JPH07330485A - Apparatus for production of multilayered epitaxially grown crystal - Google Patents

Apparatus for production of multilayered epitaxially grown crystal

Info

Publication number
JPH07330485A
JPH07330485A JP15516594A JP15516594A JPH07330485A JP H07330485 A JPH07330485 A JP H07330485A JP 15516594 A JP15516594 A JP 15516594A JP 15516594 A JP15516594 A JP 15516594A JP H07330485 A JPH07330485 A JP H07330485A
Authority
JP
Japan
Prior art keywords
wafers
wafer
melt
growth
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15516594A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oki
一宏 大木
Yuji Tomizuka
雄二 富塚
Akio Omuro
彰男 大室
Seiji Yamashita
誠治 山下
Atsushi Kajimoto
淳 梶本
Shigehiko Nomura
重彦 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15516594A priority Critical patent/JPH07330485A/en
Publication of JPH07330485A publication Critical patent/JPH07330485A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain epitaxial wafers adequate as light emitting diodes by growing thick epitaxial layers having less changes in mixed crystal ratios with respect to a growth direction. CONSTITUTION:The apparatus for growing, in liquid phase, the multielement mixed crystal epitaxial layers on plural sheets of the wafers by a slow cooling method has a substrate holder 5 which is provided with a housing section 6 and a wafer holder 1 which holds the plural wafers 2, 3 and is installed in the housing section 6. Spacings 7, 8 exist between the wafers 2, 3 and the housing section 1. The melt volume is >=1.5 times the product of the total area of the wafers 2, 3 and the melt thickness. Al and As are supplied at the growth boundary by the convection from the spacings 7, 8 in addition to the diffusion transportation occurring in a concn. gradient and, therefore, the change in the mixed crystal ratios with respect to the growth direction is suppressed. The thick and uniform epitaxial layers are thus formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体材料等に使用さ
れる多元混晶多層エピタキシャル成長結晶を製造する装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a multi-element mixed crystal multilayer epitaxial growth crystal used for semiconductor materials and the like.

【0002】[0002]

【従来の技術】マルチウエハー型の多層エピタキシャル
成長結晶は、ウエハーホルダーに取り付けた基板結晶と
融液との界面でエピタキシャル成長を行わせることによ
って工業的に製造されている。具体的には、図1に示す
ように、相互に一定の間隔を維持してウエハーホルダー
1,1・・の両面に複数のウエハー2,3・・を取り付
け、ウエハー2,3・・に成長用メルト4を接触させ
る。メルト4は、ウエハー2,3・・に対向する大きさ
がウエハー2,3・・とほぼ同じ値に設定され、厚みが
通常2mm程度に設定される。この条件下で、徐冷しな
がらメルト4からウエハー2,3・・の上にエピタキシ
ャル層を成長させる。得られたエピタキシャル成長結晶
は、シングルヘテロ接合をもつGaAlAs系発光ダイ
オード用のエピタキシャルウエハーに製造されている。
2. Description of the Related Art Multi-wafer type multi-layer epitaxial growth crystals are industrially manufactured by performing epitaxial growth at the interface between a substrate crystal attached to a wafer holder and a melt. Specifically, as shown in FIG. 1, a plurality of wafers 2, 3 ... Are attached to both sides of the wafer holders 1, 1 ,. The melt 4 is brought into contact. The size of the melt 4 facing the wafers 2, 3 ... Is set to be substantially the same as that of the wafers 2, 3 ... and the thickness is usually set to about 2 mm. Under these conditions, an epitaxial layer is grown from the melt 4 on the wafers 2, 3 ... While gradually cooling. The obtained epitaxially grown crystal is manufactured as an epitaxial wafer for a GaAlAs light emitting diode having a single heterojunction.

【0003】[0003]

【発明が解決しようとする課題】ところで、シングルヘ
テロ接合をもつGaAlAs系発光ダイオードは、Ga
As基板結晶の上にp型GaAlAsエピタキシャル層
及びn型GaAlAsエピタキシャル層を順次堆積した
構造になっていることから、発光ダイオードとしての重
要な特性である発光出力がn型エピタキシャル層の厚み
に大きく影響される。また、十分な発光出力を得る上
で、40〜45μmと非常に厚いエピタキシャル層が必
要とされる。更に、n型GaAlAs層は、十分なヘテ
ロ障壁が得られ、且つ発光する光の波長に対して吸収が
ないように高いAlAs混晶比が必要である。これに対
し、従来の徐冷法では、空間的な制約から十分なメルト
厚みを確保することが困難である。そのため、十分なメ
ルト厚みが確保されているシングルウエハー型のエピタ
キシャル成長装置に比較して、得られるエピタキシャル
層の厚みが薄くなることが避けられず、十分な発光特性
をもつ発光ダイオードが得られない。
By the way, GaAlAs-based light-emitting diodes having a single heterojunction are
Since the p-type GaAlAs epitaxial layer and the n-type GaAlAs epitaxial layer are sequentially deposited on the As substrate crystal, the light emission output, which is an important characteristic as a light-emitting diode, greatly affects the thickness of the n-type epitaxial layer. To be done. Further, in order to obtain a sufficient light emission output, an extremely thick epitaxial layer of 40 to 45 μm is required. Furthermore, the n-type GaAlAs layer needs to have a high AlAs mixed crystal ratio so that a sufficient hetero barrier can be obtained and that there is no absorption for the wavelength of emitted light. On the other hand, in the conventional slow cooling method, it is difficult to secure a sufficient melt thickness due to space restrictions. Therefore, as compared with a single-wafer type epitaxial growth apparatus in which a sufficient melt thickness is secured, it is unavoidable that the thickness of the obtained epitaxial layer becomes thin, and a light emitting diode having sufficient light emitting characteristics cannot be obtained.

【0004】また、通常の徐冷法で得られるエピタキシ
ャル層は、厚み方向に関する混晶比分布が図4に示すよ
うに成長開始時から表面に向かって減少している。すな
わち、エピタキシャル層内で厚み方向に関する混晶比変
化があり、表面近傍では混晶比が低下している。その結
果、発光した光の波長に対する吸収がみられる。本発明
は、このような問題を解消すべく案出されたものであ
り、ウエハー保持部以外の隙間に注入したメルトがウエ
ハー保持部に対流する形状のウエハーホルダーを使用す
ることにより、厚くしかも混晶比低下のない発光ダイオ
ードとして好適なエピタキシャル層を基板結晶の上に成
長させることを目的とする。
In the epitaxial layer obtained by the usual slow cooling method, the mixed crystal ratio distribution in the thickness direction decreases from the start of growth toward the surface as shown in FIG. That is, the mixed crystal ratio changes in the thickness direction in the epitaxial layer, and the mixed crystal ratio decreases near the surface. As a result, absorption of the emitted light wavelength is observed. The present invention has been devised to solve such a problem, and by using a wafer holder having a shape in which the melt injected into a gap other than the wafer holding portion is convected to the wafer holding portion, it is thick and mixed. The purpose of the present invention is to grow an epitaxial layer suitable for a light emitting diode having no reduction in crystal ratio on a substrate crystal.

【0005】[0005]

【課題を解決するための手段】本発明の製造装置は、そ
の目的を達成するため、徐冷法で複数枚のウエハーに多
元混晶エピタキシャル層を液相成長させる装置におい
て、収容部が設けられた基板ホルダーと、複数のウエハ
ーを保持し前記収容部に設置されるウエハーホルダーと
を備え、メルト容積がウエハーの総面積とメルト厚みの
積の1.5倍以上となるように前記収容部と前記ウエハ
ーとの間に隙間が形成されていることを特徴とする。ウ
エハーホルダーは、ウエハー形状と相似形状、或いは異
なる形状の何れであってもよい。
In order to achieve the object, a manufacturing apparatus of the present invention is an apparatus for liquid phase growing a multi-component mixed crystal epitaxial layer on a plurality of wafers by a slow cooling method, and a substrate provided with a containing section. A holder and a wafer holder that holds a plurality of wafers and is installed in the accommodating unit, and the accommodating unit and the wafer so that the melt volume is 1.5 times or more the product of the total area of the wafer and the melt thickness. It is characterized in that a gap is formed between and. The wafer holder may have a shape similar to or different from the wafer shape.

【0006】[0006]

【作用】液相エピタキシャル成長させる従来の徐冷法で
は、ウエハー形状とほぼ同じ大きさのメルト内で、徐冷
で生じた過飽和のAsが基板結晶との界面における濃度
勾配によって拡散輸送され、基板結晶の表面にエピタキ
シャル成長する。このとき、メルトの組成は、成長温度
における固相の混晶比と平衡する状態に設定されるが、
特に固相のAlAs混晶比が高いほど平衡するメルト内
のAs濃度が減少する。そのため、高AlAs混晶比の
エピタキシャル層で厚い成長層を得ることは非常に困難
である。更に複数枚の基板結晶の上で同時成長を行う液
相エピタキシャル装置においては、使用する基板結晶の
枚数が増加するにしたがって空間的制約が厳しくなり、
十分なメルト量を確保しにくくなる。そのため、高Al
As混晶比のエピタキシャル層で厚い成長層を得ること
は更に困難となる。しかも、Alの偏析係数が温度によ
って変化するため、徐冷法による液相エピタキシャル成
長で得られるエピタキシャル層の混晶比は厚み方向で変
化する。
In the conventional slow cooling method of liquid phase epitaxial growth, supersaturated As produced by slow cooling is diffused and transported in the melt having a size almost the same as the wafer shape by the concentration gradient at the interface with the substrate crystal, and To grow epitaxially. At this time, the composition of the melt is set in a state of equilibrium with the mixed crystal ratio of the solid phase at the growth temperature,
Particularly, the higher the solid phase AlAs mixed crystal ratio, the lower the As concentration in the equilibrated melt. Therefore, it is very difficult to obtain a thick growth layer with an epitaxial layer having a high AlAs mixed crystal ratio. Furthermore, in a liquid phase epitaxial device in which simultaneous growth is performed on a plurality of substrate crystals, spatial restrictions become stricter as the number of substrate crystals used increases.
It becomes difficult to secure a sufficient amount of melt. Therefore, high Al
It becomes more difficult to obtain a thick growth layer from an epitaxial layer having an As mixed crystal ratio. Moreover, since the segregation coefficient of Al changes with temperature, the mixed crystal ratio of the epitaxial layer obtained by liquid phase epitaxial growth by the slow cooling method changes in the thickness direction.

【0007】本発明は、このような従来の徐冷法におけ
る問題認識を前提として完成されたもので、ウエハー保
持部に対流するメルトによってAsを成長界面に輸送
し、通常の成長膜厚よりも厚いエピタキシャル層を成長
させるものである。すなわち、複数枚のウエハーにエピ
タキシャル成長を同時に行わせる液相エピタキシャル装
置において、ウエハー保持部以外に隙間を設けたウエハ
ーホルダを使用する。隙間に注入されたメルトは、随時
ウエハー保持部に対流し、成長界面にAsを輸送する。
この方式においては、徐冷によって生じた過飽和状態の
Asは、基板との界面における濃度勾配に従って拡散輸
送される外に、ウエハー保持部以外の隙間から対流によ
って輸送される。その結果、通常の成長膜厚よりも厚い
エピタキシャル層を得ることが可能になる。また、ウエ
ハー保持部ではAs及びAlが消費されていくが、ウエ
ハー保持部以外の隙間にあるメルトの対流によってAs
及びAlが成長界面に輸送されるため、エピタキシャル
層の成長方向に関する混晶比の変化は従来法に比較して
小さくなっている。
The present invention has been completed on the premise of recognizing the problem in such a conventional slow cooling method, and transports As to the growth interface by the convection melt in the wafer holding part, so that the epitaxial film thicker than the normal growth film thickness is obtained. It is to grow a layer. That is, in a liquid-phase epitaxial device for performing epitaxial growth on a plurality of wafers at the same time, a wafer holder having a gap other than the wafer holder is used. The melt injected into the gaps convects to the wafer holding portion at any time and transports As to the growth interface.
In this method, supersaturated As generated by slow cooling is not only diffused and transported according to the concentration gradient at the interface with the substrate, but is also transported by convection from a gap other than the wafer holding portion. As a result, it becomes possible to obtain an epitaxial layer thicker than the normal grown film thickness. Further, As and Al are consumed in the wafer holding portion, but As and Al are consumed by the convection of the melt in the gaps other than the wafer holding portion.
Since Al and Al are transported to the growth interface, the change in the mixed crystal ratio in the growth direction of the epitaxial layer is smaller than that in the conventional method.

【0008】たとえば、図2及び図3に示すように基板
ホルダー5の収容部6を二段底とし、底面と段部との間
に隙間7を設けることができる。或いは、収容部6を深
くすることによって、収容部6の上部に隙間8を設けて
も良い。隙間7,8があるため、収容されるメルト4の
容積は、従来のウエハーホルダーを使用した場合に比較
して大きくなっている。隙間7,8による作用・効果を
得る上では、ウエハー2,3・・の総面積とメルト4の
厚みの積に比較して1.5倍以上のメルト容積となるよ
うに隙間7,8を設けることが必要である。このような
条件下で成長したエピタキシャル層は、厚く且つ混晶比
変化が抑制されている。そのため、得られたエピタキシ
ャルウエハーから製造された発光ダイオードは、優れた
発光特性を呈する製品となる。
For example, as shown in FIGS. 2 and 3, the accommodating portion 6 of the substrate holder 5 may have a two-step bottom, and a gap 7 may be provided between the bottom surface and the step. Alternatively, the gap 8 may be provided in the upper part of the housing 6 by making the housing 6 deep. Due to the gaps 7 and 8, the volume of the melt 4 accommodated is larger than that in the case where the conventional wafer holder is used. In order to obtain the action and effect of the gaps 7 and 8, the gaps 7 and 8 are set so that the melt volume becomes 1.5 times or more as compared with the product of the total area of the wafers 2, 3 ... And the thickness of the melt 4. It is necessary to provide. The epitaxial layer grown under such conditions is thick and the change in the mixed crystal ratio is suppressed. Therefore, the light emitting diode manufactured from the obtained epitaxial wafer becomes a product exhibiting excellent light emitting characteristics.

【0009】[0009]

【実施例】本実施例においては、図2に示すように、ウ
エハーホルダー1の両面に直径3インチのGaAs結晶
基板2,3を取り付け、図3に示す基板ホルダー5の収
容部6に設置した。成長用原料としては、910℃で飽
和溶解するGa,Al及びAsを成長用融液ホルダー
(図示せず)に用意した。なお、基板ホルダー5の下部
には、廃液ホルダー(図示せず)を取り付けた。基板ホ
ルダー5は、従来のホルダーに比較して収容部6が深く
なっており、収容部4の内面とウエハー2,3との間に
隙間8,7が形成されている。そのため、収容部位6に
収容されたメルト4は、ウエハー2,3の総面積とメル
ト厚みとの積に対し1.5倍の容積となっていた。隙間
8,7に注入されたメルト4は、収容部6内に生じた温
度勾配に応じて収容部6内を対流し、結晶基板2,3の
間を通過する。
EXAMPLE In this example, as shown in FIG. 2, GaAs crystal substrates 2 and 3 each having a diameter of 3 inches were attached to both sides of a wafer holder 1 and placed in an accommodating portion 6 of a substrate holder 5 shown in FIG. . As growth materials, Ga, Al, and As that are saturated and dissolved at 910 ° C. were prepared in a growth melt holder (not shown). A waste liquid holder (not shown) was attached to the bottom of the substrate holder 5. The substrate holder 5 has a deeper accommodation portion 6 than the conventional holder, and gaps 8 and 7 are formed between the inner surface of the accommodation portion 4 and the wafers 2 and 3. Therefore, the volume of the melt 4 stored in the storage portion 6 was 1.5 times the product of the total area of the wafers 2 and 3 and the melt thickness. The melt 4 injected into the gaps 8 and 7 convects in the housing 6 in accordance with the temperature gradient generated in the housing 6, and passes between the crystal substrates 2 and 3.

【0010】全体を水素雰囲気中で910℃に保持した
後、成長用原料を成長用融液ホルダーから基板ホルダー
5の収容部6に流し込み、全体を870℃まで徐々に冷
却した。徐冷の過程で結晶基板2,3・・の上にGaA
lAsエピタキシャル層が成長し、エピタキシャルウエ
ハーが製造された。得られたエピタキシャル層の厚み分
布を、従来法で得られた結果と比較して図5に示す。図
5から明らかなように、本発明に従って成長したエピタ
キシャル層は、従来法に比較して厚く、しかも均一にな
っていることが判る。また、エピタキシャル層内におけ
る混晶比分布を従来法と比較した図4から明らかなよう
に、成長方向に関する混晶比の変化が従来法に比較して
格段に小さくなっていることが判る。これらの結果か
ら、得られたエピタキシャルウエハーは、優れた発光特
性を呈する発光ダイオード用材料として使用されること
が確認された。
After keeping the whole at 910 ° C. in a hydrogen atmosphere, the growth raw material was poured from the growth melt holder into the accommodating portion 6 of the substrate holder 5, and the whole was gradually cooled to 870 ° C. In the process of slow cooling, GaA is deposited on the crystal substrates 2, 3 ...
The lAs epitaxial layer was grown and an epitaxial wafer was manufactured. The thickness distribution of the obtained epitaxial layer is shown in FIG. 5 in comparison with the result obtained by the conventional method. As is apparent from FIG. 5, the epitaxial layer grown according to the present invention is thicker and more uniform than the conventional method. Further, as is clear from FIG. 4 in which the mixed crystal ratio distribution in the epitaxial layer is compared with the conventional method, it can be seen that the change in the mixed crystal ratio in the growth direction is significantly smaller than that in the conventional method. From these results, it was confirmed that the obtained epitaxial wafer was used as a material for a light emitting diode exhibiting excellent light emitting characteristics.

【0011】[0011]

【発明の効果】以上に説明したように、本発明において
は、ウエハー保持部以外に隙間のあるウエハーホルダー
を使用し、隙間に注入されたメルトを成長界面に積極的
に対流させることにより、成長界面近傍の濃度勾配に起
因したAsの拡散輸送に加え、対流による輸送でAs及
びAlを成長界面に送り込んでいる。そのため、エピタ
キシャル層の成長に従って消費されるAsの影響が抑制
され、厚く均一なエピタキシャル層が形成される。その
結果、優れた発光特性を呈するシングルヘテロ接合をも
つGaAlAs系発光ダイオード用エピタキシャルウエ
ハーが得られる。
As described above, according to the present invention, a wafer holder having a gap other than the wafer holding portion is used, and the melt injected into the gap is positively convected to the growth interface, whereby the growth is performed. In addition to As diffusion transport due to the concentration gradient near the interface, As and Al are sent to the growth interface by convection transport. Therefore, the influence of As consumed as the epitaxial layer grows is suppressed, and a thick and uniform epitaxial layer is formed. As a result, a GaAlAs-based light emitting diode epitaxial wafer having a single heterojunction exhibiting excellent light emitting characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来法によるエピタキシャル結晶成長装置の
ウエハー収容部
FIG. 1 Wafer accommodating part of an epitaxial crystal growth apparatus by a conventional method

【図2】 本発明実施例におけるウエハー収容部FIG. 2 is a view illustrating a wafer accommodating portion according to an embodiment of the present invention.

【図3】 本発明実施例で使用した基板ホルダーFIG. 3 is a substrate holder used in an embodiment of the present invention.

【図4】 エピタキシャル層の成長方向に関する混晶比
分布について本発明法と従来法とを比較したグラフ
FIG. 4 is a graph comparing the method of the present invention with the method of the related art regarding the mixed crystal ratio distribution in the growth direction of the epitaxial layer.

【図5】 本発明法及び従来法で得られたエピタキシャ
ル層の厚み分布を比較したグラフ
FIG. 5 is a graph comparing the thickness distributions of epitaxial layers obtained by the method of the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

1:ウエハーホルダー 2,3:ウエハー 4:メ
ルト 5:基板ホルダー 6:収容部 7,8:
隙間
1: Wafer holder 2, 3: Wafer 4: Melt 5: Substrate holder 6: Storage part 7, 8:
Gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 誠治 立川市曙町3−5−3 日新製鋼株式会社 半導体研究センター (72)発明者 梶本 淳 立川市曙町3−5−3 日新製鋼株式会社 半導体研究センター (72)発明者 野村 重彦 立川市曙町3−5−3 日新製鋼株式会社 半導体研究センター ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Seiji Yamashita 3-5-3 Akebonocho, Tachikawa-shi Nisshin Steel Co., Ltd. Semiconductor Research Center (72) Inventor Atsushi Kajimoto 3-5-3 Akebonocho, Tachikawa-shi Nisshin Steel Co., Ltd. Semiconductor Research Center (72) Inventor Shigehiko Nomura 3-5-3 Akebonocho, Tachikawa City Nisshin Steel Co., Ltd. Semiconductor Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 徐冷法で複数枚のウエハーに多元混晶エ
ピタキシャル層を液相成長させる装置において、収容部
が設けられた基板ホルダーと、複数のウエハーを保持し
前記収容部に設置されるウエハーホルダーとを備え、メ
ルト容積がウエハーの総面積とメルト厚みの積の1.5
倍以上となるように前記収容部と前記ウエハーとの間に
隙間が形成されていることを特徴とする多層エピタキシ
ャル成長結晶の製造装置。
1. An apparatus for performing liquid phase growth of a multi-element mixed crystal epitaxial layer on a plurality of wafers by a slow cooling method, a substrate holder having a housing, and a wafer holder for holding the plurality of wafers and installed in the housing. And the melt volume is 1.5 times the product of the total area of the wafer and the melt thickness.
A manufacturing apparatus for a multilayer epitaxial growth crystal, characterized in that a gap is formed between the accommodation portion and the wafer so as to be more than double.
JP15516594A 1994-06-14 1994-06-14 Apparatus for production of multilayered epitaxially grown crystal Withdrawn JPH07330485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15516594A JPH07330485A (en) 1994-06-14 1994-06-14 Apparatus for production of multilayered epitaxially grown crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15516594A JPH07330485A (en) 1994-06-14 1994-06-14 Apparatus for production of multilayered epitaxially grown crystal

Publications (1)

Publication Number Publication Date
JPH07330485A true JPH07330485A (en) 1995-12-19

Family

ID=15599938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15516594A Withdrawn JPH07330485A (en) 1994-06-14 1994-06-14 Apparatus for production of multilayered epitaxially grown crystal

Country Status (1)

Country Link
JP (1) JPH07330485A (en)

Similar Documents

Publication Publication Date Title
US7935615B2 (en) III-V nitride semiconductor substrate and its production method
JP4783483B2 (en) Semiconductor substrate and method for forming semiconductor substrate
US7221037B2 (en) Method of manufacturing group III nitride substrate and semiconductor device
JPH10326911A (en) P-type iii nitride compound semiconductor and its production
CN102174713A (en) Group iii-v nitride-based semiconductor substrate, its manufacturing method, and group iii-v nitride-based semiconductor
WO2004040662A1 (en) Zn SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME
US9064685B2 (en) Semiconductor substrate and method of forming
JPH08139361A (en) Compound semiconductor light emitting device
US7255742B2 (en) Method of manufacturing Group III nitride crystals, method of manufacturing semiconductor substrate, Group III nitride crystals, semiconductor substrate, and electronic device
JP4597534B2 (en) Method for manufacturing group III nitride substrate
JP2014520748A (en) Semiconductor substrate and manufacturing method
JP2007335484A (en) Nitride semiconductor wafer
JP3306578B2 (en) Compound semiconductor epitaxial wafer
JP3356041B2 (en) Gallium phosphide green light emitting device
JP4554287B2 (en) Group III nitride crystal manufacturing method and semiconductor substrate manufacturing method
JP3143040B2 (en) Epitaxial wafer and method for manufacturing the same
JPH07330485A (en) Apparatus for production of multilayered epitaxially grown crystal
Zhang et al. GaN Substrate Material for III–V Semiconductor Epitaxy Growth
JPH08335555A (en) Fabrication of epitaxial wafer
Tavernier et al. Progress Toward Making Gallium Nitride Seed Crystals Using Hydride Vapor‐Phase Epitaxy
JPH1065211A (en) Light-emitting diode
JP3928536B2 (en) Method for manufacturing boron phosphide single crystal substrate
TW508835B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2001036137A (en) Epitaxial wafer and light emitting diode
JP4751519B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904