JPH07330494A - Production of znse single crystal - Google Patents

Production of znse single crystal

Info

Publication number
JPH07330494A
JPH07330494A JP12901594A JP12901594A JPH07330494A JP H07330494 A JPH07330494 A JP H07330494A JP 12901594 A JP12901594 A JP 12901594A JP 12901594 A JP12901594 A JP 12901594A JP H07330494 A JPH07330494 A JP H07330494A
Authority
JP
Japan
Prior art keywords
znse
single crystal
crystal
temperature
polycrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12901594A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Kazuhiro Uehara
一浩 上原
Hiroshi Okada
広 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12901594A priority Critical patent/JPH07330494A/en
Publication of JPH07330494A publication Critical patent/JPH07330494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a process for producing ZnSe single crystal capable of easily producing the high-quality single crystal free from crystal defects, such as twins and dislocation, with good productivity. CONSTITUTION:This process production of the ZnSe single crystal comprises growing the single crystal under high-temp. isotropic pressurization in the state of arranging a ZnSe polycrystalline substance into sealing materials. In this invention, these sealing materials 2 are melted by heating and the ZnSe polycrystalline substance 3 having a relative density >=95% is embedded into the melt 2A of the sealing materials and is subjected in this state to the high- temp. isotropic pressurization. B2O3 is adequate as the sealing materials 2, 2A. Execution of the high-temp. isotropic pressurization in a high-temp. and high-pressure atmosphere of >=100kgf/cm<2> and 1000 to 1400 deg.C is better as the treating conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、青色半導体レーザ素
子、青色発光ダイオード素子などの単結晶成長用の基板
材料や種結晶として利用される高品質ZnSe単結晶の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-quality ZnSe single crystal used as a substrate material or a seed crystal for growing a single crystal such as a blue semiconductor laser device and a blue light emitting diode device.

【0002】[0002]

【従来の技術】青色半導体レーザや青色半導体ダイオー
ドなどの発光素子の製造には、青色光のエネルギーに対
応したバンドギャップを持つ、いわゆるワイドギャップ
半導体材料が使用されている。ワイドギャップ半導体材
料の中では、ZnSeのII−VI族化合物半導体が最も有
望とされている。
2. Description of the Related Art So-called wide-gap semiconductor materials having a bandgap corresponding to the energy of blue light are used for manufacturing light emitting devices such as blue semiconductor lasers and blue semiconductor diodes. Among wide-gap semiconductor materials, II-VI group compound semiconductors of ZnSe are most promising.

【0003】青色発光素子デバイス製作には、エピタキ
シャル成長用基板としてZnSe単結晶基板が必要であ
り、通常、単結晶基板はバルク状の単結晶から加工され
る。該バルク状単結晶を工業的に成長する方法として、
融液から結晶の成長を行う融液成長法が生産性の観点か
ら有利であるが、ZnSeは1526℃に融点を持ち、
ブリッジマン法などの融液成長法により結晶の成長を行
った場合、1420℃付近で高温相の六方晶から低温相
の立方晶への相転移が起こるため、これに起因する双晶
欠陥が導入され、良質の単結晶が得られないという欠点
がある(Journal of Crystal Growth,vol.86, 1988,132
〜137 頁参照)。
A ZnSe single crystal substrate is required as a substrate for epitaxial growth in manufacturing a blue light emitting device device, and the single crystal substrate is usually processed from a bulk single crystal. As a method for industrially growing the bulk single crystal,
Although a melt growth method of growing crystals from a melt is advantageous from the viewpoint of productivity, ZnSe has a melting point at 1526 ° C.,
When a crystal is grown by a melt growth method such as Bridgman method, a phase transition from a hexagonal crystal of a high temperature phase to a cubic crystal of a low temperature phase occurs at around 1420 ° C. Therefore, a twin crystal defect caused by this occurs. However, there is a drawback that a high quality single crystal cannot be obtained (Journal of Crystal Growth, vol.86, 1988,132
See page 137).

【0004】相転移に伴う双晶欠陥を回避するには、原
理的には、上記1420℃以下の温度で結晶の成長を行
い、立方晶の結晶相を成長させればよい。その方法とし
て、特開平1−264990号公報に開示されているよ
うに化学気相成長法や物理気相成長法などの低温成長法
があるが、成長速度が遅く、生産性が非常に悪いという
問題がある。
In order to avoid twin defects due to the phase transition, it is theoretically possible to grow the crystal at a temperature of 1420 ° C. or lower to grow the cubic crystal phase. As a method therefor, there is a low temperature growth method such as a chemical vapor deposition method or a physical vapor deposition method as disclosed in JP-A-1-264990, but the growth rate is slow and the productivity is very poor. There's a problem.

【0005】一方、結晶の成長速度が速い単結晶の製造
方法として、特開昭60−11293号公報に開示され
ているように、化学的気相堆積法(CVD法)により合
成されたZnSe多結晶体をパイレックスガラスや石英
ガラスにより形成されたカプセルに真空封入した後、こ
のカプセルを1000℃の高温で等方圧加圧(HIP)
する方法が開示されている。
On the other hand, as a method for producing a single crystal having a high crystal growth rate, as disclosed in Japanese Patent Application Laid-Open No. 60-11293, a large amount of ZnSe synthesized by a chemical vapor deposition method (CVD method) is used. After vacuum encapsulating the crystal in a capsule made of Pyrex glass or quartz glass, this capsule is isostatically pressed (HIP) at a high temperature of 1000 ° C.
A method of doing so is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
HIPによる単結晶製造方法では、原料のZnSe多結
晶体をカプセルに真空封入する作業が煩雑であり、生産
性に劣る。また、HIP処理時にカプセルが軟化するも
のの、原料の周りに密着した状態になり難いため、厳密
には等方圧加圧になっておらず、カプセル内部のZnS
eにせん断応力が発生して、双晶や転位などの欠陥が発
生し易い。更にまた、HIP処理後に結晶の周りに付着
しているカプセル材は機械的に除去しなければならない
ため、除去する際に、単結晶に不必要な応力が作用し、
双晶や転位などの結晶欠陥が生じるおそれがある。
However, in the conventional method for producing a single crystal by HIP, the work of vacuum-encapsulating the raw material ZnSe polycrystal in a capsule is complicated and the productivity is poor. Further, although the capsule softens during the HIP treatment, it is difficult for the capsule to come into close contact with the surroundings of the raw material.
Shear stress is easily generated in e, and defects such as twins and dislocations are likely to occur. Furthermore, since the encapsulant adhered around the crystal after the HIP treatment must be removed mechanically, unnecessary stress acts on the single crystal during the removal.
Crystal defects such as twins and dislocations may occur.

【0007】本発明はかかる問題に鑑みなされたもの
で、生産性が良好で、双晶や転位等の結晶欠陥の発生を
抑制することができ、高品質の単結晶を容易に得ること
ができる、HIP利用によるZnSe単結晶の製造方法
を提供することを目的とする。
The present invention has been made in view of the above problems, has good productivity, can suppress generation of crystal defects such as twins and dislocations, and can easily obtain a high-quality single crystal. , A method for producing a ZnSe single crystal using HIP is provided.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1のZn
Se単結晶の製造方法は、ZnSe多結晶体を封止材中
に配置した状態で高温等方圧加圧し、単結晶を成長させ
るZnSe単結晶の製造方法において、前記封止材を加
熱して溶融し、封止材の溶融体中に相対密度が95%以
上のZnSe多結晶体を埋入した状態で高温等方圧加圧
する。
Zn according to claim 1 of the present invention
The Se single crystal manufacturing method is a method of manufacturing a ZnSe single crystal in which a ZnSe polycrystal is placed in a sealing material, isotropically pressurized at high temperature to grow a single crystal, and the sealing material is heated. The ZnSe polycrystal having a relative density of 95% or more melted and embedded in the melt of the sealing material is subjected to high-temperature isotropic pressing.

【0009】また、請求項2の製造方法は、ZnSe多
結晶体とZnとを耐熱軟質材により被包した被包体を封
止材中に配置し、該封止材を加熱して溶融し、封止材の
溶融体中に前記被包体を埋入した状態で高温等方圧加圧
する。前記封止材としてはB2 3 が好適であり、処理
条件としては、100kgf/cm 2 以上かつ1000〜14
00℃の高温高圧雰囲気下で高温等方圧加圧するのがよ
い。
Further, the manufacturing method according to claim 2 is such that the ZnSe content is high.
Encapsulate a crystalline body and Zn with a heat resistant soft material
The sealing material is placed in a sealing material, and the sealing material is heated and melted.
High temperature isotropic pressurization with the above-mentioned encapsulant embedded in the melt.
To do. The sealing material is B2O3Is preferred and processing
The condition is 100 kgf / cm 2 More than 1000-14
It is best to apply high temperature isotropic pressure in a high temperature and high pressure atmosphere of 00 ℃.
Yes.

【0010】[0010]

【作用】ZnSe多結晶体は、封止材の溶融体中に埋入
された状態で高温等方圧加圧されるので、溶融状態の封
止材が多結晶体の周りに完全に密着するため、多結晶体
に等方性に優れた圧力が作用する。このため、加圧力の
不均等に起因するせん断応力が単結晶の成長過程で単結
晶の内部に作用し難くなり、結晶欠陥が生じにくい。ま
た、封止材を溶融するだけで、多結晶が封止材中に埋入
されるため、作業も非常に簡単である。
Since the ZnSe polycrystal is hot and isotropically pressurized while being embedded in the melt of the encapsulant, the melt encapsulant completely adheres to the periphery of the polycrystal. Therefore, the pressure with excellent isotropy acts on the polycrystalline body. For this reason, it becomes difficult for shear stress due to the unevenness of the applied pressure to act on the inside of the single crystal during the growth process of the single crystal, and crystal defects are less likely to occur. Further, since the polycrystal is embedded in the encapsulating material only by melting the encapsulating material, the work is very easy.

【0011】また、前記ZnSe多結晶体は、相対密度
が95%以上であるため、多結晶体中の気孔は各々独立
した形態をとり、等方圧加圧時に溶融した封止材が多結
晶中の気孔に浸透する恐れがなく、結晶粒の成長が阻害
されない。尚、原料としては、相対密度が99%以上の
多結晶体が好ましい。多結晶体中の気孔はHIP時にお
ける結晶の成長により、また高温下での拡散により結晶
外に排除されるが、気孔が多いほど排除に時間を要す
る。また気孔中には多結晶の合成時の雰囲気ガスが含ま
れる場合があり、このガス成分によりHIP時の緻密化
が阻害され易く、引いては単結晶の成長が阻害され易
い。このため、多結晶中の気孔は可及的に少ない方がよ
く、相対密度が99%以上のものがよい。
Further, since the relative density of the ZnSe polycrystal is 95% or more, the pores in the polycrystal are independent of each other, and the sealing material melted at the isotropic pressure is polycrystal. There is no danger of penetrating into the inner pores and the growth of crystal grains is not hindered. The raw material is preferably a polycrystalline body having a relative density of 99% or more. The pores in the polycrystal are removed outside the crystal due to the growth of the crystal during HIP and the diffusion at high temperature. The more pores, the longer the removal takes. Further, the pores may contain an atmospheric gas at the time of synthesizing the polycrystal, and this gas component tends to hinder the densification at the time of HIP, which in turn hinders the growth of the single crystal. Therefore, it is preferable that the number of pores in the polycrystal is as small as possible, and the relative density is 99% or more.

【0012】封止材の溶融体中に、ZnSe多結晶体と
Znとを耐熱軟質材により被包した被包体を埋入してH
IPすることにより、HIP時に耐熱軟質材内にZn蒸
気が充満し、ZnリッチのZnSe単結晶、すなわちn
型低電気抵抗の結晶を簡単に得ることができる。封止材
としてはB2 3 が好適である。B2 3 は融点が約5
50℃と低いため、処理後の冷却過程でも、この融点に
温度が下がるまでは完全な等方圧を維持することがで
き、結晶内部に応力が生じ難い。尚、パイレックスガラ
スの軟化点は820℃であり、冷却過程においても圧力
の不均等に起因する応力が結晶内部に発生し易い。ま
た、B2 3 はメチルアルコール等の有機溶媒に可溶で
あり、HIP処理後のB2 3 の除去作業を非機械的手
段、例えば有機溶媒中で煮沸する等の方法により容易に
行うことができ、封止材の除去時に結晶に不必要な応力
が発生するのを回避することができ、高品質の単結晶を
容易に得ることができる。
An encapsulation body in which a ZnSe polycrystal and Zn are encapsulated with a heat resistant soft material is embedded in a melt of the encapsulant, and H
By IP, Zn vapor is filled in the heat resistant soft material at the time of HIP, and Zn-rich ZnSe single crystal, that is, n
A crystal with low electrical resistance can be easily obtained. B 2 O 3 is suitable as the sealing material. B 2 O 3 has a melting point of about 5
Since the temperature is as low as 50 ° C., even in the cooling process after the treatment, a complete isotropic pressure can be maintained until the temperature drops to this melting point, and stress is unlikely to occur inside the crystal. The softening point of Pyrex glass is 820 ° C., and stress due to uneven pressure is likely to occur inside the crystal even during the cooling process. Further, B 2 O 3 is soluble in an organic solvent such as methyl alcohol, and the removal work of B 2 O 3 after the HIP treatment can be easily performed by a non-mechanical means such as boiling in an organic solvent. Therefore, it is possible to prevent unnecessary stress from being generated in the crystal when the sealing material is removed, and it is possible to easily obtain a high-quality single crystal.

【0013】単結晶成長時のHIP処理条件としては、
圧力を100kgf/cm2 (好ましくは500kgf/cm2 )以
上とし、かつ温度を1000〜1400℃(好ましくは
1200〜1400℃)にするのがよい。圧力が10kg
f/cm2 以上であればZnSe多結晶からZnの解離を抑
制することができ、成分の変動を防止することができる
が、100kgf/cm2 以上、好ましくは500kgf/cm2
上にすることにより、多結晶中の気孔を押し潰すことが
でき、原料として相対密度の低いもの(但し、95%以
上)を用いても、HIP処理の際にほぼ真密度にするこ
とができ、結晶粒の成長の妨げになる気孔を除去するこ
とができるため、結晶粒の成長が促進されると共に大き
な結晶粒が生成し易い。処理温度が1000℃未満では
結晶の成長速度が遅く、また100kgf/cm2 程度の圧力
下では、気孔の圧潰が困難になる。処理温度を1200
℃以上にすることにより、成長速度が急速に大きくな
り、cmオーダーの単結晶を半日程度以下で成長させ、
夜間に冷却するような工業的製造サイクルでの製造が可
能になる。一方、1400℃を越えると、温度制御のバ
ラツキ等により相変態温度(1420℃)域に達するお
それが生じる。
The conditions for HIP treatment during single crystal growth are as follows:
It is preferable that the pressure is 100 kgf / cm 2 (preferably 500 kgf / cm 2 ) or more and the temperature is 1000 to 1400 ° C. (preferably 1200 to 1400 ° C.). Pressure is 10kg
If it is f / cm 2 or more, the dissociation of Zn from the ZnSe polycrystal can be suppressed and the fluctuation of the components can be prevented, but by setting it to 100 kgf / cm 2 or more, preferably 500 kgf / cm 2 or more , The pores in the polycrystal can be crushed, and even if a raw material having a low relative density (however, 95% or more) is used, the true density can be almost achieved during the HIP treatment, and the crystal grain growth Since it is possible to remove the pores that hinder the growth of crystal grains, the growth of crystal grains is promoted and large crystal grains are easily generated. If the treatment temperature is lower than 1000 ° C., the crystal growth rate is slow, and if the pressure is about 100 kgf / cm 2 , it becomes difficult to collapse the pores. Processing temperature 1200
By increasing the temperature above ℃, the growth rate increases rapidly, and a cm-order single crystal is grown in less than half a day.
It is possible to manufacture in an industrial manufacturing cycle such as cooling at night. On the other hand, if the temperature exceeds 1400 ° C, there is a possibility that the temperature may reach the phase transformation temperature (1420 ° C) range due to variations in temperature control or the like.

【0014】[0014]

【実施例】本発明を実施するには、先ず、図1(A)に
示すように、気密性を有する耐熱材料で形成された容器
1に原料であるZnSe多結晶体3を収納し、更に結晶
成長時のHIP処理温度以下の融点を有し、かつZnS
eと反応しない材料からなる封止材2を充填する。
EXAMPLES To carry out the present invention, as shown in FIG. 1 (A), first, a ZnSe polycrystalline body 3 as a raw material is placed in a container 1 formed of a heat-resistant material having airtightness, and further, ZnS having a melting point below the HIP processing temperature during crystal growth and ZnS
The sealing material 2 made of a material that does not react with e is filled.

【0015】前記容器1の材料としては、具体的にはP
BN、パイロリティックグラファイト、グラッシーカー
ボン、モリブデンなどの高融点金属が使用される。一
方、前記封止材2としては、具体的にはB2 3 (無水
ホウ酸:融点550℃前後)、AlF3 とCaF2 とを
4:6の割合で配合した混合物(Japanese Journal ofA
pplied Physics,Vol.31,L383,1992年発行に記載された
もの)等を使用することができる。封止材の形態として
は、粉末がハンドリングや充填作業性が良好であるが、
粉末は溶融時における見かけ上の体積減少が大きいた
め、かさ密度の低いブロック状のものを併用するのがよ
い。尚、B2 3 はZnSeと反応すると記載されてい
る文献(Journal of Electrochemistry Society,Vol.10
6,page830,1959年発行)があるが、後述の本発明実施例
の温度範囲では、顕著な反応が認められず、封止材とし
て使用可能である。
As a material of the container 1, specifically, P
Refractory metals such as BN, pyrolytic graphite, glassy carbon and molybdenum are used. On the other hand, as the sealing material 2, specifically, a mixture of B 2 O 3 (boric anhydride: melting point of about 550 ° C.), AlF 3 and CaF 2 in a ratio of 4: 6 (Japanese Journal of A).
pplied Physics, Vol. 31, L383, published in 1992) and the like can be used. As the form of the encapsulant, the powder has good handling and filling workability,
Since the powder has a large apparent volume reduction at the time of melting, it is preferable to use a block-shaped powder having a low bulk density together. In addition, B 2 O 3 is described in a document (Journal of Electrochemistry Society, Vol. 10) that reacts with ZnSe.
6, page 830, issued 1959), but no remarkable reaction is observed in the temperature range of the embodiment of the present invention described later, and it can be used as a sealing material.

【0016】次に、ZnSe多結晶体3及び封止材2を
充填した容器を、HIP装置のようなArや窒素などの
不活性ガスの高圧雰囲気下で高温処理ができる加圧炉内
に収容し、炉の内部を真空引きして、炉内に残存してい
る空気を排除する。この時、炉、容器、封止材に吸着し
ている水分やガスを除去するために、400℃程度の温
度まで加熱するのがよい。
Next, the container filled with the ZnSe polycrystal 3 and the encapsulant 2 is housed in a pressure furnace capable of high temperature treatment under a high pressure atmosphere of an inert gas such as Ar or nitrogen as in a HIP device. Then, the inside of the furnace is evacuated to remove the air remaining in the furnace. At this time, it is preferable to heat to a temperature of about 400 ° C. in order to remove water and gas adsorbed in the furnace, the container, and the sealing material.

【0017】次に、炉内に加圧媒体用の不活性ガスを注
入した後、10kgf/cm2 程度未満の低圧下で封止材の融
点以上の温度に加熱し、封止材を溶融し、図1(B)に
示すように、処理物であるZnSe多結晶体3を封止材
の溶融体2A中に埋入させる。そして、炉内圧力及び温
度を上昇させる。圧力は1000℃に到達した時点で1
00kgf/cm2 以上(好ましくは500kgf/cm2 以上)で
あることが望ましい。この処理条件以上では、多結晶体
中に含まれていた気孔状の欠陥が押し潰され、処理物が
高密度化される。従って、結晶粒の成長の障害になる気
孔が除去されるので、後の結晶成長過程において結晶粒
の成長が速やかであり、しかも大きな結晶粒を生成する
ようになる。
Next, after injecting an inert gas for a pressurizing medium into the furnace, it is heated to a temperature higher than the melting point of the sealing material under a low pressure of less than about 10 kgf / cm 2 to melt the sealing material. As shown in FIG. 1 (B), the ZnSe polycrystalline body 3 as the processed material is embedded in the melt 2A of the sealing material. Then, the furnace pressure and temperature are increased. When the pressure reaches 1000 ° C, 1
00kgf / cm 2 or more (preferably 500 kgf / cm 2 or higher) is desirably. Under the treatment conditions or higher, the pore-like defects contained in the polycrystal are crushed and the treated product is densified. Therefore, the pores that hinder the growth of crystal grains are removed, so that the crystal grains grow rapidly in the subsequent crystal growth process, and large crystal grains are generated.

【0018】炉内温度の昇温に際しては、原料全体に温
度分布があまりない状態で昇温すると原料多結晶体の色
々な部位から結晶粒の成長が起こり、最終的に幾つかの
大きな結晶粒の集合体になる。このような成長を防止す
るには、例えば上側が下側より高温になるような温度勾
配を持たせて昇温し、結晶粒を上部から下方に向かって
一方向に成長するようにすることが好ましい。また、事
前にかかる処理を行って原料の多結晶体の一端に大きな
単結晶(種結晶)を析出させたものを用いてもよい。
When the temperature inside the furnace is raised, if the temperature is raised in a state where the temperature distribution in the entire raw material is not so large, crystal grains grow from various parts of the raw material polycrystalline body, and finally some large crystal grains are generated. Will be a collection of. In order to prevent such growth, it is necessary to raise the temperature with a temperature gradient such that the upper side is higher than the lower side so that the crystal grains grow in one direction from the upper side to the lower side. preferable. In addition, it is also possible to use a material in which a large single crystal (seed crystal) is deposited at one end of the raw material polycrystal by performing such treatment in advance.

【0019】次いで、温度圧力を結晶成長条件に保持す
る。成長工程の圧力は、保持温度におけるZnSeの解
離圧力(1400℃で2kgf/cm2 程度)以上であればよ
い。また、後述するようにZnを共に耐熱軟質材により
封入する場合では、Znの蒸気圧(1400℃で30kg
f/cm2 程度)以上にすればよい。もっとも、原料多結晶
として、相対密度が95〜98%程度のものを使用する
場合、結晶中の気孔を圧潰して結晶の成長を促進するた
めには、既述の通り、100kgf/cm2 以上にするのがよ
い。処理時間は長い方が好ましいが、1400℃にかな
り近い温度であれば、3時間程度の保持により、容易に
10mm程度の大きさの結晶粒に成長させることができ
る。
Next, the temperature and pressure are maintained under crystal growth conditions. The pressure in the growth step may be at least the dissociation pressure of ZnSe at the holding temperature (about 2 kgf / cm 2 at 1400 ° C.). Also, as will be described later, when Zn is sealed together with a heat resistant soft material, the vapor pressure of Zn (30 kg at 1400 ° C)
f / cm 2 ) or higher). However, when using a raw material polycrystal having a relative density of about 95 to 98%, in order to crush the pores in the crystal to promote the growth of the crystal, as described above, 100 kgf / cm 2 or more. It is better to The treatment time is preferably long, but if the temperature is considerably close to 1400 ° C., it can be easily grown into crystal grains having a size of about 10 mm by holding for about 3 hours.

【0020】結晶成長後の冷却時の温度圧力は、ZnS
eの分解を抑制するために、常に、処理物の温度に対応
するZnSeの解離圧力以上の圧力を付与しながら冷却
する。尚、急冷すると結晶の内部に温度勾配が生じて、
これに起因する熱応力が原因となって双晶が発生するこ
とがあるので、単結晶の大きさにも依存するが、冷却速
度は遅く(好ましくは、1000℃/hr以下)するの
がよい。
The temperature and pressure during cooling after the crystal growth is ZnS.
In order to suppress decomposition of e, cooling is always performed while applying a pressure equal to or higher than the dissociation pressure of ZnSe corresponding to the temperature of the processed material. In addition, when cooled rapidly, a temperature gradient occurs inside the crystal,
Since twin crystals may be generated due to the thermal stress resulting from this, the cooling rate is preferably slow (preferably 1000 ° C./hr or less), although it depends on the size of the single crystal. .

【0021】ところで、Znリッチのn型低電気抵抗の
ZnSe単結晶を成長させるには、結晶成長時に原料を
Zn蒸気雰囲気にすればよい。かかる雰囲気を形成する
には、処理原料のZnSe多結晶体とZn(融点420
℃)を耐熱軟質材、例えば黒鉛シートに包み込み、これ
をポリエチレン製の袋に封入して冷間等方圧加圧し、袋
を除去して多結晶体とZnが黒鉛シートでほぼ気密に被
包された被包体を得て、該被包体を封止材の溶融体中に
埋入してHIP処理を行えばよい。
In order to grow a Zn-rich ZnSe single crystal having a low n-type electrical resistance, the raw material may be in a Zn vapor atmosphere during the crystal growth. In order to form such an atmosphere, ZnSe polycrystal as a processing raw material and Zn (melting point 420
℃) is wrapped in a heat-resistant soft material such as a graphite sheet, which is then sealed in a polyethylene bag and subjected to cold isostatic pressing, and the bag is removed, and the polycrystalline body and Zn are almost airtightly encapsulated in the graphite sheet. The encapsulated body thus obtained is obtained, and the encapsulated body is embedded in the melt of the sealing material, and the HIP treatment is performed.

【0022】次に具体的な実施例を掲げる。 実施例1 CVD法により製作されたZnSe多結晶体(相対密度
99.9%以上、平均粒径5〜10μm、レイセオン社
製)の小塊(20×10×7mm、約4g)を、PBN製
の容器に入れた後、十分に乾燥したB2 3 粉末を充填
した。そして、このZnSe多結晶体及びB2 3 粉末
を収容した容器をHIP装置内に入れて、炉内を真空引
きし、圧力約5kgf/cm2 のアルゴン(Ar)ガスで2回
置換した後、10kgf/cm2 のArガスを充填した。引き
続いて、昇温とArガスによる加圧を開始し、1400
℃、1000kgf/cm2 で3hr保持した。保持後、50
0℃/hrの冷却速度で降温し、冷却後、容器を取り出
した。
Next, specific examples will be given. Example 1 A small lump (20 × 10 × 7 mm, about 4 g) of a ZnSe polycrystal (relative density 99.9% or more, average particle size 5 to 10 μm, manufactured by Raytheon Co.) manufactured by the CVD method was manufactured by PBN. After being placed in the container of No. 2, it was filled with sufficiently dried B 2 O 3 powder. After this the ZnSe polycrystalline body and B 2 O 3 powder was container placed in a HIP apparatus, the inside of the furnace was evacuated and replaced twice with argon (Ar) gas pressure of about 5 kgf / cm 2 It was filled with 10 kgf / cm 2 of Ar gas. Subsequently, the temperature rise and pressurization with Ar gas were started, and 1400
The temperature was maintained at 1000 kgf / cm 2 for 3 hours. After holding 50
The temperature was lowered at a cooling rate of 0 ° C./hr, and after cooling, the container was taken out.

【0023】容器全体をメチルアルコールに浸漬して加
熱し、メチルアルコールを沸騰させながらB2 3 を溶
解させて容器からZnSe結晶を取り出した。結晶の色
はやや橙色を帯びた黄色であった。重量を測定したとこ
ろ、処理前後で重量変化は認められなかった。また、結
晶の表面を水酸化カルシウム水溶液でエッチングして観
察した結果、全体がほぼ3つの大きな結晶粒から構成さ
れていることが確認された。
The entire container was immersed in methyl alcohol and heated, and B 2 O 3 was dissolved while boiling the methyl alcohol to take out ZnSe crystals from the container. The crystal color was yellow with a slight orange tinge. When the weight was measured, no weight change was observed before and after the treatment. In addition, as a result of observing the surface of the crystal by etching with a calcium hydroxide aqueous solution, it was confirmed that the whole was composed of almost three large crystal grains.

【0024】これら3つの結晶粒の内部には、双晶欠陥
は認められなかった。一方、転位密度を測定したとこ
ろ、約2000/cm2 であり、簡便な処理にも関わらず
高品質の結晶が得られた。これは、B2 3 が低融点で
あるため、冷却時に低い温度まで等方圧性を維持するこ
とができ、また処理後のB2 3 の除去の際に結晶に応
力が発生し難いためと推定された。
No twin defects were found inside these three crystal grains. On the other hand, the dislocation density was measured to be about 2000 / cm 2 , and high quality crystals were obtained despite the simple treatment. This is because B 2 O 3 has a low melting point, so that isotropic property can be maintained even at a low temperature during cooling, and stress is unlikely to be generated in the crystal when B 2 O 3 is removed after the treatment. Was estimated.

【0025】尚、Arガスの代わりに窒素ガスを用いて
同条件によりHIP処理を行ったところ、色が黄色味が
濃くなった点を除けば、Arガスを用いた場合とほとん
ど同じであった。 実施例2 実施例1と同じ原料を用い、その長さ方向を垂直にして
グラッシーカーボン製の容器に入れて、十分に乾燥した
2 3 粉末を充填した。この容器をHIP装置内に入
れて実施例1と同様に真空引き・Arガス置換操作を行
い、10kgf/cm 2 のArガスを充填した後、昇温昇圧を
開始し、圧力が300kgf/cm2 に越えた時点(温度は約
600℃)から、HIP装置の上部の温度が高くなるよ
うに加熱電力を調整し、内部の温度分布が約20℃/cm
以上になるように温度を制御した。最終的に原料多結晶
体の上部で約1350℃になるように温度制御し、圧力
1000kgf/cm2 で5hr保持した。その後、約900
℃/hrの冷却速度で温度を下げて、結晶の入った容器
を取り出した。
Note that nitrogen gas is used instead of Ar gas.
When HIP processing was performed under the same conditions, the color turned yellow.
Except for the thickening, it is almost the same as when Ar gas is used.
It was the same. Example 2 The same raw material as in Example 1 was used, and the length direction was made vertical.
Put it in a glassy carbon container and let it dry thoroughly
B2O3Filled with powder. Put this container in the HIP device
Then, vacuuming and Ar gas replacement operation are performed in the same manner as in Example 1.
Yes, 10 kgf / cm 2 After charging Ar gas of
Start and the pressure is 300kgf / cm2 When the temperature exceeds
From 600 ℃), the temperature of the upper part of the HIP device will rise.
Adjust the heating power so that the internal temperature distribution is approximately 20 ° C / cm
The temperature was controlled as described above. Finally raw polycrystal
Control the temperature at the upper part of the body to about 1350 ° C, and press
1000kgf / cm2 It was held for 5 hours. Then about 900
A container containing crystals by lowering the temperature at a cooling rate of ° C / hr.
Took out.

【0026】実施例1と同様の方法により、結晶を容器
から取り出して、エッチング処理を行って観察して結
果、重量変化はほとんどなく、色も実施例1とほぼ同じ
であった。しかも、結晶は全体が一つの単結晶からなっ
ていることが確認された。 実施例3 実施例1と同じ多結晶体とZn粒(平均粒径約1mm)の
約0.4mgをフレキシブルな黒鉛シート(商品名グラ
フォイル、0.4mm厚さを約700℃で焼成したもの)
で包み込み、その全体をポリエチレン製の袋に真空封入
して1000kgf/cm2 の圧力で冷間等方圧加圧処理を行
った後、袋を除去して黒鉛シートによりほぼ気密にシー
ルされた被包体を得た。該被包体をグラッシーカーボン
製の容器に入れて、十分に乾燥したB2 3 粉末を充填
し、実施例1と同様の条件でHIP処理を行った。
According to the same method as in Example 1, the crystals were taken out from the container, subjected to etching treatment and observed. As a result, there was almost no change in weight and the color was almost the same as in Example 1. Moreover, it was confirmed that the whole crystal consisted of one single crystal. Example 3 The same polycrystalline material as in Example 1 and about 0.4 mg of Zn particles (average particle size of about 1 mm) were used as a flexible graphite sheet (trade name: Grafoil, 0.4 mm thickness was fired at about 700 ° C.).
The whole was vacuum-sealed in a polyethylene bag and subjected to cold isostatic pressurization at a pressure of 1000 kgf / cm 2 , after which the bag was removed and sealed with a graphite sheet almost airtightly. I got a package. The envelope was placed in a glassy carbon container, filled with sufficiently dried B 2 O 3 powder, and subjected to HIP treatment under the same conditions as in Example 1.

【0027】処理後の結晶を観察した結果、色が黄色に
近いという特徴があったが、双晶の発生もなく、結晶全
体が7mm程度の大きな二つの結晶粒と、2〜3mm程度の
二つの比較的小さな結晶粒から構成されていた。 比較例1 高純度のZnSe粉末を冷間等方圧加圧法により100
0kgf/cm2 の圧力で成形して相対密度約55%の成形体
(約3g)を準備した。この成形体を用いて実施例1と
同様の処理条件で結晶を成長させた。
As a result of observing the crystal after the treatment, there was a characteristic that the color was close to yellow, but twin crystals did not occur and the whole crystal was two large crystal grains of about 7 mm and two crystal grains of about 2 to 3 mm. It was composed of two relatively small grains. Comparative Example 1 High-purity ZnSe powder was cooled to 100% by cold isostatic pressing.
A molded body (about 3 g) having a relative density of about 55% was prepared by molding at a pressure of 0 kgf / cm 2 . Using this compact, crystals were grown under the same processing conditions as in Example 1.

【0028】処理後の試料は黄色で、ZnSeの分解は
抑制されているようであったが、溶融したB2 3 が成
形体の気孔中に浸透していることが判明した。 比較例2 実施例1と同じ原料を用い、結晶成長過程における処理
温度を1420℃とした他は、実施例1と同じ条件によ
りHIP処理を施した。
After the treatment, the sample was yellow and the decomposition of ZnSe seemed to be suppressed, but it was found that the molten B 2 O 3 penetrated into the pores of the molded body. Comparative Example 2 The HIP treatment was performed under the same conditions as in Example 1 except that the same raw material as in Example 1 was used and the treatment temperature in the crystal growth process was 1420 ° C.

【0029】処理後の試料は、色や重量変化などは実施
例1と同じで、4つの大きな結晶粒からなり、十分に結
晶成長していることが確認された。しかし、各結晶粒の
中には、バンド状に平行なラインが数多く認められ、双
晶が発生していることが判明した。 比較例3 実施例1と同じ原料を用い、結晶成長過程における処理
温度を980℃とした他は、実施例1と同じ条件により
HIP処理を施した。
The sample after the treatment had the same color and weight change as in Example 1 and was composed of four large crystal grains, and it was confirmed that the crystals were sufficiently grown. However, many parallel lines were observed in each crystal grain, and it was found that twinning occurred. Comparative Example 3 The HIP treatment was performed under the same conditions as in Example 1 except that the same raw material as in Example 1 was used and the treatment temperature in the crystal growth process was 980 ° C.

【0030】処理後の試料をエッチングして結晶粒の成
長状況を顕微鏡観察したところ、粒径が不均一であり、
平均粒径は50μm程度であった。この例から、100
0℃未満の温度では、100hr以上の保持時間が必要
であるものと推察される。 比較例4 実施例1と同じ原料を用い、該原料をパイレックスガラ
スのアンプルに収容して内部を真空引きしつつ封入し
た。該アンプルを黒鉛製の容器に入れて、HIP装置に
入れ、実施例1と同様の条件によりHIP処理を施し
た。冷却後、機械的にアンプルを除去し、結晶を取り出
した。
When the sample after the treatment was etched and the growth of crystal grains was observed under a microscope, the grain size was not uniform.
The average particle size was about 50 μm. From this example, 100
It is estimated that a holding time of 100 hr or more is required at a temperature lower than 0 ° C. Comparative Example 4 The same raw material as in Example 1 was used, and the raw material was housed in an ampoule of Pyrex glass and sealed while evacuating the inside. The ampoule was placed in a graphite container, placed in a HIP device, and subjected to HIP treatment under the same conditions as in Example 1. After cooling, the ampoule was mechanically removed and the crystal was taken out.

【0031】処理後の試料は、大きな結晶粒が3個生成
した点は実施例1と同様であったが、双晶発生によるラ
メラ状のバンド模様が幾つか認められた。また転位密度
を測定したところ、実施例1よりも一桁多い、1500
0/cm2 以上もあった。転位密度がこのように非常に大
きくなったのは、特に降温過程でのガラスと結晶の熱膨
張係数の差による熱応力、及び処理後のガラスを機械的
に除去したことに起因して発生した応力が結晶に作用し
たためと推定される。
The treated sample was similar to that of Example 1 in that three large crystal grains were formed, but some lamellar band patterns due to twinning were observed. Further, when the dislocation density was measured, it was one digit higher than that in Example 1, and was 1,500.
It was more than 0 / cm 2 . The very large dislocation density was caused by the thermal stress due to the difference in the coefficient of thermal expansion between the glass and the crystal during the cooling process, and the mechanical removal of the glass after the treatment. It is presumed that the stress acted on the crystal.

【0032】[0032]

【発明の効果】以上説明した通り、本発明の請求項1の
構成によれば、溶融状態の封止材がZnSe多結晶体の
周りに完全に密着し、多結晶体に等方性に優れた圧力が
作用するため、加圧力の不均等に起因する応力が単結晶
の内部に作用し難くなり、結晶欠陥が生じにくく、高品
質の単結晶が得られる。また、封止材を溶融するだけ
で、多結晶が封止材中に埋入されるため、作業も非常に
簡単であり、生産性に優れる。
As described above, according to the constitution of claim 1 of the present invention, the sealing material in a molten state is completely adhered to the periphery of the ZnSe polycrystal, and the polycrystal is excellent in isotropy. As a result of the applied pressure, it becomes difficult for stress due to the unevenness of the applied pressure to act on the inside of the single crystal, crystal defects are less likely to occur, and a high-quality single crystal can be obtained. Further, since the polycrystal is embedded in the encapsulating material only by melting the encapsulating material, the work is very easy and the productivity is excellent.

【0033】また、請求項2の構成によれば、HIP時
に耐熱軟質材内にZn蒸気が充満し、Znリッチの高品
質のZnSe単結晶、すなわちn型低電気抵抗の結晶を
簡単に得ることができ、生産性も良好である。封止材と
してB2 3 を用いることにより、HIP処理後の冷却
過程でも、低温までは完全な等方圧を維持することがで
き、冷却過程においても結晶内部に応力が生じ難く、ま
たB2 3 の除去作業を非機械的手段により容易に行う
ことができ、封止材の除去時に結晶に不必要な応力が発
生するのを回避することができ、より高品質の単結晶が
得られる。
Further, according to the structure of claim 2, Zn vapor is filled in the heat resistant soft material at the time of HIP, and a Zn-rich high-quality ZnSe single crystal, that is, an n-type low electrical resistance crystal is easily obtained. And the productivity is good. By using B 2 O 3 as the encapsulant, it is possible to maintain a perfect isotropic pressure up to a low temperature even in the cooling process after the HIP treatment, and it is difficult to generate stress inside the crystal even in the cooling process. The removal work of 2 O 3 can be easily performed by non-mechanical means, unnecessary stress can be prevented from being generated in the crystal at the time of removing the sealing material, and a higher quality single crystal can be obtained. To be

【0034】また、単結晶成長時のHIP処理条件とし
ては、圧力を100kgf/cm2 以上とし、かつ温度を10
00〜1400℃にすることにより、解離による成分の
変動を防止しつつ、多結晶体中の気孔を押し潰すことが
でき、結晶粒の成長が促進されると共に大きな結晶粒が
生成し易く、生産性に優れる。
The conditions for HIP treatment during single crystal growth are a pressure of 100 kgf / cm 2 or more and a temperature of 10 kgf / cm 2.
By setting the temperature to 00 to 1400 ° C., it is possible to crush the pores in the polycrystalline body while preventing the fluctuation of the components due to dissociation, promote the growth of the crystal grains, and easily generate the large crystal grains. Excellent in performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】ZnSe多結晶体の封止要領を示す断面説明図
であり、(A)は封止材の溶融前、(B)は封止材の溶
融後を示す。
FIG. 1 is a cross-sectional explanatory view showing a sealing procedure of a ZnSe polycrystal, in which (A) shows before melting of a sealing material and (B) shows after melting of a sealing material.

【符号の説明】[Explanation of symbols]

1 容器 2 封止材(粉末) 2A 封止材(溶融体) 3 ZnSe多結晶体 1 Container 2 Sealant (powder) 2A Sealant (melt) 3 ZnSe polycrystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ZnSe多結晶体を封止材中に配置した
状態で高温等方圧加圧し、単結晶を成長させるZnSe
単結晶の製造方法において、 前記封止材を加熱して溶融し、封止材の溶融体中に相対
密度が95%以上のZnSe多結晶体を埋入した状態で
高温等方圧加圧するZnSe単結晶の製造方法。
1. A ZnSe for growing a single crystal by subjecting a ZnSe polycrystal to a high temperature isotropic pressure under the condition that the ZnSe polycrystal is placed in a sealing material.
In the method for producing a single crystal, the sealing material is heated and melted, and a ZnSe polycrystal having a relative density of 95% or more is embedded in the molten material of the sealing material, and ZnSe is isostatically pressed at a high temperature. Method for producing single crystal.
【請求項2】 ZnSe多結晶体とZnとを耐熱軟質材
により被包した被包体を封止材中に配置し、該封止材を
加熱して溶融し、封止材の溶融体中に前記被包体を埋入
した状態で高温等方圧加圧するZnSe単結晶の製造方
法。
2. An encapsulant in which a ZnSe polycrystal and Zn are encased in a heat resistant soft material is placed in a sealing material, and the encapsulating material is heated and melted. A method for producing a ZnSe single crystal in which the above-mentioned encapsulated body is embedded in a high temperature and isotropically pressurized.
【請求項3】 封止材としてB2 3 を用いる請求項1
又は2に記載したZnSe単結晶の製造方法。
3. The use of B 2 O 3 as a sealing material.
Alternatively, the method for producing a ZnSe single crystal according to item 2 or 3.
【請求項4】 100kgf/cm2 以上かつ1000〜14
00℃の高温高圧雰囲気下で高温等方圧加圧する請求項
1、2又は3に記載したZnSe単結晶の製造方法。
4. 100 kgf / cm 2 or more and 1000 to 14
The method for producing a ZnSe single crystal according to claim 1, 2 or 3, wherein isotropic high-temperature pressurization is performed in a high-temperature, high-pressure atmosphere of 00 ° C.
JP12901594A 1994-06-10 1994-06-10 Production of znse single crystal Pending JPH07330494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12901594A JPH07330494A (en) 1994-06-10 1994-06-10 Production of znse single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12901594A JPH07330494A (en) 1994-06-10 1994-06-10 Production of znse single crystal

Publications (1)

Publication Number Publication Date
JPH07330494A true JPH07330494A (en) 1995-12-19

Family

ID=14999057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12901594A Pending JPH07330494A (en) 1994-06-10 1994-06-10 Production of znse single crystal

Country Status (1)

Country Link
JP (1) JPH07330494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443658A (en) * 2012-03-09 2013-12-11 住友电气工业株式会社 Optical component and manufacturing method therefor
JP2014177509A (en) * 2013-03-13 2014-09-25 Kaneka Corp Production method of inorganic phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443658A (en) * 2012-03-09 2013-12-11 住友电气工业株式会社 Optical component and manufacturing method therefor
EP2674792A4 (en) * 2012-03-09 2015-06-03 Sumitomo Electric Industries Optical component and manufacturing method therefor
JP2014177509A (en) * 2013-03-13 2014-09-25 Kaneka Corp Production method of inorganic phosphor

Similar Documents

Publication Publication Date Title
US20070256630A1 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JPH1160394A (en) Growth of nitride crystal and growth of gallium nitride
KR100876925B1 (en) CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF
EP1375423B1 (en) Use of a low nitrogen concentration carbonaceous material as a jig.
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
JP2010030891A (en) Compound semiconductor crystal
JPS6011293A (en) Manufacture of znse single crystal
JP2008239480A5 (en)
EP2554720B1 (en) Method for synthesizing group ii-vi compound semiconductor polycrystals
JPH07330494A (en) Production of znse single crystal
CN115012028A (en) Method for preparing large-size silicon carbide crystals
JPH0341433B2 (en)
CA2326056C (en) Direct synthesis process of indium phosphide
JPH0570276A (en) Device for producing single crystals
JPS61222911A (en) Synthesis of phosphorated compound
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP2830307B2 (en) Method for producing high dissociation pressure single crystal
JPH0193497A (en) Production of znse single crystal
JPH0375291A (en) Production of znse single crystal
JP3821508B2 (en) Method for producing ZnSe single crystal
JPH0364477B2 (en)
JPS5939793A (en) Container for treating iii-v group compound
US20050087123A1 (en) Low nitrogen concentration carbonaceous material and manufacturing method thereof
JPH05286798A (en) Production of iii-v compound semiconductor single crystal block material
KR19980067016A (en) ZnSe Single Crystal Manufacturing Method