JPH07330079A - Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof - Google Patents

Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof

Info

Publication number
JPH07330079A
JPH07330079A JP6129281A JP12928194A JPH07330079A JP H07330079 A JPH07330079 A JP H07330079A JP 6129281 A JP6129281 A JP 6129281A JP 12928194 A JP12928194 A JP 12928194A JP H07330079 A JPH07330079 A JP H07330079A
Authority
JP
Japan
Prior art keywords
compressed air
water
tank
pressure
curtain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6129281A
Other languages
Japanese (ja)
Inventor
Shigeo Honma
重雄 本間
Masao Hayashi
正夫 林
Kazuhisa Orui
一久 大類
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TONE CHIKA GIJUTSU KK
Tokai University
Obayashi Corp
Toray Engineering Co Ltd
Sumitomo Construction Co Ltd
Original Assignee
TONE CHIKA GIJUTSU KK
Tokai University
Obayashi Corp
Toyo Construction Co Ltd
Sumitomo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TONE CHIKA GIJUTSU KK, Tokai University, Obayashi Corp, Toyo Construction Co Ltd, Sumitomo Construction Co Ltd filed Critical TONE CHIKA GIJUTSU KK
Priority to JP6129281A priority Critical patent/JPH07330079A/en
Publication of JPH07330079A publication Critical patent/JPH07330079A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Pipeline Systems (AREA)

Abstract

PURPOSE:To obtain a structure for preventing dissolution of compressed air stored in a compressed air storage tank, that can easily prevent stored compressed air from dissolving into confined water by a simple structure without using a forced head system. CONSTITUTION:A dissolution-preventing structure 10 according to the invention is used in an underground storage tank 11 of a pressure compensatory type for storing an excess electric power, such as a night electric power, deep under the ground as compressed air. On an upper end of the underground tank 11, an air feed pipe 12 is vertically provided upward from the upper end to the ground. In the air feed pipe 12, a water feed pipe 13 opened to the bottom of the underground tank 11 at the lower end thereof is provided for supplying confined water 25 for compensating a pressure to the lower part of a storage space 14. The dissolution-preventing structure 10 is composed of a film structure 15 covering a water surface of in the underground tank 11. The film structure 15 is formed by laminating a silicone liquid film 16 on a synthetic resin film 17 as a composite film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧気貯蔵用タンクに
おける貯蔵圧気の溶存防止構造及び該溶存防止構造の設
置方法に関し、特に、タンク内に送られる被圧水により
貯蔵用の圧力を補償しつつ圧気を貯蔵する水圧補償方式
の貯蔵タンクにおいて用いられる、貯蔵圧気がその圧力
により被圧水内に溶存するのを防止するための貯蔵圧気
の溶存防止構造及び該溶存防止構造の設置方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for preventing the dissolution of stored compressed air in a compressed air storage tank and a method of installing the dissolved prevention structure. In particular, the pressure for storage is compensated by pressurized water sent into the tank. The present invention relates to a stored pressure air dissolution preventing structure for preventing stored pressure air from being dissolved in pressurized water due to its pressure, which is used in a water pressure compensation type storage tank for storing compressed air, and a method of installing the dissolution prevention structure.

【0002】[0002]

【従来の技術】近年、深夜電力等の余剰電力を圧縮空気
等の圧気として貯蔵するための施設やその他の高圧気体
を貯蔵するための施設として各種の地下タンクが開発さ
れている。すなわち、かかる圧気の貯蔵用の地下タンク
によれば、当該地下タンクを地中深部に設けることによ
り、送気管により給送されて内部に貯蔵される圧気の内
圧に抵抗するための耐圧力を、周囲の地盤から地下タン
クに負荷される土圧や地下水圧等によって補ない、これ
によって地下タンクに生じる引張応力を低減して地下タ
ンクの構造を簡易なものとすることができるとともに、
地下空間を有効に利用することを可能にする。
2. Description of the Related Art In recent years, various underground tanks have been developed as facilities for storing surplus power such as late-night power as compressed air such as compressed air and other facilities for storing high-pressure gas. That is, according to the underground tank for storing such compressed air, by providing the underground tank in the deep underground, the pressure resistance for resisting the internal pressure of the compressed air that is fed by the air supply pipe and stored inside, It is not compensated by earth pressure or groundwater pressure applied to the underground tank from the surrounding ground, thereby reducing the tensile stress generated in the underground tank and simplifying the structure of the underground tank.
Enables effective use of underground space.

【0003】また、かかる圧気を貯蔵するための地下タ
ンクとして、いわゆる水圧補償方式の地下貯蔵タンクが
知られている。この水圧補償方式の地下貯蔵タンクは、
地下タンクの上方に設けた貯水池、湖沼、河川、地下河
川等からなる上池と地下タンクの下部空間とを送水管に
よって連通するとともに、地下タンク内の水位と上池の
水位とのヘッド差に伴なう被圧水を送水管内に充填する
ことにより、前記ヘッド差に伴う圧力で地下タンク内の
圧気貯蔵空間を水表面を介して下方から押圧して、圧気
貯蔵用の所望の圧力が常時補償されるようにしたもので
ある。
A so-called water pressure compensating underground storage tank is known as an underground tank for storing such compressed air. This water pressure compensation underground storage tank
The upper pipe, which consists of a reservoir, a lake, a river, an underground river, etc. above the underground tank, is connected to the lower space of the underground tank by a water pipe, and the head difference between the water level in the underground tank and the water level in the upper tank By filling the water pipe with the accompanying pressurized water, the compressed air storage space in the underground tank is pressed from below via the water surface by the pressure due to the head difference, and the desired pressure for compressed air storage is always maintained. It is intended to be compensated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
従来の水圧補償方式の地下貯蔵タンクによれば、貯蔵さ
れる圧縮空気等の圧気は、タンク内の水表面を介して被
圧水により所望の圧力で押圧されているため、かかる圧
力によって圧気が被圧水中に溶解しやすく、したがっ
て、特に圧気の使用時においては、溶解した圧気が浮力
により送水管内を上方に向かって逆流するとともに、地
上に気泡となって大量に流出することによりエネルギー
の損失を生じ、またタンクの内部が急速に減圧され、周
囲の地盤からの地圧に対向できなくなってタンクに破損
を生じる場合がある。
However, according to such a conventional water pressure compensating type underground storage tank, the compressed air or the like to be stored has a desired pressure due to the pressurized water via the water surface in the tank. Since it is pressed by, the pressure air is easily dissolved in the water under pressure due to such pressure.Therefore, especially when the pressure air is used, the dissolved pressure air flows back upward in the water pipe due to buoyancy and bubbles on the ground. There is a case where energy is lost due to a large amount of water flowing out, and the inside of the tank is rapidly depressurized, so that the tank cannot be opposed to the ground pressure from the surrounding ground and the tank is damaged.

【0005】そして、かかる圧気の被圧水への溶存とこ
れに伴なうエネルギーの損失を防止するための手段とし
て、従来は、図11に示すように、地下タンク60内へ
の送水管51の下部に押し込み水頭管としてのU字管5
3を設けることにより、溶存圧気の逆流及び大気中への
発散を防止する方法が採用されていた。
As a means for preventing the dissolution of such compressed air in the pressurized water and the accompanying loss of energy, conventionally, as shown in FIG. 11, a water supply pipe 51 into the underground tank 60 is used. U-shaped tube 5 pushed into the lower part of the head as a water head tube
By providing No. 3, the method of preventing the backflow of the dissolved pressure air and the diffusion into the atmosphere has been adopted.

【0006】しかしながら、このような従来のU字管5
3によって圧気の溶存を防止する方法では、上記送水管
51にU字管53を設ける作業のために、地下タンク6
0の下方にさらに地盤を掘り下げる必要があるためその
作業に手間がかかり、特に、地中の深部に水没状態で縦
穴を掘削し、該縦穴内に作業員が立ち入ることなく無人
で地下タンクを設置する工法により地下タンクを構築す
る場合には、送水管51にU字管53を設けることが困
難である。
However, such a conventional U-shaped tube 5
In the method of preventing the pressure air from being dissolved by the method 3, the underground tank 6 is used for the work of providing the U-shaped pipe 53 on the water supply pipe 51.
Since it is necessary to dig further into the ground below 0, it takes time and labor, and in particular, a vertical hole is drilled deep in the ground in a submerged state, and an unmanned underground tank is installed without workers entering the vertical hole. When constructing an underground tank by the construction method described above, it is difficult to provide the water pipe 51 with the U-shaped pipe 53.

【0007】そこで、この発明は、かかる課題を解消す
るためになされたもので、上記従来のいわゆる押し込み
水頭方式を採用することなく、簡単な構造によって貯蔵
圧気の被圧水への溶解を容易に防止することのできる圧
気貯蔵用タンクにおける貯蔵圧気の溶存防止構造を提供
することを目的とする。
Therefore, the present invention has been made in order to solve the above problems, and facilitates the dissolution of stored compressed air into pressurized water with a simple structure without adopting the conventional so-called forced head system. An object of the present invention is to provide a structure for preventing stored compressed air from being dissolved in a compressed air storage tank that can prevent the stored compressed air.

【0008】また、この発明は、かかる貯蔵圧気の溶存
防止構造を、地中深部に作業員が直接立ち入ることなく
無人で容易に設置することのできる溶存防止構造の設置
方法を提供することを目的とする。
Another object of the present invention is to provide a method for installing a dissolved prevention structure, which allows the stored compressed air dissolution prevention structure to be easily installed unattended without an operator directly entering the deep underground. And

【0009】[0009]

【課題を解決するための手段】この発明は、上記目的を
鑑みてなされたものであり、その要旨は、タンク内に送
られる水や海水等からなる被圧水により貯蔵用の圧力を
補償しつつ圧気を貯蔵する水圧補償方式の貯蔵タンクに
おいて用いられる、貯蔵圧気がその圧力により被圧水内
に溶存するのを防止するための貯蔵圧気の溶存防止構造
であって、タンク内の被圧水面を覆って貯蔵圧気との接
触を遮断する幕構造からなることを特徴とする圧気貯蔵
用タンクにおける貯蔵圧気の溶存防止構造にある。
The present invention has been made in view of the above object, and its gist is to compensate the pressure for storage by pressurized water such as water or seawater sent into a tank. A structure for preventing the stored compressed air from being dissolved in the compressed water due to the pressure, which is used in a storage tank of a water pressure compensating system that stores compressed air. A structure for preventing dissolution of stored compressed air in a compressed air storage tank, which is characterized by comprising a curtain structure for covering the container and blocking contact with the stored compressed air.

【0010】また、この発明の貯蔵圧気の溶存防止構造
は、前記幕構造を、被圧水の表面に浮遊するシリコン油
等のシリコンの液幕によって構成することが好ましい。
Further, in the structure for preventing the dissolution of stored compressed air according to the present invention, it is preferable that the curtain structure is composed of a liquid curtain of silicon such as silicon oil floating on the surface of the pressurized water.

【0011】また、この発明の貯蔵圧気の溶存防止構造
は、前記幕構造を、被圧水の表面に浮遊するエチレンビ
ニルアルコール共重合体(以下「EVOH」とする。)
を含む合成樹脂幕によって構成することもできる。
Further, in the structure for preventing dissolution of stored compressed air according to the present invention, the curtain structure is an ethylene vinyl alcohol copolymer (hereinafter referred to as "EVOH") floating on the surface of the water to be pressurized.
It can also be constituted by a synthetic resin curtain containing.

【0012】さらに、この発明の貯蔵圧気の溶存防止構
造は、前記幕構造を、被圧水の表面に浮遊する、シリコ
ン油等のシリコンの液幕とEVOHを含む合成樹脂幕と
を積層した複合幕によって構成しても良い。
Furthermore, in the structure for preventing the dissolution of stored compressed air according to the present invention, the curtain structure is a composite structure in which a liquid curtain of silicon such as silicon oil and a synthetic resin curtain containing EVOH, which float on the surface of the water to be pressurized, are laminated. It may be composed of a curtain.

【0013】そして、この発明の貯蔵圧気の溶存防止構
造は、前記水圧補償方式のタンクを、横方向に延長する
トンネル型の圧気タンクとするとともに、前記幕構造
を、前記トンネルの空洞を上下に遮断分割すべくトンネ
ルの壁面に周囲を固着して設けられた上下に膨潤可能な
弾性幕によって構成することもできる。
Further, in the structure for preventing the dissolution of stored compressed air according to the present invention, the water pressure compensating tank is a tunnel type compressed air tank extending in the lateral direction, and the curtain structure is arranged so that the cavity of the tunnel is vertically moved. It is also possible to use an elastic curtain that is swellable up and down and is provided around the wall surface of the tunnel so as to be blocked and divided.

【0014】そして、この発明の他の要旨は、上記圧気
貯蔵用タンク内の被圧水面を覆う幕構造からなる貯蔵圧
気の溶存防止構造を設置するための設置方法であって、
前記圧気貯蔵用タンク内を充水するとともに該タンクと
地上とを連通して設けた送水管及び送気管の内部を充水
し、前記送水管を介して一定量の充水を汲み上げること
により、該送水管と貯蔵用タンクを経て連通する送気管
内の充水を低下させ、該充水が低下した送気管の上部に
前記膜構造を構成する膜部材を挿入し、しかる後に送気
管の上方を密閉して該送気管内に圧気を給送することに
より、該圧気によって膜部材を充水とともにタンク内に
向けて下方に押し下げて、該膜部材をタンク内において
圧力補償用の被圧水を覆う膜構造として設置することを
特徴とする圧気貯蔵用タンクにおける貯蔵圧気の溶存防
止構造の設置方法にある。
Another aspect of the present invention is an installation method for installing a stored compressed air dissolution preventing structure comprising a curtain structure for covering a pressurized water surface in the compressed air storage tank.
By refilling the inside of the compressed air storage tank with water and filling the inside of the water supply pipe and the air supply pipe provided in communication with the tank and the ground, by pumping a certain amount of replenishment water through the water supply pipe, The filling water in the air feeding pipe communicating with the water feeding pipe through the storage tank is lowered, and the membrane member constituting the membrane structure is inserted into the upper portion of the air feeding pipe where the filling water is lowered, and thereafter, above the air feeding pipe. The air is closed and the compressed air is fed into the air supply pipe, so that the compressed air pushes down the membrane member toward the inside of the tank together with filling water, and the membrane member is pressurized water for pressure compensation in the tank. The method for installing a structure for preventing the dissolution of stored compressed air in a compressed air storage tank, characterized in that the structure is installed as a membrane structure.

【0015】[0015]

【作用】この発明の圧気貯蔵用タンクにおける貯蔵圧気
の溶存防止構造によれば、地下タンク内の水表面を覆う
幕構造は、圧気と被圧水との境界においてこれらが直接
接触するのを遮断するとともに圧気の通過を防ぐことに
より、圧縮空気等の圧気の被圧水への溶解を防止する。
According to the structure for preventing the dissolution of stored compressed air in the compressed air storage tank of the present invention, the curtain structure covering the water surface in the underground tank blocks direct contact between the compressed air and the pressurized water. In addition, the compressed air is prevented from passing through, thereby preventing the compressed air such as compressed air from being dissolved in the pressurized water.

【0016】また、地下タンク内の水表面を覆う幕構造
としてシリコン、EVOHを含む合成樹脂幕等を用いれ
ば、これらを水表面に浮遊させるだけの簡単な構成にも
かかわらず、タンク内に貯蔵される圧気と被圧水との境
界を効果的に遮断することができる。
Further, if a synthetic resin curtain containing silicon or EVOH is used as a curtain structure for covering the water surface in the underground tank, it can be stored in the tank in spite of a simple structure in which these are floated on the water surface. The boundary between the compressed air and the pressurized water can be effectively blocked.

【0017】さらに、前記水圧補償方式のタンクが横方
向に延長するトンネル型の圧気タンクである場合には、
前記幕構造を、前記トンネルの空洞を上下に遮断分割べ
く周囲をトンネルの壁面に固着して設けられた上下に膨
潤可能な弾性幕により構成すれば、広範囲にわたる水表
面をこれの上下動に追随して安定して覆うことができ
る。
Further, when the water pressure compensation tank is a laterally extending tunnel type compressed air tank,
If the curtain structure is composed of an elastic curtain that is vertically swellable and is provided by fixing the periphery to the wall surface of the tunnel so as to divide the tunnel cavity into upper and lower parts, the water surface over a wide range can be followed up and down. It can be stably covered.

【0018】そして、この発明の溶存防止構造の設置方
法によれば、シリコン油、EVOHを含む合成樹脂幕等
からなる地下タンク内の水表面を覆う幕構造を、地下タ
ンク内に作業員が立ち入ることなく地上からの作業のみ
により容易に浮遊設置することができる。
According to the method for installing the dissolved prevention structure of the present invention, the worker enters the underground tank with a curtain structure made of a synthetic resin curtain containing silicon oil, EVOH, etc. for covering the water surface in the underground tank. It can be easily installed in a floating manner without any work from the ground.

【0019】[0019]

【実施例】以下この発明の一実施例を図面を用いて詳細
に説明する。図1は、この実施例にかかる溶存防止構造
10を、夜間電力等の余剰電力を圧縮空気すなわち圧気
として地下深部に設けた地下貯蔵タンク11内に貯蔵
し、昼間部等における電力消費時にこの貯蔵した圧気を
適宜取り出して発電・再利用することを可能にする、い
わゆるCAES(Compressed Air Energy Storage)
システムにおいて採用した一例を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a dissolution preventing structure 10 according to this embodiment, which stores excess power such as night power as compressed air, that is, compressed air in an underground storage tank 11 provided deep underground, and stores the power when power is consumed in the daytime. The so-called CAES (Compressed Air Energy Storage) that enables the compressed air to be taken out and generated and reused
It shows an example adopted in the system.

【0020】すなわち、地下貯蔵タンク11は、例えば
地上から150m程度の深さに、例えば本願出願人の出
願に係る特願平6−44205号に示される、地中に掘
削形成された縦穴内に壁面を保持するための充填液を充
填し、この縦穴内に二重構造の袋体からなる型膜を挿入
するとともに、型膜内にコンクリートを打設しつつこれ
を沈降させて縦穴底部に着底させることにより、コンク
リート製の地下タンクを構築する方法等によって設置す
ることができる。
That is, the underground storage tank 11 is, for example, at a depth of about 150 m from the ground, for example, in a vertical hole formed by excavation in the ground as shown in Japanese Patent Application No. 6-44205 filed by the applicant of the present application. Fill a filling liquid to hold the wall surface, insert a mold film consisting of a double structure bag into this vertical hole, set the concrete inside the mold film and let it settle to reach the bottom of the vertical hole. By making it bottom, it can be installed by the method of constructing a concrete underground tank.

【0021】また、この地下タンク11を設置した縦穴
には、例えば本願出願人の出願に係る特願平5−334
554号に示されるように、重泥水が充填され、地下タ
ンク11内に貯蔵される圧気の内圧に抗するための重泥
水圧を地下タンク11に負荷し、これによって地下タン
ク11の安定化が図られている。
The vertical hole in which the underground tank 11 is installed has, for example, Japanese Patent Application No. 5-334 filed by the applicant of the present application.
As shown in No. 554, the heavy mud water pressure is applied to the underground tank 11 to resist the internal pressure of the compressed air stored in the underground tank 11, thereby stabilizing the underground tank 11. Has been planned.

【0022】さらに、この地下タンク11の上端には、
当該上端から地上まで上方に延長立設する送気管12が
配設されるとともに、この送気管12の内部には、下端
が地下タンク11の貯蔵空間14の底部に下方に向けて
開口するとともに上方に立設延長して地上に至る送水管
13が配設されている。ここで、送気管12は、夜間電
力等の余剰電力を圧気として貯蔵すべく、コンプレッサ
ー等により生成された圧気すなわち圧縮空気を地下タン
ク11内に給送貯蔵するとともに、貯蔵した圧縮空気を
電力として供するために適宜取り出す際には、圧縮空気
を地上に設けたガスタービン等に給送するものである。
一方、送水管13は、地上に設けた貯水池等の上池と連
通して上池の貯留水を地下タンク11に給送するととも
に、貯水池における水位と、地下タンク11内の水位と
のヘッド差による被圧水25が当該送水管13内に充填
された状態を保持し、これにより前記ヘッド差による所
定の静水圧をタンク11内の水表面を介してタンク11
内の圧気の貯蔵空間14に負荷する。すなわち、かかる
送水管13の作用により、地下タンク11は、前記ヘッ
ド差による圧力が補償された水圧補償方式の地下貯蔵タ
ンク11として機能するものである。
Furthermore, at the upper end of this underground tank 11,
An air supply pipe 12 extending upward from the upper end to the ground is provided, and a lower end of the air supply pipe 12 opens downward to a bottom portion of a storage space 14 of the underground tank 11 and upwardly. A water pipe 13 extending up to the ground and extending to the ground is provided. Here, the air supply pipe 12 feeds and stores compressed air generated by a compressor or the like, that is, compressed air into the underground tank 11 and stores the stored compressed air as electric power in order to store surplus electric power such as nighttime electric power as compressed air. Compressed air is fed to a gas turbine or the like installed on the ground when properly taken out for use.
On the other hand, the water pipe 13 communicates with an upper reservoir such as a reservoir provided on the ground to feed the stored water of the upper reservoir to the underground tank 11, and also to detect the head difference between the water level in the reservoir and the water level in the underground tank 11. The pressurized water 25 of the tank 11 is kept filled in the water supply pipe 13 so that a predetermined hydrostatic pressure due to the head difference is applied to the tank 11 via the water surface in the tank 11.
The internal storage space 14 for compressed air is loaded. That is, by the action of the water supply pipe 13, the underground tank 11 functions as an underground storage tank 11 of a water pressure compensation system in which the pressure due to the head difference is compensated.

【0023】そして、この実施例の貯蔵圧気の溶存防止
構造10は、上記地下タンク11内の水表面を覆って設
けられた膜構造15によって構成される。すなわち、こ
の膜構造15は、シリコン油等からなるシリコン液膜1
6と合成樹脂膜17とを複合膜として積層してなるもの
である。また、合成樹脂膜17は、図2にも示すよう
に、送水管13の外周に沿って上下にスライド可能な摺
動環26と、この摺動環26に回転可能に軸着された支
持骨27と、この支持骨27により円形にかつ折り畳み
可能に支持されたシート状のEVOH膜18と、このE
VOH膜18の表面に取り付けられた多数の球状シリコ
ン19と、これらの支持骨27、EVOH膜18、及び
球状シリコン19を包み込むテフロンやポリエチレン等
からなる袋体20とによって構成されている。なお、E
VOH膜18に球状シリコン19等を組み合わせて用い
るのは、合成樹脂膜17に、被圧水25上に浮遊させる
ための浮力を与える趣旨である。
The storage compressed air dissolution preventing structure 10 of this embodiment is composed of a membrane structure 15 provided so as to cover the water surface in the underground tank 11. That is, the film structure 15 is the silicon liquid film 1 made of silicon oil or the like.
6 and the synthetic resin film 17 are laminated as a composite film. In addition, as shown in FIG. 2, the synthetic resin film 17 includes a slide ring 26 that can slide up and down along the outer circumference of the water pipe 13, and a supporting frame rotatably attached to the slide ring 26. 27, a sheet-shaped EVOH film 18 supported by the supporting bone 27 in a circular shape and foldable,
It is composed of a large number of spherical silicon 19 attached to the surface of the VOH film 18, these supporting bones 27, the EVOH film 18, and a bag body 20 made of Teflon, polyethylene or the like for enclosing the spherical silicon 19. In addition, E
The use of spherical silicon 19 or the like in combination with the VOH film 18 is intended to give the synthetic resin film 17 buoyancy for floating on the pressurized water 25.

【0024】そして、かかる構成を有する溶存防止構造
10によれば、当該溶存防止構造10は、圧縮空気の地
下タンク11内への貯蔵あるいは地下タンク11からの
取り出しに伴なう被圧水の水表面の上下動に追随して上
下にスライド移動し、水表面を覆った状態を常時保持し
て水表面と貯蔵空間14内の圧縮空気との接触を回避す
ることにより、圧気すなわち圧縮空気が被圧水中に溶解
溶存するのを防止する。なお、この実施例では、溶存防
止構造10を構成する膜構造15として、シリコン液膜
16と合成樹脂膜17とを複合膜として積層したものを
使用した場合について記載しているが、図1(ロ)に示
すように、シリコン液膜16を単独で用いることがで
き、またEVOH膜18を含む合成樹脂17を単独で用
いることもできる。また、EVOH膜による気水遮断効
果は大きいため、EVOH膜とシリコンとを積層して用
いた場合は、例えばシリコン液膜16を単独で用いる場
合よりも膜構造15の厚さを小さくすることができ、こ
れによって貯蔵空間14をより有効に利用することがで
きる。
According to the dissolution preventing structure 10 having such a structure, the dissolution preventing structure 10 can prevent the compressed water from being stored in the underground tank 11 or discharged from the underground tank 11. By sliding up and down following the vertical movement of the surface and constantly maintaining the state of covering the water surface to avoid contact between the water surface and the compressed air in the storage space 14, compressed air, that is, compressed air is covered. Prevents dissolution and dissolution in pressurized water. In addition, in this embodiment, as the film structure 15 constituting the dissolution preventing structure 10, a case in which a silicon liquid film 16 and a synthetic resin film 17 are laminated as a composite film is used. As shown in (b), the silicon liquid film 16 can be used alone, and the synthetic resin 17 including the EVOH film 18 can also be used alone. Further, since the EVOH film has a large effect of blocking air and water, when the EVOH film and silicon are stacked and used, the thickness of the film structure 15 can be made smaller than that when, for example, the silicon liquid film 16 is used alone. Therefore, the storage space 14 can be used more effectively.

【0025】そして、この実施例の、溶存防止構造10
を地下タンク11内における被圧水25の表面に設置す
るには、例えば、図3(イ)に示すように、まず、上池
から貯留水を給送して圧気貯蔵用タンク11内を充水す
るとともに送水管13及び送気管12の内部をも充水す
る。次に図3(ロ)に示すように、送水管13を介して
ポンプ24により一定量の充水を汲み上げることによ
り、この送水管13と貯蔵用タンク11の貯蔵空間14
を経て連通する送気管12内の充水を低下させる。次に
図3(ハ)に示すように、充水が低下した送気管12の
上部空隙部に、前記複合膜を構成するシリコン液膜16
のための膜部材としてのシリコン21及び折り畳んだ状
態の合成樹脂膜17とを挿入配置する。次に、図3
(ニ)に示すように、送気管12の上端部を圧気蓋22
によって遮断した後、送気管12内にコンプレッサー等
を用いて圧気を圧送し、これに伴って送水管13から充
水を汲み上げることによりシリコン21及び折り畳んだ
状態の合成樹脂膜17を地下タンク11内に向けて下方
に押し下げ、地下タンク11内において折り畳んだ状態
の合成樹脂膜17を展開させて、図3(ホ)に示すよう
に、押し下げられた充水すなわち被圧水25の表面に、
シリコン液膜16と合成樹脂膜17とからなる膜構造1
5を浮遊設置する。そして、さらに地上から圧気を給送
すれば、図3(ヘ)に示すように、地下タンク11の貯
蔵空間14の略全体に電力貯蔵用の圧気が貯蔵されるこ
とになる。
Then, the dissolution preventing structure 10 of this embodiment
To install the water on the surface of the pressurized water 25 in the underground tank 11, for example, as shown in FIG. 3A, first, the stored water is fed from the upper pond to fill the inside of the compressed air storage tank 11. The inside of the water supply pipe 13 and the air supply pipe 12 is filled with water. Next, as shown in FIG. 3B, by pumping a fixed amount of replenished water by the pump 24 through the water supply pipe 13, the water supply pipe 13 and the storage space 14 of the storage tank 11 are collected.
The filling water in the air supply pipe 12 communicating with each other is reduced. Next, as shown in FIG. 3C, the silicon liquid film 16 constituting the composite film is formed in the upper void portion of the air supply pipe 12 in which the filling water is lowered.
Silicon 21 as a film member for and the synthetic resin film 17 in the folded state are inserted and arranged. Next, FIG.
As shown in (d), the upper end of the air supply pipe 12 is connected to the pressure lid 22.
After shutting off by means of pressure, compressed air is pumped into the air pipe 12 using a compressor or the like, and along with this, the filled water is pumped up from the water pipe 13 so that the silicon 21 and the synthetic resin film 17 in the folded state are stored in the underground tank 11. 3), the synthetic resin film 17 in the folded state is unfolded in the underground tank 11, and as shown in FIG. 3 (e), on the surface of the pressed filled water, that is, the pressurized water 25,
A film structure 1 including a silicon liquid film 16 and a synthetic resin film 17.
Float 5 Then, if the compressed air is further fed from the ground, as shown in FIG. 3F, the compressed air for power storage is stored in substantially the entire storage space 14 of the underground tank 11.

【0026】すなわち、上述の設置方法によれば、地下
タンク11内に作業員が立ち入ることなく、地上からの
作業のみにより、地下深部に設けられた地下タンク11
内に容易に溶存防止構造10を設置することができる。
また、膜構造15としてシリコン液膜16、又はEVO
H膜18を含む合成樹脂膜17等を各々単独で用いる場
合にも、上述の方法と同様の工程にしたがって溶存防止
構造10を地下タンク11内に容易に設置することがで
きる。
That is, according to the above-mentioned installation method, the underground tank 11 provided in the deep underground portion is provided only by the work from the ground without the workers entering the underground tank 11.
The dissolution preventing structure 10 can be easily installed therein.
Further, as the film structure 15, a silicon liquid film 16 or EVO
Even when each of the synthetic resin films 17 including the H film 18 and the like is used alone, the dissolution preventing structure 10 can be easily installed in the underground tank 11 according to the same steps as the above-described method.

【0027】なお、この実施例にかかる溶存防止構造1
0は、地下タンク11内から容易に取り出すこともでき
る。すなわち、図4(イ)及び(ロ)に示すように、送
水管13から地下タンク内に充水を供給しつつ送気管1
2から圧気を取り出せば、膜構造15は上方に押し上げ
られるとともに、合成樹脂膜17は折り畳まれて送気管
13内を地上に向かって通過し、これによって容易に地
下タンク11内から撤去することができる。
The dissolution preventing structure 1 according to this embodiment
0 can also be easily taken out from the underground tank 11. That is, as shown in FIGS. 4A and 4B, the air supply pipe 1 is supplied while supplying replenishment water from the water supply pipe 13 into the underground tank.
When the pressured air is taken out from 2, the membrane structure 15 is pushed upward, and the synthetic resin film 17 is folded and passes through the air supply pipe 13 toward the ground, whereby it can be easily removed from the underground tank 11. it can.

【0028】また、図5は、この発明の他の実施例を示
すものである。この実施例の溶存防止構造30は、例え
ば岩盤トンネル32内に形成された、トンネル方式の地
下タンク31に設置されたものである。すなわち、この
地下タンク31は、トンネル32の内壁面をコンクリー
ト35により覆工して形成され、トンネル掘削時に使用
した立坑等を利用して、送気管33及び送水管34が地
上と連通して設けられるとともに、送水管34はその地
下タンク31の下方に延長してこれの底面に開口し、地
下タンク31の下半部分に被圧水25を供給できるよう
になっている。
FIG. 5 shows another embodiment of the present invention. The dissolved prevention structure 30 of this embodiment is installed in a tunnel-type underground tank 31 formed in a bedrock tunnel 32, for example. That is, the underground tank 31 is formed by lining the inner wall surface of the tunnel 32 with concrete 35, and an air supply pipe 33 and a water supply pipe 34 are provided so as to communicate with the ground by using a vertical shaft or the like used during tunnel excavation. At the same time, the water pipe 34 extends below the underground tank 31 and opens at the bottom surface of the underground tank 31, so that the pressurized water 25 can be supplied to the lower half portion of the underground tank 31.

【0029】そして、この実施例の溶存防止構造30
は、例えば覆工コンクリート35に巻き込まれてその周
囲がトンネル32の壁面に固着された、例えばゴム、合
成樹脂等からなる上下に膨潤可能な弾性膜36からな
り、この弾性膜36は、図6(イ)〜(ハ)に示すよう
に、地下タンク31の空洞を上下に遮断分割して上方の
区画には圧気を下方の区画には被圧水25が各々供給さ
れるようにするとともに、圧気の貯蔵・取り出しによる
被圧水面の上下動に伴って上下に膨潤することにより、
圧気と被圧水25の接触が処断された状態を容易に維持
するものである。すなわち、この溶存防止構造30によ
れば、トンネル形式の地下タンク31の広範囲にわたる
水表面をこれの上下動に追随して安定して覆うことがで
きる。なお、かかるトンネル形式の地下タンク31にお
いても、上述した被圧水の表面に浮遊するシリコン液膜
16等によって膜構造を構成することができる。
Then, the dissolution preventing structure 30 of this embodiment
Is composed of, for example, a vertically swellable elastic film 36 made of, for example, rubber or synthetic resin, which is wound around the lining concrete 35 and fixed around the wall surface of the tunnel 32. As shown in (A) to (C), the cavity of the underground tank 31 is divided into upper and lower sections so that compressed air is supplied to the upper section and compressed water 25 is supplied to the lower section. By swelling up and down with the vertical movement of the pressurized water surface due to the storage and removal of compressed air,
The state in which the contact between the compressed air and the pressurized water 25 is cut off is easily maintained. That is, according to this dissolution preventing structure 30, it is possible to stably cover the water surface over a wide range of the tunnel type underground tank 31 by following the vertical movement of the water surface. Even in such a tunnel-type underground tank 31, a film structure can be formed by the silicon liquid film 16 or the like floating on the surface of the water under pressure described above.

【0030】次に、この発明の貯蔵圧気の溶存防止構造
による作用効果を実証すべく行った実験例を示す。
Next, an example of an experiment conducted for demonstrating the action and effect of the storage pressurized air dissolution preventing structure of the present invention will be shown.

【0031】[実験例1]図7に示す、密閉型円形タン
ク40、コンプレッサ41、コントロール装置42等か
らなる実験装置43を用い、タンク40の下方から、十
分に脱気してDO(Dissolved Oxygen )値が一定の静
水を供給するとともに、タンク40の上部から1〜1.
5気圧(kgf /cm2 )の圧気を供給し、所定時間毎に
タンク40の下部の取水ポート44から取り出した静水
の溶存酸素量(DO値)をDOメータを用いて測定し
た。
[Experimental Example 1] Using an experimental apparatus 43 shown in FIG. 7 including a closed circular tank 40, a compressor 41, a controller 42, etc., the tank 40 was thoroughly degassed and DO (Dissolved Oxygen) was used. ) From the top of the tank 40 while supplying still water with a constant value.
The atmospheric pressure (kgf / cm 2 ) of 5 atm was supplied, and the dissolved oxygen amount (DO value) of the still water taken out from the water intake port 44 at the bottom of the tank 40 was measured every predetermined time using a DO meter.

【0032】実験は、タンク内における静水と圧気との
境界面すなわち水表面に膜を設けず圧気と静水が直接接
する場合、及び分離膜として、流動パラフィン、EVO
H、シリコンを各々浮上設置させる場合について行なっ
た。その実験結果を図8(イ)〜(ハ)に示す。
Experiments were conducted in the case where the interface between the static water and the compressed air in the tank, that is, the surface of the water was not directly contacted with the compressed air and the static water, and as a separation membrane, liquid paraffin, EVO
This was carried out for the case where H and silicon were each floated. The experimental results are shown in FIGS.

【0033】実験結果より、分離膜がない場合、溶存酸
素量は時間とともに増加し、実験測定時間(30分)以
降も増加する傾向にある点が判明した。また、分離膜を
設けた場合、いずれも溶存酸素量が低下するが、流動パ
ラフィンを分離膜として用いた場合は、加圧時に膜にむ
らができ、その部分から酸素が水中に溶解するため、D
O値は、分離膜がない場合と大きな違いが現れない結果
となった。EVOHあるいはシリコンを分離膜として用
いた場合は、加圧当初から空気をほとんど通さず、水中
への酸素溶解を阻止する効果が大きいことが判明した。
From the experimental results, it was found that the amount of dissolved oxygen increases with time without a separation membrane, and tends to increase even after the experimental measurement time (30 minutes). Further, when a separation membrane is provided, the amount of dissolved oxygen decreases in both cases, but when liquid paraffin is used as the separation membrane, the membrane becomes uneven during pressurization, and oxygen is dissolved in water from that portion, D
Regarding the O value, the result did not show a large difference from the case without the separation membrane. It has been found that when EVOH or silicon is used as the separation membrane, air is hardly passed from the beginning of pressurization, and the effect of inhibiting oxygen dissolution in water is great.

【0034】[実験例2]図9に示すように、地中にC
AESタンク50を設けるとともに、タンク底部の被圧
水51中にDOメータ52を設置し、これらによって溶
存酸素量を調査した。溶存防止構造を設けない場合と、
シリコンからなる溶存防止構造を設けた場合の各々の実
験結果を図10(イ)及び(ロ)に示す。
[Experimental Example 2] As shown in FIG.
The AES tank 50 was provided, and the DO meter 52 was installed in the pressurized water 51 at the bottom of the tank to investigate the dissolved oxygen amount. When the dissolution prevention structure is not provided,
The respective experimental results when the dissolution preventing structure made of silicon is provided are shown in FIGS.

【0035】実験結果より、溶存防止構造を設けない場
合には、タンク50内に圧気を給送して、水位を低下さ
せると、溶存酸素量すなわちDO値が急激に上昇する
が、シリコンからなる溶存防止構造を設けた場合には、
タンク50内の水位が低下しても、DO値はほとんど変
化せず、従って圧気の溶存が効果的に防止されているこ
とが判明した。
From the experimental results, in the case where the dissolved prevention structure is not provided, when pressurized air is fed into the tank 50 to lower the water level, the dissolved oxygen amount, that is, the DO value rapidly increases, but it is made of silicon. When a dissolution prevention structure is provided,
It was found that even if the water level in the tank 50 is lowered, the DO value hardly changes, so that the dissolution of compressed air is effectively prevented.

【0036】[0036]

【発明の効果】以上説明したように、圧気貯蔵用タンク
における貯蔵圧気の溶存防止構造によれば、従来の押し
込み水頭方式を採用することなく、タンク内の被圧水面
を覆って幕構造を設置するだけの簡単な構造によって貯
蔵圧気の被圧水への溶解を容易に防止することができ
る。
As described above, according to the structure for preventing the stored compressed air from dissolving in the compressed air storage tank, the curtain structure is installed to cover the pressurized water surface in the tank without adopting the conventional push head system. Dissolution of the stored compressed air into the pressurized water can be easily prevented with a simple structure.

【0037】また、幕構造としてシリコン油、EVOH
を含む合成樹脂幕等を用いれば、これらを水表面に浮遊
させるだけの簡単な構成にもかかわらず、タンク内に貯
蔵される圧気と被圧水との境界を効果的に遮断すること
ができる。
Silicone oil and EVOH are used as the curtain structure.
By using a synthetic resin curtain or the like containing, it is possible to effectively block the boundary between the compressed air stored in the tank and the pressurized water, despite the simple structure of floating them on the water surface. .

【0038】さらに、圧気貯蔵用タンクが横方向に延長
するトンネル型の圧気タンクである場合には、幕構造を
前記トンネルの空洞を上下に遮断分割べく周囲をトンネ
ルの壁面に固着して設けられた上下に膨潤可能な弾性幕
により構成することにより、広範囲にわたる水表面をこ
れの上下動に追随して安定して覆うことができる。
Further, in the case where the compressed air storage tank is a tunnel type compressed air tank extending in the lateral direction, the curtain structure is provided by fixing the periphery to the wall surface of the tunnel so as to divide the cavity of the tunnel up and down. Further, by constituting the elastic curtain capable of swelling up and down, it is possible to stably cover a wide range of water surface by following the vertical movement of the water surface.

【0039】そして、この発明の溶存防止構造の設置方
法によれば、シリコン油、EVOHを含む合成樹脂幕、
流動パラフィン等からなる地下タンク内の水表面を覆う
幕構造を、地下タンク内に作業員が立ち入ることなく地
上からの作業のみにより容易に浮遊設置することができ
る。
According to the method for installing the dissolution preventing structure of the present invention, a synthetic resin screen containing silicon oil and EVOH,
The curtain structure made of liquid paraffin or the like for covering the water surface in the underground tank can be easily installed in a floating manner only by the work from the ground without the worker entering the underground tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)及び(ロ)はこの発明の溶存防止構造の
実施例を示す断面図である。
1A and 1B are cross-sectional views showing an embodiment of a dissolution preventing structure of the present invention.

【図2】図1のA−Aに沿った一部破断平面図である。FIG. 2 is a partially cutaway plan view taken along the line AA of FIG.

【図3】(イ)〜(ヘ)は、この発明の溶存防止構造の
設置方法の一実施例を示す工程図である。
3 (a) to 3 (f) are process drawings showing an embodiment of a method for installing a dissolution preventing structure according to the present invention.

【図4】(イ)及び(ロ)は、 図3に示す設置法方に
おいて、さらに溶存防止構造をタンクから取り出す工程
を示す説明図である。
4 (a) and 4 (b) are explanatory views showing a step of further taking out the dissolved prevention structure from the tank in the installation method shown in FIG.

【図5】この発明の溶存防止構造をトンネル形式の地下
タンクに採用した他の一実施例を示す断面図である。
FIG. 5 is a sectional view showing another embodiment in which the dissolution preventing structure of the present invention is adopted in a tunnel-type underground tank.

【図6】(イ)〜(ハ)は、図5に示す溶存防止構造に
おいて、圧気の貯蔵・取り出しに伴って弾性膜が上下に
膨潤する状況を示す説明図である。
6A to 6C are explanatory views showing a situation in which the elastic film swells up and down as the compressed air is stored and taken out in the dissolution preventing structure shown in FIG.

【図7】実験例1に用いた装置の構成を示す説明図であ
る。
7 is an explanatory diagram showing a configuration of an apparatus used in Experimental Example 1. FIG.

【図8】(イ)〜(ハ)は実験例1による実験結果を示
すチャートである。
8A to 8C are charts showing experimental results according to Experimental Example 1.

【図9】実験例2の実施状況を示す説明図である。FIG. 9 is an explanatory diagram showing an implementation status of Experimental Example 2;

【図10】実験例2による実験結果を示すチャートで、
(イ)は溶存防止構造を設けない場合、(ロ)はシリコ
ンからなる溶存防止構造を設けた場合の実験結果であ
る。
FIG. 10 is a chart showing experimental results according to Experimental Example 2,
(A) shows the experimental results when the dissolution preventing structure is not provided, and (B) shows the experimental results when the dissolution preventing structure made of silicon is provided.

【図11】従来の押し込み水頭方式による溶存防止手段
を示す説明図である。
FIG. 11 is an explanatory view showing a dissolution preventing means by a conventional push-in head method.

【符号の説明】[Explanation of symbols]

10,30 溶存防止構造 11,31 地下貯蔵タンク 12,33 送気管 13,34 送水管 14 貯蔵空間 15 膜構造 16 シリコン液膜 17 合成樹脂膜 18 エバーフィルム 25 被圧水 32 岩盤トンネル 36 弾性膜 10,30 Dissolution prevention structure 11,31 Underground storage tank 12,33 Air supply pipe 13,34 Water supply pipe 14 Storage space 15 Membrane structure 16 Silicon liquid film 17 Synthetic resin film 18 Ever film 25 Confined water 32 Rock tunnel 36 Elastic film

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391058657 利根地下技術株式会社 東京都大田区南蒲田2丁目16番2号 (71)出願人 000000549 株式会社大林組 大阪府大阪市中央区北浜東4番33号 (72)発明者 本間 重雄 神奈川県平塚市南金目380番地 東海大学 第3職員住宅202号 (72)発明者 林 正夫 千葉県我孫子市若松131−7 (72)発明者 大類 一久 神奈川県藤沢市鵠沼松が岡2丁目16番2号 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 391058657 Tone Underground Technology Co., Ltd. 2-16-2 Minami Kamata, Ota-ku, Tokyo (71) Applicant 000000549 Obayashi Corporation 4-33 Kitahama East, Chuo-ku, Osaka-shi, Osaka No. (72) Inventor Shigeo Honma 380 Minamikaneme, Hiratsuka City, Kanagawa Prefecture Tokai University No. 3 Residential Housing No. 202 (72) Inventor Masao Hayashi 131-7 Wakamatsu, Abiko City, Chiba Prefecture Kugenuma Matsugaoka 2-16-2

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 タンク内に送られる被圧水により貯蔵用
の圧力を補償しつつ圧気を貯蔵する水圧補償方式の貯蔵
タンクにおいて用いられる、貯蔵圧気がその圧力により
被圧水内に溶存するのを防止するための貯蔵圧気の溶存
防止構造であって、タンク内の被圧水面を覆って貯蔵圧
気との接触を遮断する幕構造からなることを特徴とする
圧気貯蔵用タンクにおける貯蔵圧気の溶存防止構造。
1. A storage pressure air used in a storage tank of a water pressure compensating system for storing pressure air while compensating the pressure for storage by the pressure water sent into the tank, wherein the stored pressure air is dissolved in the pressure water. Dissolution of stored compressed air in a compressed air storage tank, characterized by comprising a curtain structure for covering the pressurized water surface in the tank to block contact with the stored compressed air for preventing Prevention structure.
【請求項2】 前記幕構造が、被圧水の表面に浮遊する
シリコンの液幕からなることを特徴とする請求項1に記
載の圧気貯蔵用タンクにおける貯蔵圧気の溶存防止構
造。
2. The dissolved pressure preventing structure for stored compressed air in a compressed air storage tank according to claim 1, wherein the curtain structure is composed of a liquid curtain of silicon floating on the surface of the pressurized water.
【請求項3】 前記幕構造が、被圧水の表面に浮遊する
エチレンビニルアルコール共重合体を含む合成樹脂幕か
らなることを特徴とする請求項1に記載の圧気貯蔵用タ
ンクにおける貯蔵圧気の溶存防止構造。
3. The stored compressed air in the compressed air storage tank according to claim 1, wherein the curtain structure is made of a synthetic resin curtain containing an ethylene vinyl alcohol copolymer floating on the surface of the water to be compressed. Dissolution prevention structure.
【請求項4】 前記幕構造が、被圧水の表面に浮遊す
る、シリコンの液幕とエチレンビニルアルコール共重合
体を含む合成樹脂幕とを積層した複合幕からなることを
特徴とする請求項1に記載の圧気貯蔵用タンクにおける
貯蔵圧気の溶存防止構造。
4. The curtain structure comprises a composite curtain that floats on the surface of the water under pressure and is laminated with a liquid curtain of silicon and a synthetic resin curtain containing an ethylene vinyl alcohol copolymer. 1. A structure for preventing stored compressed air from being dissolved in the compressed air storage tank according to 1.
【請求項5】 前記水圧補償方式のタンクが、横方向に
延長するトンネル型の圧気タンクであるとともに、前記
幕構造が、前記トンネルの空洞を上下に遮断分割すべく
トンネルの壁面に周囲を固着して設けられた上下に膨潤
可能な弾性幕からなることを特徴とする請求項1に記載
の圧気貯蔵用タンクにおける貯蔵圧気の溶存防止構造。
5. The water pressure compensation tank is a laterally extending tunnel type compressed air tank, and the curtain structure secures the periphery to the wall surface of the tunnel so as to vertically divide the cavity of the tunnel. The structure for preventing the stored compressed air from being dissolved in the compressed air storage tank according to claim 1, characterized in that the structure comprises an elastic curtain that is swellable up and down.
【請求項6】 前記請求項1乃至請求項4のいずれかに
記載の貯蔵圧気の溶存防止構造を圧気貯蔵用タンクに設
置するための溶存防止構造の設置方法であって、前記圧
気貯蔵用タンク内を充水するとともに該タンクと地上と
を連通して設けた送水管及び送気管の内部を充水し、前
記送水管を介して一定量の充水を汲み上げることによ
り、該送水管と貯蔵用タンクを経て連通する送気管内の
充水を低下させ、該充水が低下した送気管の上部に前記
膜構造を構成する膜部材を挿入し、しかる後に送気管の
上方を密閉して該送気管内に圧気を給送することによ
り、該圧気によって膜部材を充水とともにタンク内に向
けて下方に押し下げて、該膜部材をタンク内において圧
力補償用の被圧水を覆う膜構造として設置することを特
徴とする圧気貯蔵用タンクにおける貯蔵圧気の溶存防止
構造の設置方法。
6. A method of installing a dissolved prevention structure for installing the dissolved compressed air storage structure according to any one of claims 1 to 4 in a compressed air storage tank, the compressed air storage tank The inside of the water supply pipe and the air supply pipe provided to connect the tank with the ground is filled with water, and a fixed amount of water is pumped through the water supply pipe to store the water supply pipe and the storage. The filling water in the air supply pipe communicating through the tank for water is reduced, the membrane member constituting the membrane structure is inserted into the upper portion of the air supply pipe where the filling water is lowered, and thereafter, the upper portion of the air supply pipe is hermetically sealed. By supplying compressed air into the air supply pipe, the compressed air pushes down the membrane member toward the inside of the tank together with filling water, and the membrane member has a membrane structure that covers the pressure-compensated water for pressure compensation in the tank. Tank for compressed air storage characterized by being installed A method for installing a structure for preventing the dissolution of stored compressed air in the environment.
JP6129281A 1994-06-10 1994-06-10 Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof Pending JPH07330079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6129281A JPH07330079A (en) 1994-06-10 1994-06-10 Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6129281A JPH07330079A (en) 1994-06-10 1994-06-10 Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof

Publications (1)

Publication Number Publication Date
JPH07330079A true JPH07330079A (en) 1995-12-19

Family

ID=15005709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6129281A Pending JPH07330079A (en) 1994-06-10 1994-06-10 Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof

Country Status (1)

Country Link
JP (1) JPH07330079A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162459A (en) * 2008-01-10 2009-07-23 Jfe Steel Corp Underground heat exchanger
JP2013047606A (en) * 2012-11-15 2013-03-07 Jfe Steel Corp Underground heat exchanger
WO2019218084A1 (en) * 2018-05-17 2019-11-21 Hydrostor Inc. A hydrostatically compressed gas energy storage system
US10760739B2 (en) 2017-02-01 2020-09-01 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11274792B2 (en) 2017-03-09 2022-03-15 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
WO2023228938A1 (en) * 2022-05-24 2023-11-30 東洋エンジニアリング株式会社 Compressed air energy storage method
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162459A (en) * 2008-01-10 2009-07-23 Jfe Steel Corp Underground heat exchanger
JP2013047606A (en) * 2012-11-15 2013-03-07 Jfe Steel Corp Underground heat exchanger
US11473724B2 (en) 2017-02-01 2022-10-18 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US10760739B2 (en) 2017-02-01 2020-09-01 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US10859207B2 (en) 2017-02-01 2020-12-08 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11767950B2 (en) 2017-02-01 2023-09-26 Hydrostor Inc. Hydrostatically compensated compressed gas energy storage system
US11274792B2 (en) 2017-03-09 2022-03-15 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11644150B2 (en) 2017-03-09 2023-05-09 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
US11821584B2 (en) 2017-03-09 2023-11-21 Hydrostor Inc. Thermal storage in pressurized fluid for compressed air energy storage systems
WO2019218084A1 (en) * 2018-05-17 2019-11-21 Hydrostor Inc. A hydrostatically compressed gas energy storage system
US11519393B2 (en) 2019-01-15 2022-12-06 Hydrostor Inc. Compressed gas energy storage system
US11835023B2 (en) 2019-02-27 2023-12-05 Hydrostor Inc. Hydrostatically compensated caes system having an elevated compensation liquid reservoir
WO2023228938A1 (en) * 2022-05-24 2023-11-30 東洋エンジニアリング株式会社 Compressed air energy storage method

Similar Documents

Publication Publication Date Title
US9878761B2 (en) Large subsea package deployment methods and devices
DE60304594T2 (en) STORAGE ON THE SEA FLOOR
US5207530A (en) Underground compressed natural gas storage and service system
US3681923A (en) Method and apparatus for controlling subnatant oil seepage
JPH07330079A (en) Structure for preventing dissolution of compressed air stored in compressed air storage tank and installation method thereof
US3568737A (en) Offshore liquid storage facility
US4542626A (en) Method and apparatus for underground storage of ammonia and analogous products
JP3051895B2 (en) Rock tank for high pressure gas storage
US3354659A (en) Deep-submergence foundation vehicle
US4052859A (en) Method and apparatus of completing slurry shield tunneling at vertical shaft
JP3106871B2 (en) Storage structure of water-insoluble or poorly water-soluble substance and method of storing the substance
KR20030070017A (en) Device and method for producing columns of materials in the ground of bodies of water
JPS63115997A (en) Gas tank device installed underground
JP7421190B2 (en) Suction foundation, supply equipment, construction method, and removal method
JP3622364B2 (en) Liquid storage facility
JPH0617555A (en) Underground tank for storage of compressed air
JP6983623B2 (en) High-pressure fluid storage equipment and power storage system
JPH09111822A (en) Water storage device
US3485049A (en) Underground fluid storage tank
RU97113873A (en) METHOD FOR INSULATING UNDERGROUND STORAGE OF TOXIC WASTE IN SALINE ROCKS
JPS63199999A (en) Liquid underground storage method
JP3748615B2 (en) Construction method of cylindrical underground structure
JP2739544B2 (en) Underground storage device
JPH0478399A (en) High pressure gas storing underground tank and method of construction therefor
JP2008202311A (en) Pressure control method and device of underground injection liquid