
性を有するので、この段階でセラミックス母体表面に無
機系抗菌剤が分散した膜を形成する。抗菌性物質が膨潤
性層状粘土鉱物から出来ている場合にはこの抗菌性物質
をそのまま水に膨潤させ、それをセラミックス母体に付
着させて本発明の抗菌性セラミックスをつくることがで
きる。
The antibacterial ceramics can be produced by any of the following methods. (A) After immersing the ceramic matrix in the dispersed water of the antibacterial substance and the swellable layered clay mineral, pulling it up and drying it. (B) Applying the dispersed water of the antibacterial substance and the swellable layered clay mineral to the surface of the ceramic matrix and then drying it. . (C) After dry-mixing the antibacterial substance, the swelling layered clay mineral and the ceramic matrix, water is added, and the mixture is wet-mixed and dried. Since the swellable layered clay mineral generally has a film-forming property after being dried if it swells in water, at this stage, a film in which an inorganic antibacterial agent is dispersed is formed on the surface of the ceramic matrix. When the antibacterial substance is made of a swelling layered clay mineral, the antibacterial substance can be swelled in water as it is and adhered to the ceramic matrix to form the antibacterial ceramic of the present invention.

【0012】抗菌性物質を含んだ膨潤性層状粘土鉱物を
表面層とする抗菌性セラミックスは焼成することによっ
て接着力を増すが、充分な焼成を行うと膨潤性層状粘土
鉱物は微細孔を失って緻密化し、その結果実質の表面積
が減少して抗菌作用が損なわれる。微細孔を保持して、
より良い接着力を発揮するためには、半セラミックス状
態(素焼きの状態)に焼成する必要があり、焼成温度は
300〜800℃、好ましくは400〜700℃であ
る。焼成することにより、耐水性が得られるが、耐水性
があまり必要でなければ必ずしも焼成を必要としない。
The antibacterial ceramics having a swelling layered clay mineral containing an antibacterial substance as a surface layer increases the adhesive force by firing, but the swelling layered clay mineral loses its fine pores when sufficiently fired. The densification results in a reduction of the parenchymal surface area and impaired antimicrobial activity. Hold the fine holes,
In order to exert better adhesive strength, it is necessary to fire in a semi-ceramic state (state of unglazed), and the firing temperature is 300 to 800 ° C, preferably 400 to 700 ° C. Water resistance can be obtained by firing, but if water resistance is not so required, firing is not always necessary.

【0013】[0013]

【実施例】以下実施例により本発明の効果を説明する。実施例1 天然ゼオライト(平均粒径1mm)100重量部、無機
系抗菌剤(銀イオンを担持したリン酸ジルコニウム、平
均粒径0.5μm)1重量部、合成ヘクトライト1重量
部を乾式混合し、均一に混合した後、30重量部の水を
添加して湿式混合した。その後、150メッシュの篩を
用いて粒子を篩分けた。このようにして得られた150
メッシュ以下の粒子を乾燥し、500℃で1時間焼成
し、抗菌性セラミックスIを得た。
EXAMPLES The effects of the present invention will be described below with reference to examples. Example 1 100 parts by weight of natural zeolite (average particle size 1 mm), 1 part by weight of inorganic antibacterial agent (zirconium phosphate carrying silver ions, average particle size 0.5 μm), and 1 part by weight of synthetic hectorite were dry-mixed. After uniform mixing, 30 parts by weight of water was added and wet-mixed. The particles were then screened using a 150 mesh screen. 150 thus obtained
The particles below the mesh were dried and fired at 500 ° C. for 1 hour to obtain antibacterial ceramics I.

【0014】このようにして得られた抗菌性セラミック
スの効果を確認するため、下水道水と砂場の砂について
抗菌効果を試験した。 (1)下水道水を入れた二つの容器の一方に本発明の抗
菌性セラミックスIを1重量%、他方に原料として用い
た上記の無機系抗菌剤を0.01重量%添加し、1時間
後に両方の下水道水は共に無菌状態であった。なお抗菌
剤を入れる前の下水道水には多数の菌が確認された。し
かし、抗菌性セラミックスIの場合は上澄みの取り出し
が容易であったが、無機系抗菌剤の場合は抗菌剤と水を
分離するために濾過の装置と手間および時間が必要であ
った。 (2)同じように砂場の砂を入れた二つの容器の一方に
本発明の抗菌性セラミックスIを10重量%、他方に原
料として用いた上記の無機系抗菌剤を0.1重量%添加
し、それぞれを後に記載した方法で混合した。砂と抗菌
剤とは、抗菌性セラミックスIの場合は均一に混合され
ていたが、無機系抗菌剤は砂中下部に局在していた。各
々、砂の上部と下部に分けて菌の存在の有無を確認した
ところ、抗菌性セラミックスIの場合は、上部、下部と
もに無菌状態であったが、無機系抗菌剤の場合は下部は
無菌状態であったが、上部は少数菌が存在していた。
In order to confirm the effect of the antibacterial ceramics thus obtained, the antibacterial effect was tested on sewer water and sand in the sandbox. (1) 1% by weight of the antibacterial ceramics I of the present invention was added to one of the two containers containing sewer water, and 0.01% by weight of the above-mentioned inorganic antibacterial agent used as a raw material was added to the other container, and 1 hour later Both sewers were sterile. A large number of bacteria were confirmed in the sewer water before adding the antibacterial agent. However, in the case of the antibacterial ceramics I, the supernatant was easily taken out, but in the case of the inorganic antibacterial agent, a filtering device, labor and time were required to separate the antibacterial agent and water. (2) Similarly, 10% by weight of the antibacterial ceramics I of the present invention was added to one of two containers containing sand in a sandbox, and 0.1% by weight of the above-mentioned inorganic antibacterial agent used as a raw material was added to the other. , Each was mixed as described below. The sand and the antibacterial agent were uniformly mixed in the case of the antibacterial ceramics I, but the inorganic antibacterial agent was localized in the lower part of the sand. When the presence or absence of bacteria was checked separately for the upper and lower parts of the sand, the upper and lower parts were aseptic for antibacterial ceramics I, but the lower part was aseptic for inorganic antibacterial agents. However, a few bacteria were present in the upper part.

【0015】実施例2 セラミックス母体として合成ケイ酸カルシウム(平均粒
径1〜2mm)を、無機系抗菌剤として銅イオンを担持
したゼオライト(平均粒径3〜5μm)を用いた以外は
実施例1と同様にして抗菌性セラミックスIIを得た。抗
菌効果は実施例1と同様の効果であった。
Example 2 Example 1 was repeated except that synthetic calcium silicate (average particle size 1 to 2 mm) was used as the ceramic matrix and copper ion-supported zeolite (average particle size 3 to 5 μm) was used as the inorganic antibacterial agent. Antibacterial ceramics II was obtained in the same manner as. The antibacterial effect was similar to that of Example 1.

【0016】抗菌試験方法 (1)下水道水の試験 密閉容器内に下水道水と抗菌剤を入れ放置した。1時間
後に水を1ml取り出し、一般細菌試験紙に吸い込ま
せ、35〜37℃で24時間培養した。 (2)砂場の砂の試験 密閉容器内に砂場の砂と抗菌剤を入れ10回軽く振った
後放置した。1日後に滅菌水を添加し、すぐに上澄みを
1ml取り出し、一般細菌試験紙に吸い込ませ、35〜
37℃で24時間培養した。
Antibacterial Test Method (1) Sewer Water Test Sewer water and an antibacterial agent were placed in a closed container and left to stand. After 1 hour, 1 ml of water was taken out, sucked into a general bacterial test paper, and cultured at 35 to 37 ° C. for 24 hours. (2) Sandbox sand test The sandbox sand and the antibacterial agent were placed in a closed container, shaken lightly 10 times and then left. After 1 day, add sterilized water, immediately take out 1 ml of the supernatant and inhale it with general bacteria test paper for 35-35
The cells were cultured at 37 ° C for 24 hours.

【0017】[0017]

【発明の効果】本発明の抗菌剤は、従来の無機系抗菌剤
と比べて、水の除菌や砂場の砂の除菌をより便利に且つ
より効果的に可能にする。
INDUSTRIAL APPLICABILITY The antibacterial agent of the present invention enables more convenient and effective disinfection of water and sand in a sandbox than conventional inorganic antibacterial agents.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス母体表面に膨潤性層状粘土
鉱物により抗菌性物質を付着させた抗菌性セラミック
ス。
1. An antibacterial ceramic in which an antibacterial substance is adhered to the surface of a ceramic matrix by a swelling layered clay mineral.
【請求項2】 抗菌性物質が抗菌性金属または抗菌性金
属イオンを担持させた無機系抗菌剤である請求項1の抗
菌性セラミックス。
2. The antibacterial ceramic according to claim 1, wherein the antibacterial substance is an inorganic antibacterial agent carrying an antibacterial metal or an antibacterial metal ion.
【請求項3】 セラミックス母体の粒径が150メッシ
ュ以下である請求項1の抗菌性セラミックス。
3. The antibacterial ceramic according to claim 1, wherein the particle size of the ceramic matrix is 150 mesh or less.
【請求項4】 膨潤性層状粘土鉱物がスメクタイト型鉱
物またはバーミキュライトである請求項1の抗菌性セラ
ミックス。
4. The antibacterial ceramic according to claim 1, wherein the swellable layered clay mineral is a smectite type mineral or vermiculite.
【請求項5】 セラミックス母体表面に膨潤性層状粘土
鉱物により抗菌性物質を付着させた後、膨潤性層状粘土
鉱物が半セラミックス化する温度以上で焼成する請求項
1記載の抗菌性セラミックスの製造法。
5. The method for producing an antibacterial ceramic according to claim 1, wherein the antibacterial substance is adhered to the surface of the ceramic matrix by the swelling layered clay mineral, and then fired at a temperature at which the swelling layered clay mineral becomes semiceramic or higher. .
JP12500594A 1994-06-07 1994-06-07 Antimicrobial ceramic Pending JPH07330527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12500594A JPH07330527A (en) 1994-06-07 1994-06-07 Antimicrobial ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12500594A JPH07330527A (en) 1994-06-07 1994-06-07 Antimicrobial ceramic

Publications (1)

Publication Number Publication Date
JPH07330527A true JPH07330527A (en) 1995-12-19

Family

ID=14899521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12500594A Pending JPH07330527A (en) 1994-06-07 1994-06-07 Antimicrobial ceramic

Country Status (1)

Country Link
JP (1) JPH07330527A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002695A (en) * 1999-06-16 2001-01-15 안정오 Aaaaa
KR20020086097A (en) * 2001-05-11 2002-11-18 안정오 Antibacterial treatment method of container
KR20030018700A (en) * 2001-08-31 2003-03-06 김인달 Sterilizer consisting of the vermiculite coated Ag-ion and using method there of
KR100471612B1 (en) * 2002-08-21 2005-02-21 김인달 The germicide that use carrier that is made from vermiculite
US20150310958A1 (en) * 2012-11-29 2015-10-29 Kyushu University, National University Corporation Structure containing metal microparticles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010002695A (en) * 1999-06-16 2001-01-15 안정오 Aaaaa
KR20020086097A (en) * 2001-05-11 2002-11-18 안정오 Antibacterial treatment method of container
KR20030018700A (en) * 2001-08-31 2003-03-06 김인달 Sterilizer consisting of the vermiculite coated Ag-ion and using method there of
KR100471612B1 (en) * 2002-08-21 2005-02-21 김인달 The germicide that use carrier that is made from vermiculite
US20150310958A1 (en) * 2012-11-29 2015-10-29 Kyushu University, National University Corporation Structure containing metal microparticles
US11276509B2 (en) * 2012-11-29 2022-03-15 Ito Research Institute Co., Ltd Structure containing metal microparticles

Similar Documents

Publication Publication Date Title
Awasthi et al. Clay nano-adsorbent: structures, applications and mechanism for water treatment
Zhang et al. Fabrication of porous zeolite/chitosan monoliths and their applications for drug release and metal ions adsorption
KR100924914B1 (en) Slow release granules including natural plant extracts and the preparation of the same
Długosz et al. Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents
WO2009045661A2 (en) Composition and method for the solidification of toxic or hazardous drilling and agricultural waste
CA3093456A1 (en) Composite structural material compositions resistant to biodegradation
Klein et al. Effective bacterial inactivation and removal of copper by porous ceramics with high surface area
CN109053034A (en) Multi-functional compound diatom ooze of one kind and preparation method thereof
US6471876B1 (en) Filter media with germicidal properties
Tang et al. Copper‐doped nano laponite coating on poly (butylene succinate) scaffold with antibacterial properties and cytocompatibility for biomedical application
US6994794B2 (en) Media with germicidal properties
JPH07330527A (en) Antimicrobial ceramic
CN103030421B (en) Preparation method of diatom mud wall material with hygroscopic property, respiratory property and antibacterial property
Mathew et al. A sustained release anchored biocide system utilizing the honeycomb cellular structure of expanded perlite
KR101227032B1 (en) Composition of paint having various functions
Jakubczak et al. Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganisms
JP4354267B2 (en) Pet toilet sand
JP5704623B2 (en) Anti-Legionella material carrying metal-tropolone complex between inorganic layers
Nouri et al. Diffusion of Cu Ions into Nanoclay by Molten Salt Ion Exchange for Antibacterial Application.
JPH10337469A (en) Adsorptive porous sintered compact and its production
KR100636902B1 (en) An Absorbent with Zeolite for Deodorization
Tang et al. Adsorption mechanism of bacteria onto a Na-montmorillonite surface with organic and inorganic calcium
JP2008174478A (en) Organic-inorganic composite material having sustained releasability of antibiotic, and method for producing the same
JPH09163981A (en) Entrapped immobilized bacterium carrier and its production
JPH10258274A (en) Purifying agent and its production