JPH073298B2 - Frosted ice storage system - Google Patents

Frosted ice storage system

Info

Publication number
JPH073298B2
JPH073298B2 JP1217402A JP21740289A JPH073298B2 JP H073298 B2 JPH073298 B2 JP H073298B2 JP 1217402 A JP1217402 A JP 1217402A JP 21740289 A JP21740289 A JP 21740289A JP H073298 B2 JPH073298 B2 JP H073298B2
Authority
JP
Japan
Prior art keywords
ice
storage tank
heat storage
water
ice heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1217402A
Other languages
Japanese (ja)
Other versions
JPH0384345A (en
Inventor
正之 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP1217402A priority Critical patent/JPH073298B2/en
Publication of JPH0384345A publication Critical patent/JPH0384345A/en
Publication of JPH073298B2 publication Critical patent/JPH073298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、破片状氷の貯蔵システムに関し、特に、破片
状氷を水と共に貯蔵するのに適した破片状氷の貯蔵シス
テムに関する。
Description: TECHNICAL FIELD The present invention relates to a debris ice storage system, and more particularly to a debris ice storage system suitable for storing debris ice with water.

《従来の技術》 近年、ビルの冷房等の空調は、氷の潜熱を利用したもの
が増えつつある。
<< Prior Art >> In recent years, air conditioning such as cooling of buildings is increasingly using latent heat of ice.

例えば、製氷機等で製造した破片状氷を、単一もしくは
複数の氷蓄熱槽に搬送し、冷熱として一旦蓄熱する。
For example, fragmented ice produced by an ice-making machine or the like is conveyed to a single or a plurality of ice heat storage tanks and temporarily stores heat as cold heat.

そして、必要に応じて、氷蓄熱槽から上記の破片状氷か
融解して生じた冷水を取り出し、この冷水を氷蓄熱槽に
連結されたファンコイル等の空調機に送って冷房に供
し、温度上昇した水を氷蓄熱槽に戻し、破片状氷の融解
に使用する。
Then, if necessary, the cold water produced by melting the above-mentioned shards of ice or melted ice is taken out from the ice heat storage tank, and this cold water is sent to an air conditioner such as a fan coil connected to the ice heat storage tank to be used for cooling. The water that rises is returned to the ice storage tank and used to melt the ice pieces.

ところで、上記の破片状氷は、氷蓄熱槽内において一部
融解し合って巨大な氷塊となることが多い。
By the way, the above-mentioned shards of ice are often partially melted in the ice storage tank to form a huge ice block.

従って、上記の返還水が氷蓄熱槽の1箇所に設けられた
返還水口からのみ戻されると、上記氷塊は、この返還水
口からの流下水が当たる部分のみが融解し、遂には下方
の水域に達する孔が形成される。すると、返還水は、上
記氷塊と接触せず、この孔を通って直接下方の水域に流
れてしまい(所謂ショートパス現象が生じ)、返還水の
冷却効率が低下する。
Therefore, when the above-mentioned return water is returned only from the return water port provided at one location of the ice heat storage tank, only the part of the ice block where the runoff water from this return water port hits melts, and finally the water body below it. A reaching hole is formed. Then, the returned water does not come into contact with the ice blocks, but flows directly through the holes into the lower water area (a so-called short pass phenomenon occurs), and the cooling efficiency of the returned water decreases.

このショートパス現象を防止するため、返還水を氷蓄熱
槽の上部から均等に戻す技術が提案されている(特開昭
63−14021号公報)。
In order to prevent this short-path phenomenon, a technique has been proposed in which the return water is evenly returned from the upper part of the ice heat storage tank (Japanese Patent Laid-Open No. Sho 61-135).
63-14021).

すなわち、第3図において、製氷機1で製造された破片
状氷2は、投入口1aから、水が貯留されている氷蓄熱槽
3に投入され、貯蔵される。
That is, in FIG. 3, the frosted ice 2 produced by the ice maker 1 is put into the ice heat storage tank 3 in which water is stored from the input port 1a and stored.

この氷蓄熱槽3の上部には、空調機4からの返還水の散
水ノズル5が多数設けられており、氷蓄熱槽3のほぼ全
域に返還水が散水されるようになっている。
A large number of spray nozzles 5 for returning water from the air conditioner 4 are provided above the ice heat storage tank 3, and the return water is sprayed over almost the entire area of the ice heat storage tank 3.

これにより、氷蓄熱槽3内に、たとえ巨大な氷塊が形成
されていたとしても、上記のようなショートパス現象は
生ぜず、効果的な返還水の冷却効率を得ることができ
る。
As a result, even if a huge ice block is formed in the ice heat storage tank 3, the short path phenomenon as described above does not occur, and an effective return water cooling efficiency can be obtained.

なお、上記の製氷機1には、氷蓄熱槽3下部に設けられ
た採水口6から採水された水が製氷用水として送られて
いる。
The ice making machine 1 is supplied with water sampled from a water collecting port 6 provided in the lower portion of the ice heat storage tank 3 as ice making water.

《発明が解決しようとする課題》 ところで、第3図に示す公知技術では、製氷機1から水
が貯留されている氷蓄熱槽3に投入された破片状氷2
は、氷蓄熱槽3の壁面の作用で図示するようなアーチを
形成して水上に浮く。
<< Problems to be Solved by the Invention >> By the way, in the known technique shown in FIG. 3, the frosted ice pieces 2 put into the ice heat storage tank 3 in which water is stored from the ice making machine 1
Flies above water by forming an arch as shown by the action of the wall surface of the ice heat storage tank 3.

すると、破片状氷2は、このアーチの下部には入り込め
ないため、氷蓄熱槽3の貯永蔵能力は著しく低下する。
Then, since the frosted ice 2 cannot enter the lower part of the arch, the storage capacity of the ice heat storage tank 3 is significantly reduced.

加えて、破片状氷2は一部融解してアーチ状の巨大な氷
塊となるため、氷蓄熱槽3上部に設けられた多数の散水
ノズル4から返還水が均一に散水されると、アーチ頂部
(すなわち、氷塊の厚さが最も薄い部分)において、氷
の融解が最も早く進む。すると、この位置に下方の水域
に達する孔が形成され、やはり前記したショートパス現
象が生じて、返還水の冷却効率を低下させる。
In addition, since the shards of ice 2 are partially melted to form a huge ice mass in the shape of an arch, if the return water is uniformly sprayed from a large number of water spray nozzles 4 provided in the upper portion of the ice heat storage tank 3, the arch top will be At the thinnest part of the ice mass (ie, where the ice mass is thinnest), the ice melts fastest. Then, a hole reaching the lower water area is formed at this position, and the short-pass phenomenon described above also occurs to reduce the cooling efficiency of the return water.

本発明は、以上の諸店に鑑みてなされたもので、その目
的とするところは、氷蓄熱槽内にアーチを形成させずに
破片状氷を貯蔵することのできる破片状氷の貯蔵システ
ムを提案するにある。
The present invention has been made in view of the above stores, and an object thereof is to provide a debris ice storage system capable of storing debris ice without forming an arch in an ice heat storage tank. I have a suggestion.

《課題を解決するための手段》 本発明に係る破片状氷の貯蔵システムは、上記目的を達
成するために、空調機からの返還水又は氷蓄熱槽下部か
ら採取した水を、該氷蓄熱槽上部の横断矩形状壁面の少
なくとも1箇所から、該氷蓄熱槽の少なくとも1つの水
面近傍横断面内で該氷蓄熱槽の壁面に対して一定方向に
傾斜させて噴射させることにより、氷および水の渦巻き
状の流れを形成しつつ、該氷蓄熱槽の上方から破片状氷
を投入することを特徴とする。
<< Means for Solving the Problem >> In order to achieve the above-mentioned object, the frosted ice storage system according to the present invention has a function of returning water from an air conditioner or water collected from a lower portion of the ice storage tank to the ice storage tank. Ice and water are jetted from at least one location on the upper transverse rectangular wall surface by inclining in a certain direction with respect to the wall surface of the ice heat storage tank in a cross section near at least one water surface of the ice heat storage tank, thereby spraying ice and water. It is characterized in that, while forming a spiral flow, the fragmented ice is introduced from above the ice heat storage tank.

《作用》 本発明では、空調機で冷房に供され、温度上昇して氷蓄
熱槽に戻される返還水、或いは氷蓄熱槽下部から別途採
取される水を、氷蓄熱槽上部の横断矩形状壁面の少なく
とも1箇所から、該氷蓄熱槽の少なくとも1つの水面近
傍横断面内で該氷蓄熱槽の壁面に対して一定方向に傾斜
させて噴出させる。
<< Operation >> In the present invention, the return water that is subjected to cooling by an air conditioner and rises in temperature to be returned to the ice heat storage tank, or water separately collected from the lower portion of the ice heat storage tank is used as a transverse rectangular wall surface of the upper portion of the ice heat storage tank. From at least one point in the ice heat storage tank in a cross section near the water surface of the ice heat storage tank, and is jetted while being inclined in a certain direction with respect to the wall surface of the ice heat storage tank.

この噴出水により氷蓄熱槽内に渦巻き状の流が形成され
る。
A swirling flow is formed in the ice heat storage tank by the jetted water.

本発明では、この渦巻き流が形成されている氷蓄熱槽内
に、氷蓄熱槽の上方から破片状氷を投入する。
In the present invention, fragmented ice is put into the ice heat storage tank in which the spiral flow is formed from above the ice heat storage tank.

すると、破片状氷は、この渦巻き流に乗って、氷蓄熱槽
内の隅々から中央部にまで至る。
Then, the frosted ice rides on this swirl flow and reaches from the corners to the center of the ice storage tank.

しかも、この渦巻き流の作用により、壁面のアーチ形成
作用が相殺される。これにより、上記の破片状氷は、ア
ーチを形成することなく、氷蓄熱槽内に蓄積される。
Moreover, the action of the spiral flow cancels the action of forming the arch on the wall surface. As a result, the frosted ice pieces are accumulated in the ice heat storage tank without forming an arch.

また、氷蓄熱槽内の破片状氷は、上記の噴出水による渦
巻き流に乗って、空調機の運転中等において常時流動す
る。これにより、破片状氷は、巨大な氷塊となることは
ない。
Further, the frosted ice in the ice heat storage tank rides on the spiral flow due to the jetted water and constantly flows during the operation of the air conditioner. As a result, the fragmented ice does not become a huge ice block.

《実施例》 第1図(A)は本発明に係るシステムを実施する装置の
第1実施例を示す縦断面図、同図(B)は横断面図であ
り、同図(A),(B)中第3図と同一符号は第3図と
同一部を示す。
<< Embodiment >> FIG. 1 (A) is a longitudinal sectional view showing a first embodiment of an apparatus for implementing the system according to the present invention, FIG. 1 (B) is a transverse sectional view, and FIG. The same reference numerals as those in FIG. 3 in B) indicate the same parts as in FIG.

本例では、空調機4からの返還水を噴出させる場合の一
例を示している。
In this example, an example is shown in which the return water from the air conditioner 4 is ejected.

第1図に示すように、空調機4からの返還水を噴出させ
るノズル10の複数個(本例では8個)が、横断面矩形の
氷蓄熱槽3の4辺に各2個づつ、氷蓄熱槽3上部の壁面
に、この壁面を横切る一平面内に収まるように設けられ
ている。
As shown in FIG. 1, a plurality of nozzles 10 (8 in this example) for ejecting the return water from the air conditioner 4 are provided on each of the four sides of the ice heat storage tank 3 having a rectangular cross section, two on each side. It is provided on the wall surface of the upper part of the heat storage tank 3 so as to be included in a plane crossing the wall surface.

このとき、上記8個のノズル10の夫々は、第1図(B)
に示すように、氷蓄熱槽3の壁面に対して一定方向に傾
斜させて設けられている。
At this time, each of the eight nozzles 10 is shown in FIG.
As shown in FIG. 3, the ice storage tank 3 is provided so as to be inclined in a certain direction with respect to the wall surface thereof.

以上のように構成される装置において、空調機4が運転
されると、氷蓄熱槽3下部から冷水が抜き出され、空調
機4に送られて冷房に供される。
In the device configured as described above, when the air conditioner 4 is operated, cold water is extracted from the lower portion of the ice heat storage tank 3 and is sent to the air conditioner 4 for cooling.

空調機4で温度上昇した水は、返還水として氷蓄熱槽3
上部の水面近傍に設けられた上記8個のノズル10から氷
蓄熱槽3内に、第1図(B)に示すように、一定方向に
傾斜されて噴出される。
The water whose temperature has risen in the air conditioner 4 is returned to the ice storage tank 3 as return water.
As shown in FIG. 1 (B), the water is ejected from the above eight nozzles 10 provided near the water surface into the ice heat storage tank 3 while being inclined in a certain direction.

すると、氷蓄熱槽3内には、矢印αで示すような渦巻き
流が形成される。
Then, in the ice heat storage tank 3, a swirl flow is formed as shown by an arrow α.

この渦巻き流α中へ、氷蓄熱槽3上方に設けられた投入
口1aから、製氷機1で製造された破片状氷2が投入され
る。
Fragmented ice 2 produced by the ice-making machine 1 is introduced into the swirl flow α from an inlet 1a provided above the ice heat storage tank 3.

破片状氷2は、この渦巻き流αに乗って氷蓄熱槽3内を
流れ、氷蓄熱槽3内の隅々から中央部まで万遍に行き渡
り、蓄積される。
The shards of ice 2 flow along the spiral flow α in the ice heat storage tank 3 and are evenly distributed from every corner of the ice heat storage tank 3 to the central portion thereof to be accumulated.

このとき、氷蓄熱槽3の壁面によるアーチ形成作用が上
記の渦巻き流αの作用により相殺されるため、破片状氷
2はアーチを形成することなく、高充填率で蓄積され
る。
At this time, since the arch forming action by the wall surface of the ice heat storage tank 3 is canceled by the action of the above-mentioned spiral flow α, the fragmentary ice 2 is accumulated at a high filling rate without forming an arch.

また、空調機4の運転中、返還水は、常時ノズル10から
噴出されているため、上記の渦巻き流αは常時生じてい
る。
Further, since the return water is constantly ejected from the nozzle 10 during the operation of the air conditioner 4, the above-mentioned spiral flow α is always generated.

このため、氷蓄熱槽3内の破片状氷2は、渦巻き流αに
乗って、氷蓄熱槽3内を常時流れるため、巨大な氷塊と
なることはない。
For this reason, the fragmented ice 2 in the ice heat storage tank 3 always flows in the ice heat storage tank 3 along with the spiral flow α, and thus does not become a huge ice block.

そして、返還水は、渦巻き流αに乗って破片状氷2と良
好に接触し、効果的に冷却されて、再度冷水として抜き
出され、空調機4へ送られて、冷房に供される。
Then, the returned water rides on the swirl flow α and makes good contact with the frosted ice 2, is effectively cooled, is extracted again as cold water, is sent to the air conditioner 4, and is used for cooling.

このため、本例の場合、返還水は、前述の公知技術のよ
うに、氷蓄熱槽3のほぼ全域に散水させる必要はない。
Therefore, in the case of this example, it is not necessary to sprinkle the return water over almost the entire area of the ice heat storage tank 3 as in the above-described known technique.

第2図(A)は本発明に係るシステムを実施する装置の
第2実施例を示す縦断面図、同図(B)は横断面図であ
り、同図(A),(B)中第1図,第3図と同一符号は
第1図,第3図と同一部を示す。
FIG. 2 (A) is a longitudinal sectional view showing a second embodiment of an apparatus for carrying out the system according to the present invention, FIG. 2 (B) is a lateral sectional view, and FIG. The same reference numerals as those in FIGS. 1 and 3 denote the same parts as those in FIGS.

本例では、氷蓄熱槽3下部から採取した水を噴出させる
場合の一例を示している。
In this example, an example in which water collected from the lower part of the ice heat storage tank 3 is ejected is shown.

第2図に示すように氷蓄熱槽3下部から採取した水を噴
出させるノズル10は、第1実施例の場合と同様に、8個
が横断面矩形の氷蓄熱槽3の4辺に各2個づつ(第2図
(B)では、紙面の関係上6個が示されている)、氷蓄
熱槽3上部の壁面に、この壁面を横切る一平面内に収ま
るように設けられている。
As shown in FIG. 2, eight nozzles 10 for ejecting water collected from the lower portion of the ice heat storage tank 3 are provided on each of four sides of the ice heat storage tank 3 having a rectangular cross section, as in the case of the first embodiment. They are provided one by one (in FIG. 2 (B), six are shown because of the space of the paper), and are provided on the wall surface of the ice heat storage tank 3 so as to be accommodated within a plane crossing the wall surface.

また、上記8個のノズル10の夫々も、第1実施例の場合
と同様に、氷蓄熱槽3の壁面に対して一定方向に傾斜さ
せて設けられている。
Further, each of the eight nozzles 10 is also provided so as to be inclined in a certain direction with respect to the wall surface of the ice heat storage tank 3 as in the case of the first embodiment.

更に、本例では、氷蓄熱槽3下部に製氷用水の採取口6
とは別に2個の採取口11が設けられ、各1個の採取口11
につき上記8個のノズル10中の4個づつが、各ポンプ12
を介して各配管13で連結されている。
Further, in this example, the ice making water collection port 6 is provided at the bottom of the ice heat storage tank 3.
Separately, two sampling ports 11 are provided, one for each sampling port 11
Each of the above eight nozzles 10 is
Each pipe 13 is connected via.

以上の装置において、ポンプ12,12が作動されると、採
取口11,11から冷水が抜き出され、配管13,13を経て8個
のノズル10へ送られる。
In the above apparatus, when the pumps 12, 12 are operated, cold water is extracted from the sampling ports 11, 11 and sent to the eight nozzles 10 via the pipes 13, 13.

そして、第1実施例と同様に、氷蓄熱槽3内に噴出さ
れ、矢印αで示すような渦巻き流を形成する。
Then, similarly to the first embodiment, it is jetted into the ice heat storage tank 3 to form a swirl flow as shown by an arrow α.

この渦巻き流α中へ、第1実施例と同様に、氷蓄熱槽3
上方から、製氷機1で製造された破片状氷2が投入され
る。
Into the swirl flow α, as in the first embodiment, the ice heat storage tank 3
Fragmented ice 2 produced by the ice maker 1 is loaded from above.

破片状氷2は、この渦巻き流αに乗って氷蓄熱槽3内を
流れ、氷蓄熱槽3内の隅々から中央部まで万遍に行き渡
ると共に、氷蓄熱槽3壁面によるアーチ形成作用が相殺
されて、高充填率で蓄積される。
The shards of ice 2 flow along the swirl flow α in the ice heat storage tank 3 and evenly spread from every corner of the ice heat storage tank 3 to the central portion, and the arching action of the wall surface of the ice heat storage tank 3 is offset. And is accumulated at a high filling rate.

なお、本例においても、空調機(第2図では、図示省
略)の運転中、ポンプ12,12を連続的に作動させて、渦
巻き流αを常時形成させ、破片状氷2を流動させ続け
て、巨大な氷塊の形成を防止し、また空調機からの返還
水の冷却効率を高めることもできる。
Also in this example, during operation of the air conditioner (not shown in FIG. 2), the pumps 12 and 12 are continuously operated to constantly form the swirl flow α and keep the fragmented ice 2 flowing. By doing so, it is possible to prevent the formation of huge ice blocks and to improve the cooling efficiency of the return water from the air conditioner.

以上の第1,第2実施例においては、複数個のノズル10を
氷蓄熱槽3上部の壁面を横切る一平面内に収まるように
設けているが、複数個のノズル10を例えば千鳥状に配置
して氷蓄熱槽3上部の壁面を横切る多数の平面内に収ま
るように設けることもできる。
In the first and second embodiments described above, the plurality of nozzles 10 are provided so as to fit within a plane that intersects the wall surface of the upper portion of the ice heat storage tank 3, but the plurality of nozzles 10 are arranged in a staggered pattern, for example. The ice storage tank 3 may be installed so as to be accommodated in a large number of planes that cross the wall surface above the ice storage tank 3.

《発明の効果》 以上詳述した本発明に係るシステムによれば、空調機か
らの返還水或いは氷蓄熱槽下部からの採水が、氷蓄熱槽
上部横断矩形状壁面の水面近傍に設けられたノズルか
ら、壁面に対して一定方向に噴出され、渦巻き流が形成
されるため、次のような効果を得ることができる。
<Effects of the Invention> According to the system of the present invention described in detail above, the return water from the air conditioner or the water collection from the lower part of the ice storage tank is provided near the water surface of the rectangular wall surface crossing the upper portion of the ice storage tank. The following effects can be obtained because a spiral flow is formed by being ejected from the nozzle in a certain direction with respect to the wall surface.

すなわち先ず、氷蓄熱槽の上方から投入される破片状氷
は、この渦巻き流に乗って氷蓄熱槽の隅々から中央部に
至るまで万遍なく蓄積される。
That is, first, the shards of ice thrown in from above the ice heat storage tank ride on this spiral flow and are evenly accumulated from every corner of the ice heat storage tank to the central portion.

しかも、渦巻き流により氷蓄熱槽壁面のアーチ形成作用
が相殺され、破片状氷は高充填率で蓄積される。
Moreover, the swirling flow cancels the arch-forming action on the wall surface of the ice heat storage tank, and the ice pieces are accumulated at a high filling rate.

これらにより、氷蓄熱槽の蓄氷能力が大幅に向上する。These greatly improve the ice storage capacity of the ice heat storage tank.

次に、破片状氷はアーチを形成することなく万遍に蓄積
されているため、返還水により1部分の破片状氷が早急
に融解すると言った弊害はなく、返還水のショートパス
現象は生じない。
Next, since the debris ice accumulates evenly without forming an arch, there is no adverse effect that the debris ice in one part melts quickly due to the return water, and the short path phenomenon of the return water occurs. Absent.

このため、返還水を効果的に冷却することができる。Therefore, the returned water can be effectively cooled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るシステムの第1実施例を示し、同
図(A)が縦断面図、同図(B)が横断面図、第2図は
本発明に係るシステムの第2実施例を示し、同図(A)
が縦断面図、同図(B)が横断面図、第3図は公知の氷
蓄熱技術を示す説明図である。 1a……破片状氷の投入口 2……破片状氷、3……氷蓄熱槽 4……空調機、10……ノズル 11……氷蓄熱槽下部の採水口
FIG. 1 shows a first embodiment of the system according to the present invention. FIG. 1 (A) is a longitudinal sectional view, FIG. 1 (B) is a lateral sectional view, and FIG. 2 is a second embodiment of the system according to the present invention. An example is shown in the same figure (A)
Is a vertical sectional view, FIG. 3B is a horizontal sectional view, and FIG. 3 is an explanatory view showing a known ice heat storage technique. 1a …… Injection port for shards of ice 2 …… Shards of ice 3 …… Ice heat storage tank 4 …… Air conditioner, 10 …… Nozzle 11 …… Sampling port under the ice storage tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】空調機からの返還水又は氷蓄熱槽下部から
採取した水を、該氷蓄熱槽上部の横断矩形状壁面の少な
くとも1箇所から、該氷蓄熱槽の少なくとも1つの水面
近傍横断面内で該氷蓄熱槽の壁面に対して一定方向に傾
斜させて噴射させることにより、氷および水の渦巻き状
の流れを形成しつつ、該氷蓄熱槽の上方から破片状氷を
投入することを特徴とする破片状氷の貯蔵システム。
1. A cross section of returned water from an air conditioner or water collected from the lower part of the ice heat storage tank from at least one point of a transverse rectangular wall surface of the upper part of the ice heat storage tank to at least one water surface of the ice heat storage tank. Injecting fragmented ice from above the ice heat storage tank while forming a swirl flow of ice and water by injecting the ice heat storage tank inclining in a certain direction with respect to the wall surface of the ice heat storage tank. Characterized debris ice storage system.
JP1217402A 1989-08-25 1989-08-25 Frosted ice storage system Expired - Lifetime JPH073298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1217402A JPH073298B2 (en) 1989-08-25 1989-08-25 Frosted ice storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1217402A JPH073298B2 (en) 1989-08-25 1989-08-25 Frosted ice storage system

Publications (2)

Publication Number Publication Date
JPH0384345A JPH0384345A (en) 1991-04-09
JPH073298B2 true JPH073298B2 (en) 1995-01-18

Family

ID=16703633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217402A Expired - Lifetime JPH073298B2 (en) 1989-08-25 1989-08-25 Frosted ice storage system

Country Status (1)

Country Link
JP (1) JPH073298B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634166A (en) * 1992-07-20 1994-02-08 Ohbayashi Corp Ice lump melting device for dynamic type ice heat storage tank
JPH0634165A (en) * 1992-07-20 1994-02-08 Ohbayashi Corp Ice lump melting device for dynamic type ice heat storage tank
JPH0798132A (en) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd Ice heat accumulator
JPH07243731A (en) * 1994-03-03 1995-09-19 Mitsui Eng & Shipbuild Co Ltd Ice thermal storage icemaking facility
CN114659310B (en) * 2022-04-13 2024-07-19 美的集团武汉制冷设备有限公司 Ice making device of air conditioner, air conditioner and control method of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314021A (en) * 1986-07-01 1988-01-21 Taikisha Ltd Cold heat accumulating facility for air conditioning

Also Published As

Publication number Publication date
JPH0384345A (en) 1991-04-09

Similar Documents

Publication Publication Date Title
CN100453945C (en) Improved evaporative heat exchanger and method
CN101251340A (en) Cooling tower with improved drain pan
JPH073298B2 (en) Frosted ice storage system
US4405533A (en) Supply device for use with evaporative contact bodies
KR20190015960A (en) Cleaning treatment device of exhaust gas using wetted-wall gas absorption column
KR101076249B1 (en) Arrangement and method for cooling a solution
JP2017154035A (en) Electric dust collecting machine
KR101203361B1 (en) Counter flow type of cooling tower having improved cooling efficiency
JPH0838845A (en) Inlet cover with small pressure drop in wet-type scrubber
GB1566922A (en) Cylindrical multi-fan conterflow cooling tower
JP7330285B2 (en) Heat exchange unit and refrigeration cycle equipment
JPH11311131A (en) Gas turbine inlet system installation
JP2002001015A (en) Filtration apparatus
JP4011546B2 (en) Equipment for collecting water from exhaust gas
JPH1183078A (en) Cooler for indoor ski slope
KR102159770B1 (en) Apparartus for preventing defrosted water of cooler from scattering
JP3314286B2 (en) Descaling recovery device
JP4166865B2 (en) Ice making equipment for air conditioning
JPH07269912A (en) Ice-based regenerative equipment
JPH0213909Y2 (en)
JPH07116823A (en) Cooling treatment device for casting
JPH1181222A (en) Ski slope structure of indoor ski ground and method for forming ski slope
JPH06174270A (en) Ice melting tank
JPH0886592A (en) Cooling tower
JP4160793B2 (en) Mobile harvesting ice making equipment