JPH07329208A - Formation of unvulcanized tire for flat pneumatic radial tire - Google Patents

Formation of unvulcanized tire for flat pneumatic radial tire

Info

Publication number
JPH07329208A
JPH07329208A JP7051001A JP5100195A JPH07329208A JP H07329208 A JPH07329208 A JP H07329208A JP 7051001 A JP7051001 A JP 7051001A JP 5100195 A JP5100195 A JP 5100195A JP H07329208 A JPH07329208 A JP H07329208A
Authority
JP
Japan
Prior art keywords
tire
rubber
sidewall
molding
rubber member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7051001A
Other languages
Japanese (ja)
Other versions
JP3193583B2 (en
Inventor
Sadao Moriyama
貞夫 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP05100195A priority Critical patent/JP3193583B2/en
Priority to ES95302368T priority patent/ES2142457T3/en
Priority to DE69514563T priority patent/DE69514563T2/en
Priority to EP95302368A priority patent/EP0677375B1/en
Publication of JPH07329208A publication Critical patent/JPH07329208A/en
Priority to US08/767,856 priority patent/US5746860A/en
Application granted granted Critical
Publication of JP3193583B2 publication Critical patent/JP3193583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the cracking of a sidewall part free from other deterioration while maintaining the productivity for forming an unvulcanized tire by sticking the previously united outer sidewall rubber members to a green case and laminating them on an inner sidewall rubber member to form an integral sidewall rubber member. CONSTITUTION:A cylindrical green case 11G is obtained by sticking a pair of inner sidewall rubber members 17L to a specific position. On one side, outer sidewall rubber members 17U are previously united on the surfaces of both sides of a tread rubber member 16 and prepared for a second formation as a composite rubber member. The case 11G treated through a first forming process is supplied to a second forming process. The case 11G is toroidally expanded and deformed by narrowing the interval of bead core members 13 in a bead part. A composite member 18 to be formed into a part of an unvulcanized tire 11 is vertically pressed and tucked by a switching roll SR and stuck to the case 11G. At that time, rubber members 17L, 17U form a laminating face Qa and are formed into an integral sidewall rubber 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、偏平比の呼びが55
%以下の偏平空気入りラジアルタイヤの未加硫タイヤ成
形方法に関し、特に未加硫タイヤ成形工程の生産性を高
度に保持した上で、従来上記タイヤ種に特有に生じ勝ち
なサイドウォールゴムの著しい耐久性不足問題を有利に
解決して、高度に優れた耐久性を発揮することを可能と
する、偏平空気入りラジアルタイヤの未加硫タイヤ成形
方法に関する。
BACKGROUND OF THE INVENTION This invention has a flatness ratio of 55.
% Of flat pneumatic radial tire unvulcanized tire molding method, especially while maintaining high productivity of unvulcanized tire molding step, the sidewall rubber which is peculiar to the conventional tire type is prominent. The present invention relates to a method for forming an unvulcanized tire for a flat pneumatic radial tire, which is capable of advantageously solving the problem of insufficient durability and exhibiting a highly excellent durability.

【0002】[0002]

【従来の技術】まず空気入りラジアルタイヤの構成の概
要を図7に示すタイヤ20を一例として以下説明する。
図7は空気入りラジアルタイヤ20の赤道面Eから左半
断面につき要部を線図的に簡略図解した説明図である。
図7に示すタイヤ20は、一対のビード部2(片側のみ
示す)内に埋設したビードコア3相互間にわたりトロイ
ド状に延びる1プライ以上(図示例は1プライ)のラジ
アルカーカス4と、カーカス4の外周に配設したベルト
5と、ベルト5のさらに外周に配置したトレッドゴム2
6と、トレッドゴム26の両側(片側のみ示す)からカ
ーカス4の外側に位置して各ビード部2の上方位置まで
延びる一対のサイドウォールゴム27(片側のみ示す)
とを有する。
2. Description of the Related Art First, the outline of the construction of a pneumatic radial tire will be described below by taking a tire 20 shown in FIG. 7 as an example.
FIG. 7 is an explanatory diagram schematically illustrating a main part of a left half cross section from the equatorial plane E of the pneumatic radial tire 20.
A tire 20 shown in FIG. 7 has a radial carcass 4 of 1 ply or more (one ply in the illustrated example) extending in a toroidal shape across a bead core 3 embedded in a pair of bead portions 2 (only one side is shown), and a carcass 4 Belt 5 arranged on the outer periphery and tread rubber 2 arranged on the outer periphery of belt 5
6 and a pair of sidewall rubbers 27 (only one side is shown) that are located outside the carcass 4 from both sides of the tread rubber 26 (only one side is shown) and extend to positions above the bead portions 2.
Have and.

【0003】なおカーカス4のプライはタイヤ赤道面E
に対し約90°で交差するラジアル配列のゴム引きコー
ド層からなり、ラジアルカーカス4はビード部2と、サ
イドウォールゴム27を配置したサイドウォール部8
と、トレッドゴム26を配置したトレッド部9とを補強
する。ベルト5は2層以上(図示例は2層)のコード交
差層からなり、トレッド部9を強化する。
The ply of the carcass 4 has a tire equatorial plane E.
The radial carcass 4 comprises a bead portion 2 and a sidewall portion 8 on which a sidewall rubber 27 is arranged.
And the tread portion 9 in which the tread rubber 26 is arranged is reinforced. The belt 5 includes two or more layers (two layers in the illustrated example) of cord intersecting layers, and strengthens the tread portion 9.

【0004】図7と同様な説明図として図8、9に示す
別の例の空気入りラジアルタイヤ40、60はトレッド
ゴム46、66とサイドウォールゴム47、67との接
合面P(各図では接合線で示す)の形態がそれぞれ図7
に示すタイヤ20と相違する他は全て同一であり、よっ
てこれら同一構成要素の符号を図7に合せて示した。上
記接合面Pの形態につき、図7の例はサイドウォールゴ
ム27の上端部がトレッド26幅方向端部の内側面に位
置するのに対し、図8に示すタイヤ40ではトレッドゴ
ム46の幅方向端部面の外側面上に位置し、図9に示す
タイヤ60はトレッドゴム66がサイドウォールゴム6
7の上端部とこのゴムと同一配合組成になるゴム67−
1との間に楔状にくい込む、いわば上述した2例の折衷
配置になる。なお図9の場合のサイドウォールゴム67
はサイドウォール上部ゴム67−1及びトレッドゴム6
6両者との間に接合面P、P1 をもつ。
Another example of pneumatic radial tires 40 and 60 shown in FIGS. 8 and 9 as an explanatory view similar to FIG. 7 is a joint surface P (in each drawing) of tread rubbers 46 and 66 and sidewall rubbers 47 and 67. The shape of (shown by the joining line) is shown in FIG.
The tire 20 is the same as the tire 20 shown in FIG. 6 except that it is the same. Therefore, the reference numerals of these same constituent elements are shown in FIG. Regarding the form of the joint surface P, in the example of FIG. 7, the upper end portion of the sidewall rubber 27 is located on the inner side surface of the end portion in the width direction of the tread 26, whereas in the tire 40 shown in FIG. The tire 60 shown in FIG. 9 is located on the outer surface of the end surface, and the tread rubber 66 has the sidewall rubber 6
Rubber with the same composition as the upper end of 7 and this rubber 67-
A wedge shape is difficult to insert between 1 and 1, so to speak, the eclectic arrangement of the two examples described above. The side wall rubber 67 in the case of FIG.
Is the sidewall upper rubber 67-1 and tread rubber 6
6 has joint surfaces P and P 1 between them.

【0005】接合面形態が何れであれラジアルタイヤの
荷重負荷転動下で、トレッドゴム26、46、66は路
面と直接接触して駆動力、制動力を発生する部分であ
り、また旋回時にはコーナリングフォースの作用を受け
る部分であるため、基本特性として優れた耐摩耗性を発
揮する材質であることが要求される一方、フレックスゾ
ーンとも呼ばれ極めて多数回に及ぶ撓曲変形を繰り返す
サイドウォール部8に配置するサイドウォールゴム2
7、47、67には、やはり基本特性として耐屈曲疲労
性に優れた材質を適用する必要がある。しかしこれらの
両特性はゴム配合技術上互いに二律背反の関係を有し、
従って空気入りラジアルタイヤのトレッドゴム及びサイ
ドウォールゴムにはそれぞれの要求特性を十分に発揮し
得るように配合を構成した全く別種のゴム組成物を適用
するのが一般である。
Regardless of the form of the joint surface, the tread rubbers 26, 46, 66 are portions which directly contact the road surface to generate a driving force and a braking force under the load rolling of the radial tire. Since it is a portion that is subjected to the force, it is required to be a material that exhibits excellent wear resistance as a basic characteristic, while it is also called a flex zone, and the sidewall portion 8 that repeats flexural deformation a very large number of times. Sidewall rubber 2 to be placed
For 7, 47 and 67, it is necessary to apply a material having excellent bending fatigue resistance as a basic characteristic. However, these two characteristics have a trade-off relationship with each other in terms of rubber compounding technology,
Therefore, it is general to apply a completely different kind of rubber composition having a composition so that the required properties can be sufficiently exhibited to the tread rubber and the sidewall rubber of the pneumatic radial tire.

【0006】次に、上記空気入りラジアルタイヤ20、
40、60を得るための加硫直前における3タイプの未
加硫タイヤ成形方法につき、各タイヤに対応する図1
0、11、12を用いて以下説明する。図10〜12は
下記する第二成形工程における未加硫タイヤ仕上がり直
前の断面を成形機の一部断面と合せ簡略図解した説明図
である。
Next, the pneumatic radial tire 20,
Fig. 1 shows three types of unvulcanized tire forming methods immediately before vulcanization to obtain 40 and 60, which correspond to each tire.
A description will be given below using 0, 11, and 12. 10 to 12 are explanatory views schematically illustrating a cross section immediately before finishing of an unvulcanized tire in a second molding step described below, together with a partial cross section of a molding machine.

【0007】これら3タイプに共通する成形方法は、ラ
ジアルカーカスプライ部材14を円筒状ドラム(図示省
略)に供給して所定プライ数だけ巻付け、巻付けたドラ
ム上プライ部材14に一対のビードコア部材13を張付
け固定した後、各ビードコア部材13の回りにプライ部
材14を折返して筒状グリーンケースとする第一成形工
程(以上図10〜12の符号参照)と、次いでこのグリ
ーンケースのビードコア部材13の相互間隔を狭めると
共にグリーンケースを膨張変形させて外周にベルト部材
15及びトレッドゴム部材36、56、76を張付ける
第二成形工程とを経る2段階成形方法である。なおここ
で言う部材とは未加硫部材を指し、また張付け及び張り
合せとは各部材がもつ粘着力により一方の部材を他方の
部材に緊密に合体させることを意味する。何れも以下同
じである。
A molding method common to these three types is to supply the radial carcass ply member 14 to a cylindrical drum (not shown) and wind the ply member a predetermined number of times, and to form a pair of bead core members on the wound drum upper ply member 14. The first molding step (see the reference numerals in FIGS. 10 to 12 above) in which the ply member 14 is folded back around each bead core member 13 to form a tubular green case after the bead core members 13 of the green case are fixed. And a second molding step in which the belt member 15 and the tread rubber members 36, 56, and 76 are attached to the outer circumference by expanding and deforming the green case and expanding the green case. The term "member" as used herein means an unvulcanized member, and the term "gluing" and "gluing" mean that one member is tightly united with the other member by the adhesive force of each member. The same applies hereinafter.

【0008】成形方法のタイプその一は、図7に示すタ
イヤを得るための成形方法であり、この場合は第一成形
工程にて図7のサイドウォールゴム27に該当するゴム
部材37を張付けたグリーンケース31Gを次の第二成
形工程に供給し、供給したグリーンケース31Gを図1
0に示すように膨張変形させ、膨張変形したグリーンケ
ース31Gの外周にベルト部材15及びトレッドゴム部
材36を張付ける。そのときトレッドゴム部材36はサ
イドウォールゴム部材37の上端部を十分に覆うことが
できるように総幅寸度を設定しておく。その後図示しな
いステッチングローラによりトレッドゴム部材36の両
側を図示の矢印Bの向きに折込みサイドウォールゴム部
材37に圧着して張付け、時にはカーカスプライ部材1
4にも圧着張付けて未加硫タイヤを得る。この成形方法
は必要とするサイドウォールゴム部材37全体を予め第
一成形工程にてグリーンケース31Gに張付けることに
由来してサイド先張り方式と呼ばれる。
One type of molding method is a molding method for obtaining the tire shown in FIG. 7, and in this case, a rubber member 37 corresponding to the sidewall rubber 27 of FIG. 7 was attached in the first molding step. The green case 31G is supplied to the next second molding step, and the supplied green case 31G is shown in FIG.
As shown in 0, the belt member 15 and the tread rubber member 36 are attached to the outer circumference of the expanded and deformed green case 31G. At that time, the tread rubber member 36 is set to have a total width dimension so as to sufficiently cover the upper end portion of the sidewall rubber member 37. After that, both sides of the tread rubber member 36 are folded in the direction of arrow B in the drawing by a stitching roller (not shown) and pressure-bonded to the sidewall rubber member 37, and sometimes the carcass ply member 1
4 is also pressure-bonded to obtain an unvulcanized tire. This molding method is called a side-pile method because the necessary whole sidewall rubber member 37 is preliminarily adhered to the green case 31G in the first molding step.

【0009】タイプその二は、図8に示すタイヤ40を
得るための成形方法であり、第一成形工程にて図8のサ
イドウォールゴム47に該当するゴム部材57をグリー
ンケース51Gに張付けるのはサイド先張り方式に似た
方法であるが、大きく異なる点は、図11に示すよう
に、相互の張付け領域を図8に示すビード部2に相当す
る領域12に止め、この領域12を除く残余領域のサイ
ドウォールゴム部材47内側表面とグリーンケース51
Gとの間に、破線で示す合成樹脂シート、例えばポリエ
チレンシート80を介在させて相互間の粘着合体を阻止
する点にある。
The second type is a molding method for obtaining the tire 40 shown in FIG. 8, in which a rubber member 57 corresponding to the sidewall rubber 47 of FIG. 8 is attached to the green case 51G in the first molding step. Is a method similar to the side-pile method, but the major difference is that, as shown in FIG. 11, the mutual attachment areas are stopped in an area 12 corresponding to the bead portion 2 shown in FIG. 8 and this area 12 is excluded. The inner surface of the sidewall rubber member 47 in the remaining area and the green case 51
A point is that a synthetic resin sheet shown by a broken line, for example, a polyethylene sheet 80 is interposed between G and G so as to prevent mutual adhesion and coalescence.

【0010】この状態のグリーンケース51Gを第二成
形工程にて図11に示すように膨張変形させると共に一
対のサイドウォールゴム部材57をそれぞれ外側に倒し
込み、グリーンケース51Gの外周にベルト部材15及
びトレッドゴム部材56を適用して上記同様ステッチン
グローラによりトレッドゴム部材56の両側を図示の矢
印Cの向きに折込んで張付け、引き続きポリエチレンシ
ート80を取り除いた後倒し込んだ各サイドウォールゴ
ム部材57部分を引き起こしてグリーンケース51Gと
トレッドゴム部材56の両側面上とに張付け、未加硫タ
イヤを得る。この点でサイド先張り方式に対しサイド後
張り方式と呼ばれる。
The green case 51G in this state is expanded and deformed as shown in FIG. 11 in the second molding step, and the pair of sidewall rubber members 57 are respectively sunk outward so that the belt member 15 and the belt member 15 are provided on the outer periphery of the green case 51G. Applying the tread rubber member 56 and folding the both sides of the tread rubber member 56 in the direction of the arrow C shown by a stitching roller in the same manner as described above, and adhering them, and subsequently removing the polyethylene sheet 80, and then each side wall rubber member 57 part Then, the green case 51G and the both side surfaces of the tread rubber member 56 are attached to each other to obtain an unvulcanized tire. In this respect, it is called the side back-lining method as opposed to the side-heading method.

【0011】タイプその三は、特公昭49−18790
号公報が開示する、図9に示すタイヤ60を得るための
成形方法であり、その第一成形工程はサイド先張り方式
の不利を改善した一変形例と言える。この変形内容はグ
リーンケース71Gに張付けたサイドウォールゴム部材
77に加え、この部材と同一配合ゴム組成物からなる一
対の細条ゴム部材77−1を図12に示すように予めト
レッドゴム部材76の両側面上に張付けた複合ゴム部材
78を第二成形工程にて適用する点にある。それ以外は
タイプその一と同様にして第二成形を実施し、未加硫タ
イヤを得る。
The third type is Japanese Patent Publication No. 49-18790.
It is a molding method for obtaining the tire 60 shown in FIG. 9 disclosed in Japanese Patent Laid-Open Publication No. JP-A-2003-163, and the first molding step can be said to be a modified example in which the disadvantage of the side-pitch method is improved. In this modification, in addition to the sidewall rubber member 77 attached to the green case 71G, a pair of strip rubber members 77-1 made of the same compounded rubber composition as this member are attached to the tread rubber member 76 in advance as shown in FIG. The point is to apply the composite rubber member 78 attached to both side surfaces in the second molding step. Other than that, the second molding is performed in the same manner as in Type 1 to obtain an unvulcanized tire.

【0012】[0012]

【発明が解決しようとする課題】タイプその一によるサ
イド先張り方式にて未加硫タイヤを成形した後、これに
加硫成形を施したタイヤ20は、成形工程での優れた生
産性を有する反面、下記する不利な点を合せ有する。
A tire 20 obtained by molding an unvulcanized tire by a side pre-tensioning method according to the first type and then vulcanizing and molding the tire has excellent productivity in the molding process. On the other hand, it has the following disadvantages.

【0013】すなわちトレッドゴム26とサイドウォー
ルゴム27との接合面Pの外側位置がフレックスゾーン
の表面にあらわれるのは止むを得ないこと、そしてトレ
ッドゴム26には高度な耐摩耗性の発揮に不可欠な特性
として比較的高い硬度(ショアA硬度又はJIS硬
度)、例えばショアA硬度55°〜75°を有する材質
を適用する一方、サイドウォールゴム27には優れた耐
屈曲疲労性を発揮させるため必然的に比較的低い硬度、
例えばショアA硬度40°〜60°を有する材質を、ト
レッドゴムをサイドウォールゴム対比でより高い硬度に
て適用する必要上、接合面Pを境としてその両側に大き
な硬度差のゴムを配置することの両者が相まって、タイ
ヤの走行開始から間もない早期にフレックスゾーンの表
面に存在する接合面P位置にクラックが発生し、このク
ラックが走行距離の延長につれ次第に接合面Pに沿って
内部まで進展して故障に至り、結局耐久性が不足すると
いう点である。
That is, it is unavoidable that the outer position of the joint surface P between the tread rubber 26 and the sidewall rubber 27 appears on the surface of the flex zone, and the tread rubber 26 is indispensable for exhibiting high abrasion resistance. As a characteristic, a material having a relatively high hardness (Shore A hardness or JIS hardness), for example, Shore A hardness 55 ° to 75 ° is applied, while the sidewall rubber 27 is inevitable in order to exhibit excellent bending fatigue resistance. Relatively low hardness,
For example, since it is necessary to apply a material having a Shore A hardness of 40 ° to 60 ° to a tread rubber having a higher hardness than a sidewall rubber, rubber having a large hardness difference should be arranged on both sides of the joint surface P as a boundary. Both of these joints cause cracks to occur at the joint surface P position existing on the surface of the flex zone immediately after the start of tire running, and these cracks gradually propagate to the inside along the joint surface P as the traveling distance increases. It leads to a breakdown, and eventually the durability is insufficient.

【0014】タイプその二によるサイド後張り方式にて
未加硫タイヤを成形した後、これに加硫成形を施したタ
イヤ40は、タイヤ表面にあらわれる接合面Pがフレッ
クスゾーンを外れて上方(タイヤ半径方向外側)に位置
するため上記クラック故障の発生を回避することができ
る点で優れた構成を有する反面、未加硫タイヤ成形に際
し、ポリエチレンシートの貼付及び除去作業と、サイド
ウォールゴム部材57の2度にわたる張付け作業とを要
するため、余分な工数を付加する点で明らかに生産性を
阻害する不利な点を有する。
A tire 40 obtained by molding an unvulcanized tire by a side backing method according to type 2 and then vulcanizing and molding the tire 40 has a joining surface P appearing on the tire surface above the flex zone (the tire). Since it is located on the outer side in the radial direction, it has an excellent configuration in that it is possible to avoid the occurrence of the crack failure. On the other hand, when forming an unvulcanized tire, the work of attaching and removing the polyethylene sheet and the sidewall rubber member 57 are performed. Since the attachment work is required twice, there is a disadvantage that productivity is obviously impaired in that extra man-hours are added.

【0015】上記タイヤ20、40に対し、タイプその
三の成形方法により得られたタイヤ60は、タイヤ2
0、40それぞれの有利な点を兼ね備える一方、両者の
不利な点を排除することができ、この点でタイプその
一、その二の成形方法に比しより優れた成形方法により
得られたタイヤといえる。なぜなら上部サイドウォール
ゴム細条67−1とトレッドゴム60との接合面P1
タイヤ表面にあらわれる位置はタイヤ20と同様位置に
あるので上述したクラック故障のうれいを回避すること
ができ、さらに上記余分な工数付加を必要とせず高度に
高い生産性を確保することができるからである。よって
このタイプその三が空気入りラジアルタイヤの未加硫タ
イヤ成形方法として広く実施されている。
The tire 60 obtained by the molding method of the type 3 is the same as the tire 20 and the tire 40.
While having the advantages of each of 0 and 40, it is possible to eliminate the disadvantages of both, and in this respect tires obtained by a molding method superior to the molding methods of type 1 and type 2 I can say. Because the position where the joint surface P 1 between the upper sidewall rubber strip 67-1 and the tread rubber 60 appears on the tire surface is the same position as the tire 20, it is possible to avoid the above-mentioned crack failure. This is because it is possible to ensure a highly high productivity without requiring the addition of the extra man-hours. Therefore, this type 3 is widely practiced as a method for forming an unvulcanized tire for a pneumatic radial tire.

【0016】ところが近来、高速走行時における耐久性
及び操縦安定性に優れた性能を発揮する偏平タイヤの一
層の偏平化が進み、この偏平化の度合いをタイヤ断面高
さSHと断面幅SWとの百分比(SH/SW)×100
(%)であらわし、この値を偏平比の呼び(JIS Y
EAR BOOK)であらわすとき55以下の偏平空気
入りラジアルタイヤが一般化される傾向を示し、この偏
平比の呼び55以下の偏平化傾向のなかで従来は殆ど見
られなかった新しい形態のクラック故障が見出されるよ
うになった。
However, in recent years, flattening of flat tires that exhibit excellent durability and steering stability during high-speed running has been further flattened, and the degree of flattening is determined by the tire cross-section height SH and the cross-section width SW. Percentage ratio (SH / SW) x 100
(%), And this value is called the flatness ratio (JIS Y
When expressed as EAR BOOK), flat pneumatic radial tires of 55 or less tend to be generalized, and in the flattening tendency of the aspect ratio of 55 or less, there is a new type of crack failure that was rarely seen in the past. It came to be found.

【0017】この新形態のクラック故障は、図9に示す
サイドウォールゴム67と上部サイドウォール細条ゴム
67−1との間の接合面Pがタイヤ表面にあらわれる位
置にまず早期に発生し、その後走行が進むにつれ接合面
Pに沿って内部に進展する故障であること、そして偏平
比の呼び数値が小さいほど生じ勝ちな特有な故障である
ことを突き止めた。これまで少なくともサイドウォール
部8における同一配合ゴム組成物の成形時接合面にこの
種の故障が生じたことはない。
The crack failure of this new type occurs at an early stage at the position where the joint surface P between the sidewall rubber 67 and the upper sidewall thin rubber 67-1 shown in FIG. It was found that the failure progresses inward along the joint surface P as the traveling progresses, and that the smaller the nominal value of the aspect ratio is, the more likely the failure is to occur. Up to now, this kind of failure has never occurred in the joint surface of at least the sidewall portion 8 at the time of molding the same compounded rubber composition.

【0018】従ってこの発明の目的は、未加硫タイヤ成
形の生産性を高度に保持した上で、かつ他のタイヤ性能
の劣化を伴うことなくサイドウォール部に優れた耐クラ
ック性を具備させることが可能な偏平空気入りラジアル
タイヤ、特に偏平比の呼びで55以下の偏平空気入りラ
ジアルタイヤの未加硫タイヤ成形方法を提供することに
ある。
Therefore, an object of the present invention is to maintain the productivity of unvulcanized tire molding at a high level and to provide the sidewall portion with excellent crack resistance without deterioration of other tire performance. It is an object of the present invention to provide an unvulcanized tire forming method for a flat pneumatic radial tire capable of achieving the above, particularly a flat pneumatic radial tire having a flatness ratio of 55 or less.

【0019】[0019]

【課題を解決するための手段】偏平比の呼び数値が小さ
くなるほどサイドウォール部にあらわれる同一ゴム組成
物接合面位置にクラックが生じ勝ちである点に着目し
て、その原因を実際に則し考究を加えた結果、サイドウ
ォール部表面のひずみのありさまと偏平比の呼び数値と
の間に強い相互関係が存在することを見出し、この発明
を完成するに至った。すなわちこの発明による偏平空気
入りラジアルタイヤの未加硫タイヤ成形方法は、一対の
ビード部内に埋設したビードコア相互間にわたりトロイ
ド状に延びる1プライ以上のラジアルカーカスと、該カ
ーカスの外周に配設したベルトと、該ベルトの外周に配
置したトレッドゴムと、該トレッドゴムの両側からカー
カスの外側で各ビード部上方位置まで延びる一対のサイ
ドウォールゴムとを有する、偏平比の呼びで55以下の
偏平空気入りラジアルタイヤの未加硫タイヤを成形する
にあたり、加硫後に得られるタイヤの各サイドウォール
ゴムを全周にわたりタイヤ半径方向内側部分と外側部分
とに振り分け、振り分ける面のサイドウォールゴム外表
面上の端位置をタイヤ断面高さの1/2高さ以下とする
上記内側部分及び外側部分に対応する内側サイドウォー
ルゴム部材及び外側サイドウォールゴム部材それぞれを
予め別個に準備し、別個に準備したこれら部材のうち内
側サイドウォールゴム部材を、カーカスプライ部材と各
ビードコア部材とを組立てて筒状グリーンケースとする
第一成形工程にて張付け、この第一成形工程を経たグリ
ーンケースをビードコア部材の相互間隔を狭めてトロイ
ド状に膨張変形させ、膨張変形したグリーンケースの外
周にベルト部材とトレッドゴム部材とを張付ける第二成
形工程にて、予めトレッドゴム部材の両側面上で合体さ
せた各外側サイドウォールゴム部材をグリーンケースに
張付けると共に内側サイドウォールゴム部材に張り合せ
て一体状サイドウォールゴム部材とすることを特徴とす
る。
[Means for solving the problem] Focusing on the fact that as the nominal value of the aspect ratio becomes smaller, cracks tend to occur at the joint surface position of the same rubber composition appearing in the sidewall part, the cause is actually investigated and investigated. As a result, the inventors have found that there is a strong correlation between the degree of strain on the surface of the sidewall portion and the nominal value of the aspect ratio, and have completed the present invention. That is, the method for forming an unvulcanized tire for a flat pneumatic radial tire according to the present invention is directed to a radial carcass having one or more plies extending toroidally between bead cores embedded in a pair of bead portions, and a belt arranged on the outer periphery of the carcass. And a pair of sidewall rubbers extending from the both sides of the tread rubber to positions above each bead outside the carcass from both sides of the tread rubber. When molding an unvulcanized tire of a radial tire, each sidewall rubber of the tire obtained after vulcanization is distributed over the entire circumference into an inner portion and an outer portion in the tire radial direction, and the end on the outer surface of the sidewall rubber of the distribution surface. Inner portions corresponding to the inner portion and outer portion whose position is equal to or less than 1/2 of the tire cross-sectional height Each of the sidewall rubber member and the outside sidewall rubber member is separately prepared in advance, and the inside sidewall rubber member of these separately prepared members is assembled into a tubular green case by assembling the carcass ply member and each bead core member. The green case that has been subjected to the first molding step is expanded, and the green case that has undergone the first molding step is expanded and deformed into a toroidal shape by narrowing the mutual intervals of the bead core members, and the belt member and the tread rubber member are expanded around the expanded and deformed green case. In the second molding step, the outer sidewall rubber members that have been previously combined on both side surfaces of the tread rubber member are attached to the green case and are attached to the inner sidewall rubber member to form an integral sidewall rubber member. It is characterized by

【0020】この発明を実施するに際し、タイヤ断面高
さの1/2高さ以下に位置する環状の突起リブをサイド
ウォールゴム外側に備える加硫後タイヤの該リブのタイ
ヤ半径方向外側端縁近傍に上記振り分け端を位置させる
こと、そして一対の外側サイドウォールゴム部材をトレ
ッドゴム部材との複合ゴム部材として複数個の押出しヘ
ッドをもつ押出機により一体状に押出し成形し、該複合
部材を上記第二成形工程に適用すること、又はベルト部
材とトレッドゴム部材とを予め所定の外径をもつ成形ド
ラム上で張り合せると共に一対の外側サイドウォールゴ
ム部材をトレッドゴム部材の両側面上に張付けて成る混
成部材を上記第二成形工程にて適用することが望まし
い。
In carrying out the present invention, an annular protruding rib located at a height equal to or less than 1/2 of the tire cross-sectional height is provided on the outside of the sidewall rubber, and near the outer edge in the tire radial direction of the rib of the vulcanized tire. And the extruding unit integrally extruding a pair of outer sidewall rubber members as a composite rubber member with a tread rubber member by means of an extruder having a plurality of extrusion heads. Or a belt member and a tread rubber member are bonded together in advance on a molding drum having a predetermined outer diameter and a pair of outer sidewall rubber members are bonded to both side surfaces of the tread rubber member. It is desirable to apply the hybrid member in the second molding step.

【0021】[0021]

【作用】まず所定荷重を負荷させたタイヤのサイドウォ
ール部8表面に生じるタイヤ半径方向ひずみ分布曲線を
示す図13、図14に基づき説明する。図13、14の
右側にタイヤ左半断面のうち主としてサイドウォール部
8とビード部2との断面を示し、各図の左側にひずみ
(%)をテンション(+符号)とコンプレッション(−
符号)とに分けて示した。ひずみ測定に供したタイヤは
乗用車用空気入りラジアルタイヤのサイズが205/6
5R15(偏平比の呼び65)及びサイズが225/4
5ZR17(偏平比の呼び45)の2種類であり、これ
ら2種類のタイヤをひずみ分布対比上便利なように同じ
断面形状にて示した。
First, the tire radial direction strain distribution curve generated on the surface of the sidewall portion 8 of the tire under a predetermined load will be described with reference to FIGS. 13 and 14. The right side of FIGS. 13 and 14 shows mainly the cross section of the sidewall portion 8 and the bead portion 2 in the left half section of the tire, and the strain (%) indicates tension (+ sign) and compression (−) on the left side of each drawing.
It is shown separately for each symbol. The tire used for strain measurement had a pneumatic radial tire size for passenger cars of 205/6.
5R15 (Nominal aspect ratio 65) and size 225/4
There are two types of tires, 5ZR17 (nominal flatness ratio 45), and these two types of tires are shown in the same sectional shape for convenience of strain distribution comparison.

【0022】テスト条件はカーカス4にコード切れ(Co
rd Breaking-Up、CBU) を生じさせるため低内圧、高
荷重でタイヤを室内ドラムに押当てるCBUドラム条件
と、通常のJATMA YEAR BOOKに従う内
圧、荷重での実車条件との2種類とし、CBUドラム条
件によるテスト結果を図13に、実車条件によるテスト
結果を図14にそれぞれ示した。なおCBUドラム条件
は実際の使用上生じ得る条件であり、かつ後の比較評価
を短時間内で有利に実施できる好適条件であるため転用
した。
The test condition is a broken cord (Co
rd Breaking-Up, CBU) to generate the CBU drum condition that the tire is pressed against the indoor drum with a low internal pressure and a high load, and the normal vehicle condition under the normal JATMA YEAR BOOK and internal load. FIG. 13 shows the test results under the conditions, and FIG. 14 shows the test results under the actual vehicle conditions. The CBU drum condition was diverted because it is a condition that can occur in actual use and is a suitable condition that allows subsequent comparative evaluation to be advantageously carried out within a short time.

【0023】図13、14に示すひずみ分布曲線のうち
破線S1 は偏平比の呼び65のひずみ分布曲線であり、
実線S2 は偏平比の呼び45のひずみ分布曲線である。
これらの分布曲線は右半断面についても同様であり、図
示を省略した。両種タイヤのひずみ分布を対比すると、
クラック発生及びその進展に影響を与えるテンションひ
ずみのピーク値につき、何れの条件下でも偏平比の呼び
45のタイヤが偏平比の呼び65のタイヤに比し顕著に
より高い値を示すに止まらず、偏平比の呼び45のタイ
ヤにおけるテンションひずみピーク値を示す断面高さ位
置が、偏平比の呼び65のタイヤの上記同様位置に比し
より高い位置にシフトするという新事実を見出した。
Of the strain distribution curves shown in FIGS. 13 and 14, the broken line S 1 is the strain distribution curve of the nominal 65 of the flatness ratio,
The solid line S 2 is the strain distribution curve of the aspect ratio nominal 45.
These distribution curves are the same for the right half section and are not shown. Comparing the strain distributions of both types of tires,
Regarding the peak value of the tension strain that affects the occurrence of cracks and its development, the tire with a nominal aspect ratio of 45 does not only show a significantly higher value than the tire with a nominal aspect ratio of 65 under all conditions, but also A new fact has been found that the sectional height position showing the peak value of the tension strain in the tire with the nominal ratio of 45 shifts to a position higher than the position similar to the above in the tire with the nominal ratio of 65.

【0024】上述したテンションひずみピーク値が顕著
に高くなる傾向及び同ピーク値を示す位置がより高い位
置(タイヤ半径方向でより外側となる位置)にシフトす
る傾向は、偏平比の呼びが小さくなるほどより顕著にあ
らわれる不可避的事実であることを突き止めている。
The tendency for the peak value of the tension strain to increase remarkably and the tendency for the position showing the same peak value to shift to a higher position (a position on the outer side in the radial direction of the tire) tends to decrease as the aspect ratio is reduced. We have found that it is an unavoidable fact that appears more prominently.

【0025】さらに図13、14に示すように、サイド
ウォールゴム67、67−1の接合面P(図9を合せ参
照)がタイヤ表面にあらわれる位置のテンションひずみ
に関し、偏平比の呼び65のタイヤは分布曲線S1 上の
比較的小さな値に止まっているのに対し、偏平比の呼び
45のタイヤでは分布曲線S2 上のピーク値近傍と合致
して著しく高い値となる。このテンションひずみは負荷
転動時の極めて多数回に及ぶ繰り返し撓曲変形の都度生
じ、それ故偏平比の呼び65のタイヤではほとんど見ら
れなかった接合面Pにおけるクラック故障が、この実験
例では偏平比の呼び45のタイヤ、実際上は偏平比の呼
び55以下のタイヤが実用に供されて初めて現れたのは
当然といえる。従ってこの故障は新形態のクラック故障
と呼ぶのが相応しい。
Further, as shown in FIGS. 13 and 14, regarding the tension strain at the position where the joint surface P of the sidewall rubbers 67 and 67-1 (see also FIG. 9) appears on the tire surface, the tire having a nominal aspect ratio of 65 is used. Is a relatively small value on the distribution curve S 1 , while the tire having a flatness ratio of nominal 45 has a remarkably high value in agreement with the vicinity of the peak value on the distribution curve S 2 . This tension strain occurs every time a large number of repeated flexural deformations occur during load rolling. Therefore, crack failure at the joint surface P, which was rarely seen in the tire with a flatness ratio of 65, was flattened in this experimental example. It can be said that a tire having a nominal ratio of 45, actually a tire having a nominal aspect ratio of 55 or less, appeared only after being put into practical use. Therefore, it is appropriate to call this failure a new type of crack failure.

【0026】また何故同一配合ゴム組成物からなるサイ
ドウォールゴム67、67−1の接合面Pにクラック故
障が発生するかといえば、これらのゴム部材段階におけ
る表面状態は押出し時に多少なりとも内部状態と異な
り、さらに押出しから成形に至るまでの時間経過の間に
一層変化を受け勝ちであり、その結果加硫後に得られる
接合面Pにおける結合強さはその他の部分のそれに比し
より弱く、結局このより弱い結合状態部分に大きなテン
ションひずみが繰り返し作用すると表面クラックが発生
し勝ちになり、しかも一旦クラックが発生すればその後
はひずみが集中して進展するからである。
The reason why a crack failure occurs at the joint surface P of the sidewall rubbers 67 and 67-1 made of the same compounded rubber composition is that the surface condition at the stage of these rubber members is an internal condition to some extent during extrusion. Unlike the above, it is more susceptible to changes during the time from extrusion to molding, and as a result, the bond strength at the joint surface P obtained after vulcanization is weaker than that at the other parts, and eventually, This is because if a large tension strain is repeatedly applied to this weaker bonded state portion, surface cracks tend to occur, and once cracks occur, the strain will concentrate and progress thereafter.

【0027】これに対し、各サイドウォールゴムを全周
にわたりタイヤ半径方向内側部分と外側部分とに振り分
け、振り分ける面のサイドウォールゴム外表面上の端位
置をタイヤ断面高さの1/2高さ以下とする上記内側部
分及び外側部分に対応する内側サイドウォールゴム部材
及び外側サイドウォールゴム部材それぞれを予め別個に
準備すること、第一成形工程にてこの内側サイドウォー
ルゴム部材をグリーンケースに張付けてこれを第二成形
工程に供給すること、第二成形工程にて、予めトレッド
ゴム部材の両側面上で合体させておいた各外側サイドウ
ォールゴム部材を、トロイド状に膨張変形させたグリー
ンケースに対しベルト部材及びトレッドゴム部材と共に
張付け、併せて内側サイドウォールゴム部材に張り合せ
ることにより、加硫後に得られるタイヤの各サイドウォ
ールゴムの上記振り分け面Q(図13、14参照)、す
なわち内側及び外側両サイドウォールゴム部材の加硫後
接合面Qにおけるサイドウォールゴム外表面上の端位置
を断面高さSHの1/2高さ以下に位置させることがで
き、この端位置は、図13、14に示すひずみ分布曲線
上のひずみ0%近傍領域、ないしコンプレッション側に
寄ったひずみ領域に該当することになり、よって大きな
テンションひずみに由来する新形態クラック故障の発生
を有効に阻止することが可能となる。
On the other hand, each sidewall rubber is distributed over the entire circumference into an inner portion and an outer portion in the tire radial direction, and the end position on the outer surface of the sidewall rubber of the distribution surface is 1/2 height of the tire section height. The inside sidewall rubber member and the outside sidewall rubber member corresponding to the inside portion and outside portion described below are separately prepared in advance, and the inside sidewall rubber member is attached to the green case in the first molding step. Supplying this to the second molding step, in the second molding step, each outer sidewall rubber member that was previously united on both side surfaces of the tread rubber member was expanded and deformed into a toroid shape into a green case. On the other hand, the belt member and the tread rubber member are attached together, and the inner side wall rubber member is also attached. The above-mentioned distribution surface Q of each sidewall rubber of the tire to be obtained later (see FIGS. 13 and 14), that is, the end position on the outer surface of the sidewall rubber in the joint surface Q after vulcanization of both the inner and outer sidewall rubber members is cross-sectioned. It can be positioned below 1/2 height of the height SH, and this end position corresponds to a strain near 0% region on the strain distribution curve shown in FIGS. 13 and 14, or a strain region closer to the compression side. Therefore, it becomes possible to effectively prevent the occurrence of a new-type crack failure due to a large tension strain.

【0028】さらに上記未加硫タイヤ成形方法では、先
に触れた成形方法その三と対比しても新たに付加すべき
工程はなく、よって第一及び第二各成形工程を通じて生
産性を高度に保持することができる。またタイヤの構成
には一切手を触れるところはないのでトレッドゴムの耐
摩耗性を含む性能及び耐久性を所望するレベルに保持す
ることが可能である。
Further, in the above-mentioned unvulcanized tire molding method, there is no step to be newly added in comparison with the above-mentioned molding method No. 3, so that the productivity can be enhanced through the first and second molding steps. Can be held. Further, since there is nothing to touch the tire structure, it is possible to maintain the performance including the abrasion resistance and durability of the tread rubber at a desired level.

【0029】またタイヤ断面高さSHの1/2高さ以下
の位置に環状の突起リブをサイドウォールゴム外側に備
えるタイヤの場合、この突起リブ頂部表面のタイヤ半径
方向外側端縁近傍に上記振り分け端を位置させれば新形
態クラック故障の抑制に有効である。
Further, in the case of a tire having an annular protrusion rib on the outside of the sidewall rubber at a position not more than 1/2 height of the tire cross-section height SH, the above-mentioned distribution is made near the outer edge of the protrusion rib top surface in the tire radial direction. Positioning the edge is effective in suppressing new-type crack failures.

【0030】またさらに複数個の押出しヘッドをもつ押
出機を用いて一対の外側サイドウォールゴム部材とトレ
ッドゴム部材とを一体状に押出し成形した複合ゴム部材
を第二成形工程にて適用するか、又は予めベルト部材と
トレッドゴム部材とを成形ドラム上にて張り合せると
き、併せて一対の外側サイドウォールゴム部材をトレッ
ドゴム部材に張付けた混成部材を第二成形工程にて適用
すれば、成形工数の増加を回避することに寄与する。
Further, a composite rubber member obtained by integrally extruding a pair of outer sidewall rubber members and a tread rubber member using an extruder having a plurality of extrusion heads is applied in the second molding step, or Alternatively, when pasting the belt member and the tread rubber member on the forming drum in advance, if a hybrid member in which a pair of outer sidewall rubber members are attached to the tread rubber member is applied in the second forming step, the number of forming steps can be increased. Contribute to avoiding the increase of.

【0031】[0031]

【実施例】この発明による実施例を図1〜図4に基づき
以下詳細に説明する。まず図1は偏平比の呼びが55以
下である偏平空気入りラジアルタイヤ1の赤道面Eから
の左半断面を示し、タイヤ1の左半部と右半部とは赤道
面Eに関して対称な断面をもつ。なおトレッド部に設け
る溝の図示は省略した。
Embodiments of the present invention will be described in detail below with reference to FIGS. First, FIG. 1 shows a left half section from an equatorial plane E of a flat pneumatic radial tire 1 having a nominal aspect ratio of 55 or less. The left half section and the right half section of the tire 1 are symmetrical sections with respect to the equatorial plane E. With. Illustration of the groove provided in the tread portion is omitted.

【0032】タイヤの基本構成は先に述べたタイヤ2
0、40、60と同じであり、一対のビードコア3(片
側のみ示す)相互間にわたりトロイド状に延びる2プラ
イのラジアルカーカス4はビードコア3の周りをタイヤ
内側から外側に向けて折返し、ビード部2、サイドウォ
ール部8及びトレッド部9を補強し、ベルト5は内側の
2層のスチールコード交差層とその外側の2層の周方向
配列コード層との4層からなり、トレッド部9を強化す
る。
The basic construction of the tire is the tire 2 described above.
The two-ply radial carcass 4, which is the same as 0, 40, 60 and extends in a toroidal shape between a pair of bead cores 3 (only one side is shown), is folded back around the bead core 3 from the tire inner side to the outer side, and the bead portion 2 is formed. The side wall portion 8 and the tread portion 9 are reinforced, and the belt 5 is made up of four layers of two inner steel cord intersecting layers and two outer circumferentially arranged cord layers to strengthen the tread portion 9. .

【0033】トレッドゴム6の両側から接合面Pを介し
て各サイドウォールゴム7がビード部2の上方領域まで
延びる。この例ではビード部におけるカーカス4の折返
し部の外側に沿って配置した、適用リムのフランジと係
合するゴムチェーファ2Mを設け、またビードコア3の
外周上でカーカス4本体と折返し部との間を先細りに延
びるゴムスティフナ2Nを設けてビード部を強化する。
よってこの図示例のサイドウォールゴム7はタイヤ半径
方向内側でゴムチェーファ2Mとの間で接合面Rを形成
する。なおカーカス4の内面には空気不透過性のインナ
ーライナを適用する。
The sidewall rubbers 7 extend from both sides of the tread rubber 6 through the joint surface P to the region above the bead portion 2. In this example, a rubber chafer 2M that is arranged along the outer side of the folded portion of the carcass 4 in the bead portion and that engages with the flange of the applicable rim is provided, and the portion between the carcass 4 main body and the folded portion is tapered on the outer periphery of the bead core 3. By providing a rubber stiffener 2N extending to, the bead portion is strengthened.
Therefore, the sidewall rubber 7 of this illustrated example forms a joint surface R with the rubber chafer 2M on the inner side in the tire radial direction. An inner liner impermeable to air is applied to the inner surface of the carcass 4.

【0034】サイドウォール部8には環状の突起リブ8
Mを設けた例を図示し、この突起リブ8Mを設けないタ
イヤの場合を2点鎖線にて示した。突起リブ8Mはリム
ガードと呼ばれ、タイヤが大きく撓曲した際リムフラン
ジにより受けるサイドウォール部8の著しい損傷から保
護する役を果たす。それ故突起リブ8Mはサイドウォー
ル部8の下方に、より正確にはタイヤ断面高さSHの1
/2高さ以下に位置させる。ここにタイヤ断面高さSH
とはリム径ラインRLから測った高さである。なお先に
述べた偏平比に用いる断面高さSHは上記高さSHと同
一である。
The sidewall portion 8 has an annular protruding rib 8
An example in which M is provided is illustrated, and the case of the tire in which the protruding rib 8M is not provided is indicated by a two-dot chain line. The protruding rib 8M is called a rim guard and serves to protect the sidewall portion 8 from being significantly damaged by the rim flange when the tire is largely bent. Therefore, the protruding rib 8M is provided below the sidewall portion 8, more accurately, at a tire cross-section height SH of 1 mm or less.
Position it at less than 1/2 height. Tire cross section height SH
Is the height measured from the rim diameter line RL. The cross-sectional height SH used for the aspect ratio described above is the same as the height SH.

【0035】サイドウォールゴム7を全周にわたり、断
面図上では図示の線分Qにより、タイヤとしては勿論線
分Qを含む振り分け面Qにより、タイヤ半径方向内側部
分7Lとタイヤ半径方向外側部分7Uとに振り分けるも
のとする。好適にはこの振り分け線分Qを高さ2分線H
Lに対し傾斜させる。そのときサイドウォールゴム7の
内側部分7Lの上方部分と外側部分7Uの下方部分とは
互いにタイヤ半径方向に重なり合い、この重なり部分に
て外側部分7Uを外側に位置させるのが望ましい。
Along the entire circumference of the sidewall rubber 7, the tire radial inner side portion 7L and the tire radial outer side portion 7U are shown by the line segment Q shown in the sectional view, and by the distribution surface Q including the line segment Q as well as the tire. Shall be allocated to. Preferably, this dividing line segment Q is a height bisector line H.
Tilt with respect to L. At that time, it is desirable that the upper portion of the inner portion 7L of the sidewall rubber 7 and the lower portion of the outer portion 7U overlap each other in the tire radial direction, and the outer portion 7U is positioned outside at this overlapping portion.

【0036】サイドウォールゴム7の外表面上にあらわ
れる振り分け線分Qの端Y、又は端Zは何れも、断面高
さSHの1/2を示す高さ2分線HL以下の高さに位置
することが重要である。ここに前者の端Yは突起リブ8
Mを備えるサイドウォール部8の場合であり、後者の端
Zは突起リブ8Mを備えていない2点鎖線で示すサイド
ウォール部8の場合である。また突起リブ8Mの頂部表
面を高さ2分線HL以下の高さに位置させ、かつこの突
起頂部表面のタイヤ半径方向外側縁近傍に端Yを位置さ
せる。
Either the end Y or the end Z of the dividing line segment Q appearing on the outer surface of the sidewall rubber 7 is located at a height equal to or lower than the height bisector line HL which shows 1/2 of the sectional height SH. It is important to. Here, the former end Y is the protruding rib 8
This is the case of the sidewall portion 8 provided with M, and the latter end Z is the case of the sidewall portion 8 not provided with the protruding rib 8M and shown by the chain double-dashed line. Further, the top surface of the protrusion rib 8M is positioned at a height equal to or lower than the height bisector HL, and the end Y is positioned near the outer edge of the protrusion top surface in the tire radial direction.

【0037】次に図2〜図6に基づき上述したタイヤ1
の未加硫タイヤ成形方法につき説明する。図2は第一成
形工程が完了したグリーンケース11Gとその成形機8
0の一部との断面を線図として簡略図解した説明図であ
り、図3は第二成形工程半ばの未加硫タイヤとその成形
機との断面を図2同様にあらわした説明図であり、図4
は図3に示す未加硫タイヤが第二成形工程を終了したあ
りさまを図3同様にあらわした説明図である。また図
5、6はベルト部材15とトレッドゴム部材16とを予
め複合部材として組立てたありさまの図2〜4同様の説
明図である。
Next, the tire 1 described above with reference to FIGS.
The method for forming an unvulcanized tire will be described. FIG. 2 shows the green case 11G and the molding machine 8 for which the first molding process has been completed.
Fig. 3 is an explanatory view schematically showing a cross section with a part of 0 as a diagram, and Fig. 3 is an explanatory view showing a cross section of an unvulcanized tire in the middle of the second molding step and its molding machine in the same manner as Fig. 2. , Fig. 4
FIG. 4 is an explanatory view showing a state in which the unvulcanized tire shown in FIG. 3 has completed the second molding step, similarly to FIG. 3. 5 and 6 are explanatory views similar to FIGS. 2 to 4 in which the belt member 15 and the tread rubber member 16 are assembled in advance as a composite member.

【0038】先に述べたようにして定めたサイドウォー
ルゴム7の内側部分7L及び外側部分7Uの輪郭形状に
対応する断面形状をもつ内側サイドウォールゴム部材1
7L及び外側サイドウォールゴム部材17Uをそれぞれ
別個に押出機などにより押出し成形して準備する。ここ
に上記の「対応する断面形状」とは、押出し成形後から
第一及び第二成形工程を経て加硫工程終了までに生じる
変形分を見込んだ断面形状を指す。
The inner side wall rubber member 1 having a cross-sectional shape corresponding to the contour shapes of the inner side portion 7L and the outer side portion 7U of the side wall rubber 7 determined as described above.
7L and the outside sidewall rubber member 17U are separately prepared by extrusion molding using an extruder or the like. Here, the above-mentioned "corresponding cross-sectional shape" refers to a cross-sectional shape that allows for the amount of deformation that occurs after extrusion molding, through the first and second molding steps, and before the end of the vulcanization step.

【0039】まず図2に示すように第一成形工程にてラ
ジアルカーカスプライ14と一対のビードコア13とを
組立てた後、別個に予め準備した内側及び外側各サイド
ウォールゴム部材のうち、一対の内側サイドウォールゴ
ム部材17Lを所定位置に張付けて筒状グリーンケース
11Gを得る。一方、外側サイドウォールゴム部材17
Uは予めトレッドゴム部材16の両側表面上で合体させ
た複合ゴム部材として次の第二成形に備える。このとき
図示を省略したゴムチェーファ2M、ゴムスティフナ2
N及びインナーライナそれぞれの部材も合せて組立てる
ものとする。なお予め内側サイドウォールゴム部材17
Lとゴムチェーファ2M用部材とをデュアルチューバな
どにより一体状に複合ゴム部材として押出し成形してお
くのが望ましい。
First, as shown in FIG. 2, after assembling the radial carcass ply 14 and the pair of bead cores 13 in the first molding step, a pair of inner side and outer side rubber members separately prepared in advance are paired inside. The sidewall rubber member 17L is attached to a predetermined position to obtain the tubular green case 11G. On the other hand, the outer sidewall rubber member 17
U is a composite rubber member that has been previously united on both side surfaces of the tread rubber member 16 and is prepared for the next second molding. At this time, the rubber chafer 2M and the rubber stiffener 2 not shown are shown.
The N and inner liner members shall also be assembled together. In addition, the inside sidewall rubber member 17
It is desirable that L and the rubber chafer 2M member are integrally extruded as a composite rubber member by a dual tuba or the like.

【0040】上記の第一成形工程を経たグリーンケース
11Gを先に述べた第二成形工程に供給する。図3、4
が示すところに従い、この工程に用いる第二成形機90
はトロイド状に拡径自在な円筒状ブラダ92と、それを
気密に保持する一対の保持体94と、これと連係動作し
てグリーンケース11Gの一対のビード部分を確実に担
持し、かつ担持した一対のビード部分の相互間隔を所定
間隔に狭めるように相互に接近動作自在な一対のビード
部担持体96とを有する(以上は従来の成形方法タイプ
その一〜その三に同じ)。また第二成形機90は所定の
圧力をもつ加圧流体(例えば加圧空気)をブラダ92に
供給してこれを拡径(膨張)変形自在とし、加圧流体の
排出によりブラダ92を元の円筒状に復元自在とする手
段を備える。
The green case 11G which has undergone the first molding process is supplied to the second molding process described above. Figures 3 and 4
The second molding machine 90 used in this step
Is a toroidally expandable cylindrical bladder 92, a pair of holding members 94 that hermetically holds the bladder 92, and a pair of bead portions of the green case 11G are reliably carried and carried in cooperation with this. And a pair of bead portion carriers 96 that can move toward each other so as to narrow the mutual distance between the pair of bead portions to a predetermined distance (the above is the same as the conventional molding method types 1 to 3). Further, the second molding machine 90 supplies a pressurized fluid (for example, pressurized air) having a predetermined pressure to the bladder 92 so that the bladder 92 can be expanded (expanded) and deformed, and the bladder 92 is restored to the original state by discharging the pressurized fluid. It is provided with a means capable of being restored to a cylindrical shape.

【0041】そこで図3に示すように、第二成形工程に
供給したグリーンケース11Gは、一対のビード部担持
体96の接近動作とブラダ92の拡径変形とに伴い、ビ
ード部内に埋設したビードコア部材13の相互間隔を狭
めてトロイド状に膨張変形する。所定の外径まで膨張し
たグリーンケース11Gの外周にベルト部材15と、ト
レッドゴム部材16と、該部材16の両側表面上に予め
合体させた外側サイドウォールゴム部材17Uとを適用
する。
Therefore, as shown in FIG. 3, the green case 11G supplied to the second molding step has a bead core embedded in the bead portion as the pair of bead portion carriers 96 approach each other and the bladder 92 expands in diameter. The space between the members 13 is reduced and the members 13 expand and deform in a toroidal shape. A belt member 15, a tread rubber member 16, and outer sidewall rubber members 17U that are preliminarily united on both side surfaces of the member 16 are applied to the outer periphery of the green case 11G expanded to a predetermined outer diameter.

【0042】この適用に先立ち、図5、6に別個に示す
ように3種の部材15、16、17Uを予め合体させた
混成部材18として準備しておく。図5に示す例は、複
数個の押出しヘッドをもつ押出機、いわゆるデュアルチ
ューバ又はトリプルチューバを用い、トレッドゴム部材
16と一対の外側サイドウォールゴム部材17Uとを一
体状に押出し成形した複合ゴム部材18を準備し、その
後元来ベルト部材15とトレッドゴム部材16とを一体
状の混成部材として第二成形に備えるための所定外径を
もつ成形ドラム85(BTドラムと略記する)に複合ゴ
ム部材18を供給し、それ以前にBTドラム85上に張
り合せておいたベルト部材15と複合ゴム部材18とを
張り合せて混成部材を得るタイプである。
Prior to this application, as shown separately in FIGS. 5 and 6, three kinds of members 15, 16 and 17U are prepared in advance as a hybrid member 18 which is integrated. The example shown in FIG. 5 is a composite rubber member obtained by integrally extruding a tread rubber member 16 and a pair of outer sidewall rubber members 17U using an extruder having a plurality of extrusion heads, a so-called dual tuba or triple tuba. 18 is prepared, and then the composite rubber member is formed on the molding drum 85 (abbreviated as BT drum) having a predetermined outer diameter so as to prepare the second molding as an integrated hybrid member of the belt member 15 and the tread rubber member 16. This is a type in which 18 is supplied and the belt member 15 and the composite rubber member 18, which have been bonded to the BT drum 85 before that, are bonded to each other to obtain a hybrid member.

【0043】図6に示す例では、BTドラム85本来の
機能に従いベルト部材15とトレッドゴム部材16とを
BTドラム85上にて張り合せた状態の混成部材に一対
の外側サイドウォールゴム部材17Uを実線で示す位置
から破線で示す位置16sに張付けて混成部材を得るタ
イプである。このタイプはトレッドゴム部材16自体が
異なる配合ゴム組成物からなる複合ゴム部材である場合
に有利である。何れのタイプにしてもこのような混成部
材18とした上で図3に示す第二成形工程でのグリーン
ケース11Gに適用する。なお混成部材18を担持して
グリーンケース11Gの所望位置に正確に止めるための
手段の図示は省略した。
In the example shown in FIG. 6, according to the original function of the BT drum 85, the belt member 15 and the tread rubber member 16 are bonded to each other on the BT drum 85, and a pair of outer sidewall rubber members 17U is attached to the composite member. This is a type in which a composite member is obtained by sticking from a position shown by a solid line to a position 16s shown by a broken line. This type is advantageous when the tread rubber member 16 itself is a composite rubber member composed of different rubber compositions. Whichever type is used, such a hybrid member 18 is applied and then applied to the green case 11G in the second molding step shown in FIG. It should be noted that illustration of means for carrying the hybrid member 18 and accurately stopping it at a desired position of the green case 11G is omitted.

【0044】図3に示す状態でステッチングロールSR
により混成部材18を半径方向外側から順次半径方向内
側に向け、それも未加硫タイヤ11の一部となるべき混
成部材18に対し成るべく垂直な向きで押圧して折り込
み、グリーンケース11Gに張付ける。そのとき内側及
び外側サイドウォールゴム部材17L、17Uは相互の
張り合せ面(図では線)Qaを形成して一体状サイドウ
ォールゴム17となる。なお線Paはトレッドゴム部材
16の両側面と外側サイドウォールゴム部材17Uとの
張付け面をあらわす。
Stitching roll SR in the state shown in FIG.
The mixed member 18 is sequentially directed from the outer side in the radial direction to the inner side in the radial direction by pressing in a direction as vertical as possible to the mixed member 18 which should also be a part of the unvulcanized tire 11, and is folded into the green case 11G. wear. At this time, the inner and outer side wall rubber members 17L and 17U form a bonding surface (a line in the figure) Qa to each other to become the integral side wall rubber 17. The line Pa represents the surface where the tread rubber member 16 is attached to both side surfaces and the outer sidewall rubber member 17U.

【0045】上述した成形方法により完成した偏平空気
入りラジアルタイヤ1の未加硫タイヤ11をブラダ92
内部の加圧流体を排出することにより第二成形機90か
ら取出し、取出した未加硫タイヤ11を次の加硫工程に
搬送し、ここで加硫成形を施し製品タイヤ1を完成させ
る。
The unvulcanized tire 11 of the flat pneumatic radial tire 1 completed by the above-mentioned molding method is bladder 92.
The unpressurized tire 11 is taken out from the second molding machine 90 by discharging the pressurized fluid inside, and the unvulcanized tire 11 taken out is conveyed to the next vulcanization step, where vulcanization molding is performed to complete the product tire 1.

【0046】この実施例に使用したタイヤは乗用車用ラ
ジアルプライタイヤで、サイズが285/30ZR18
であり、その構成は図1に従う。実施例1のタイヤは図
1における2点鎖線で示すサイドウォール部8を有し、
実施例2のタイヤは環状突起リブ8Mを備えるタイヤで
ある。接合面Qの表面側端Zのリム径ラインRLから測
った高さを0.4SHに設定し、同様に測った端Yの高
さを0.36SHに設定した。後者の端Yは突起リブ8
Mの頂部表面のタイヤ半径方向外側縁とほぼ一致する。
これらの設定値を満たすように各部材を準備し、これら
を組立て成形した未加硫タイヤ11を加硫したところほ
ぼ設定値に沿う接合面Qが得られた。なお外側サイドウ
ォールゴム部材17Uは押出機によるトレッドゴム部材
16との複合ゴム部材として準備し、混成部材18の成
形は図5に従った。
The tires used in this example were radial ply tires for passenger cars and had a size of 285 / 30ZR18.
And its configuration complies with FIG. The tire of Example 1 has a sidewall portion 8 indicated by a two-dot chain line in FIG.
The tire of Example 2 is a tire including the annular protrusion rib 8M. The height measured from the rim diameter line RL of the front surface side end Z of the joining surface Q was set to 0.4 SH, and the height of the end Y measured similarly was set to 0.36 SH. The latter end Y has a protruding rib 8
It substantially coincides with the tire radial outer edge of the top surface of M.
When each member was prepared so as to satisfy these set values, and the unvulcanized tire 11 obtained by assembling and molding these members was vulcanized, a joint surface Q substantially in accordance with the set values was obtained. The outer sidewall rubber member 17U was prepared as a composite rubber member with the tread rubber member 16 by an extruder, and the composite member 18 was molded according to FIG.

【0047】そこで実施例1、2の効果を評価するため
タイプその一〜その三に従う成形方法により製造した従
来例1〜3のタイヤを準備した。従来例1〜3はサイド
ウォールゴムの接合面を除き、他は全て実施例に合せ
た。なお全タイヤにつき第一及び第二成形工程での生産
性を評価し、結果は従来例1(タイプその一)を100
とする指数にてあらわすものとし、値は小なるほど良
い。
Therefore, in order to evaluate the effects of Examples 1 and 2, tires of Conventional Examples 1 to 3 produced by the molding method according to Types 1 to 3 were prepared. In each of Conventional Examples 1 to 3, except for the joint surface of the sidewall rubber, all other parts were matched with the examples. All tires were evaluated for productivity in the first and second molding steps, and the result was 100 for Conventional Example 1 (Type 1).
The smaller the value, the better.

【0048】またサイドウォールゴムの耐クラック性に
ついては実状に則す室外ドラム試験機を用いCBUドラ
ム試験条件の下で一定距離走行させた後、サイドウォー
ルゴム表面に生じたクラック長さを測定する比較評価テ
ストを実施した。両者のテスト結果は従来例1を100
とする指数にてあらわし、数値が小なるほど良い。耐ク
ラック性及び生産性の指数値を表1にまとめて示す。
Regarding the crack resistance of the sidewall rubber, an outdoor drum tester according to the actual situation is used, and after running for a certain distance under the CBU drum test condition, the length of cracks generated on the surface of the sidewall rubber is measured. A comparative evaluation test was conducted. The test results of both are 100 in Conventional Example 1.
The smaller the number, the better. Table 1 shows the index values of crack resistance and productivity.

【0049】[0049]

【表1】 [Table 1]

【0050】表1から明らかなように、従来例2(タイ
プその二)は確かに耐クラック性に関して実際上殆ど問
題とはならない優れた耐久性を示す一方、生産性が大幅
に低下するため実用性に欠け、従来例3(タイプその
三)は高度に高い生産性を保持することができる一方、
やはり新形態クラック故障の早期発生による耐クラック
性の低下は実用上品質問題となる低レベルに止まってい
るのに対し、実施例1、2は何れも生産性を高度に高い
レベルに保持した上で、新形態のクラック故障の発生を
阻止し優れた耐クラック性を発揮し得ることがわかる。
As is clear from Table 1, the conventional example 2 (type 2) certainly exhibits excellent durability with practically no problem with respect to crack resistance, but practically decreases productivity. Since the conventional example 3 (type 3) can maintain high productivity,
Again, the deterioration of the crack resistance due to the early occurrence of the new form crack failure remains at a low level which is a quality problem in practical use, while in each of Examples 1 and 2, the productivity is maintained at a high level. Thus, it can be seen that a new type of crack failure can be prevented and excellent crack resistance can be exhibited.

【0051】[0051]

【発明の効果】この発明によれば、加硫後タイヤの断面
高さの1/2高さ以下にサイドウォールゴムの接合面外
側が位置するように内側及び外側両サイドウォールゴム
部材を別個に準備し、内側サイドウォールゴム部材は第
一成形工程にて張付け、外側サイドウォールゴム部材を
第二成形工程にて張付ける成形方法を適用することで、
タイヤの負荷転動の下で最小テンションひずみ領域に両
サイドウォールゴム接合面を位置させ、その結果従来偏
平比の呼び55以下の偏平空気入りラジアルタイヤに不
可避的に発生したいた新形態のサイドウォール部クラッ
ク故障を有利に阻止することが可能となり、しかも他の
性能や耐久性を損なうことなく望ましい高生産性を保持
することが可能な偏平空気入りラジアルタイヤの未加硫
タイヤ成形方法を提供することができる。
According to the present invention, both the inside and outside sidewall rubber members are separately provided so that the outside of the joining surface of the sidewall rubber is located at a height of ½ or less of the sectional height of the vulcanized tire. By preparing and applying a molding method in which the inner side wall rubber member is attached in the first forming step and the outer side wall rubber member is attached in the second forming step,
Both side wall rubber joint surfaces are located in the minimum tension strain area under the load rolling of the tire, and as a result, a new type of sidewall was inevitably generated in the flat pneumatic radial tire with the nominal aspect ratio of 55 or less. Provided is a method for forming an unvulcanized tire for a flat pneumatic radial tire, which can advantageously prevent a partial crack failure and can maintain desired high productivity without impairing other performances and durability. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による成形方法に基づき得られたタイ
ヤのサイドウォールゴム接合面を説明する左半断面図で
ある。
FIG. 1 is a left half sectional view for explaining a sidewall rubber joining surface of a tire obtained by a molding method according to the present invention.

【図2】この発明による成形方法のうち第一成形工程に
おけるグリーンケース断面の説明図である。
FIG. 2 is an explanatory view of a cross section of the green case in the first molding step of the molding method according to the present invention.

【図3】この発明による成形方法のうち第二成形工程半
ばの未加硫タイヤ断面の説明図である。
FIG. 3 is an explanatory view of an unvulcanized tire cross section in the middle of the second molding step in the molding method according to the present invention.

【図4】この発明による成形方法のうち第二成形工程に
おける未加硫タイヤ断面の説明図である。
FIG. 4 is an explanatory view of an unvulcanized tire cross section in a second molding step of the molding method according to the present invention.

【図5】この発明による成形方法のうち第二成形工程に
供給する一実施例の混成部材断面の説明図である。
FIG. 5 is an explanatory view of a cross section of a hybrid member of one example of supplying to the second molding step in the molding method according to the present invention.

【図6】この発明による成形方法のうち第二成形工程に
供給する他の実施例の混成部材断面の説明図である。
FIG. 6 is an explanatory view of a cross section of a hybrid member of another embodiment which is supplied to the second molding step in the molding method according to the present invention.

【図7】従来のタイプその一の成形方法により得られた
タイヤのサイドウォールゴムとトレッドゴムとの接合面
を説明する左半断面図である。
FIG. 7 is a left half cross-sectional view illustrating a joint surface between a sidewall rubber and a tread rubber of a tire obtained by a molding method of the conventional type one.

【図8】従来のタイプその二の成形方法により得られた
タイヤのサイドウォールゴムとトレッドゴムとの接合面
を説明する左半断面図である。
FIG. 8 is a left half cross-sectional view illustrating a joint surface between a sidewall rubber and a tread rubber of a tire obtained by a conventional type 2 molding method.

【図9】従来のタイプその三の成形方法により得られた
タイヤのサイドウォールゴム相互の接合面を説明する左
半断面図である。
FIG. 9 is a left half cross-sectional view illustrating a joint surface between sidewall rubbers of a tire obtained by a molding method of a conventional type part 3.

【図10】図7に示すタイヤを得るための第二成形工程
半ばにおける未加硫タイヤ断面の説明図である。
10 is an explanatory view of a cross section of an unvulcanized tire in the middle of the second molding step for obtaining the tire shown in FIG.

【図11】図8に示すタイヤを得るための第二成形工程
半ばにおける未加硫タイヤ断面の説明図である。
11 is an explanatory view of a cross section of an unvulcanized tire in the middle of the second molding step for obtaining the tire shown in FIG.

【図12】図9に示すタイヤを得るための第二成形工程
半ばにおける未加硫タイヤ断面の説明図である。
12 is an explanatory view of a cross section of an unvulcanized tire in the middle of the second molding step for obtaining the tire shown in FIG.

【図13】荷重負荷時にタイヤサイドウォール部表面に
発生するひずみ線図である。
FIG. 13 is a strain diagram generated on the tire sidewall surface when a load is applied.

【図14】荷重負荷時にタイヤサイドウォール部表面に
発生するひずみ線図である。
FIG. 14 is a strain diagram generated on the surface of the tire sidewall portion when a load is applied.

【符号の説明】[Explanation of symbols]

1 偏平空気入りラジアルタイヤ 2 ビード部 2M ゴムチェーファ 2N ゴムスティフナ 3 ビードコア 4 ラジアルカーカス 5 ベルト 6 トレッドゴム 7 サイドウォールゴム 7L 内側サイドウォールゴム 7U 外側サイドウォールゴム 8 サイドウォール部 8M 環状突起リブ 9 トレッド部 11 未加硫タイヤ 11G グリーンケース 13 ビードコア部材 14 ラジアルカーカス部材 15 ベルト部材 16 トレッドゴム部材 17 サイドウォールゴム部材 17L 内側サイドウォールゴム部材 17U 外側サイドウォールゴム部材 18 混成部材 P トレッドゴムとサイドウォールゴムとの接合面 Q 内側及び外側両サイドウォールゴム接合面 SH タイヤ断面高さ HL 高さ2分線 RL リム径ライン Y、Z 接合面Qのサイドウォール部表面位置 1 Flat pneumatic radial tire 2 Bead part 2M Rubber chafer 2N Rubber stiffener 3 Bead core 4 Radial carcass 5 Belt 6 Tread rubber 7 Sidewall rubber 7L Inner sidewall rubber 7U Outer sidewall rubber 8 Sidewall part 8M Annular protrusion rib 9 Tread part 11 Unvulcanized tire 11G Green case 13 Bead core member 14 Radial carcass member 15 Belt member 16 Tread rubber member 17 Side wall rubber member 17L Inner side wall rubber member 17U Outer side wall rubber member 18 Mixed member P Tread rubber and side wall rubber Joint surface Q Inner and outer sidewall rubber joint surface SH Tire cross-section height HL height bisector RL Rim diameter line Y, Z Side wall surface of joint surface Q Location

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対のビード部内に埋設したビードコア
相互間にわたりトロイド状に延びる1プライ以上のラジ
アルカーカスと、該カーカスの外周に配設したベルト
と、該ベルトの外周に配置したトレッドゴムと、該トレ
ッドゴムの両側からカーカスの外側で各ビード部上方位
置まで延びる一対のサイドウォールゴムとを有する、偏
平比の呼びで55以下の偏平空気入りラジアルタイヤの
未加硫タイヤを成形するにあたり、 加硫後に得られるタイヤの各サイドウォールゴムを全周
にわたりタイヤ半径方向内側部分と外側部分とに振り分
け、振り分ける面のサイドウォールゴム外表面上の端位
置をタイヤ断面高さの1/2高さ以下とする上記内側部
分及び外側部分に対応する内側サイドウォールゴム部材
及び外側サイドウォールゴム部材それぞれを予め別個に
準備し、 別個に準備したこれら部材のうち内側サイドウォールゴ
ム部材を、カーカスプライ部材と各ビードコア部材とを
組立てて筒状グリーンケースとする第一成形工程にて張
付け、 この第一成形工程を経たグリーンケースをビードコア部
材の相互間隔を狭めてトロイド状に膨張変形させ、膨張
変形したグリーンケースの外周にベルト部材とトレッド
ゴム部材とを張付ける第二成形工程にて、予めトレッド
ゴム部材の両側面上で合体させた各外側サイドウォール
ゴム部材をグリーンケースに張付けると共に内側サイド
ウォールゴム部材に張り合せて一体状サイドウォールゴ
ム部材とすることを特徴とする偏平空気入りラジアルタ
イヤの未加硫タイヤ成形方法。
1. A radial carcass having one or more plies extending toroidally between bead cores embedded in a pair of bead portions, a belt disposed on the outer periphery of the carcass, and a tread rubber disposed on the outer periphery of the belt. In forming an unvulcanized tire of a flat pneumatic radial tire having a flatness ratio of 55 or less, having a pair of sidewall rubbers extending from both sides of the tread rubber to the position above each bead portion outside the carcass, Each side wall rubber of the tire obtained after vulcanization is distributed over the entire circumference into an inner part and an outer part in the tire radial direction, and the end position on the outer surface of the side wall rubber of the allocating surface is 1/2 height or less of the tire cross section height. The inner sidewall rubber member and the outer sidewall rubber member corresponding to the inner portion and outer portion, respectively. In advance, the inner side wall rubber member of these separately prepared members is attached in a first molding step of assembling the carcass ply member and each bead core member into a tubular green case, and In the second molding step, the green case that has undergone the molding process is expanded and deformed into a toroidal shape by narrowing the mutual interval of the bead core members, and the belt member and the tread rubber member are attached to the outer circumference of the expanded and deformed green case. A flat pneumatic radial tire characterized in that the outside sidewall rubber members combined on both side surfaces of the member are attached to the green case and also attached to the inside sidewall rubber member to form an integral sidewall rubber member. Unvulcanized tire molding method.
【請求項2】 タイヤ断面高さの1/2高さ以下に位置
する環状の突起リブをサイドウォールゴム外側に備える
加硫後タイヤの該リブのタイヤ半径方向外側端縁近傍に
上記振り分け端を位置させる請求項1に記載した成形方
法。
2. A vulcanized tire having an annular protruding rib located at a height equal to or less than ½ of the tire cross-sectional height on the outside of the sidewall rubber. The molding method according to claim 1, wherein the molding is performed.
【請求項3】 一対の外側サイドウォールゴム部材をト
レッドゴム部材との複合ゴム部材として複数個の押出し
ヘッドをもつ押出機により一体状に押出し成形し、該複
合部材を上記第二成形工程に適用する請求項1又は2に
記載した成形方法。
3. A pair of outer sidewall rubber members are extruded integrally as an integrated rubber member with a tread rubber member by an extruder having a plurality of extrusion heads, and the composite member is applied to the second forming step. The molding method according to claim 1 or 2.
【請求項4】 ベルト部材とトレッドゴム部材とを予め
所定の外径をもつ成形ドラム上で張り合せると共に一対
の外側サイドウォールゴム部材をトレッドゴム部材の両
側面上に張付けて成る混成部材を上記第二成形工程にて
適用する請求項1又は2に記載した成形方法。
4. A hybrid member comprising a belt member and a tread rubber member, which are previously bonded together on a molding drum having a predetermined outer diameter, and a pair of outer sidewall rubber members are bonded to both side surfaces of the tread rubber member. The molding method according to claim 1, wherein the molding method is applied in the second molding step.
JP05100195A 1994-04-12 1995-03-10 Method for molding unvulcanized tire of flat pneumatic radial tire Expired - Lifetime JP3193583B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP05100195A JP3193583B2 (en) 1994-04-12 1995-03-10 Method for molding unvulcanized tire of flat pneumatic radial tire
ES95302368T ES2142457T3 (en) 1994-04-12 1995-04-10 MANUFACTURE METHOD OF NON-VULCANIZED TIRE COVERS WITH LOW SECTION PROFILE.
DE69514563T DE69514563T2 (en) 1994-04-12 1995-04-10 Process for the production of radial green tires with a low cross-sectional profile
EP95302368A EP0677375B1 (en) 1994-04-12 1995-04-10 Method of building green radial tyres having low-section profile
US08/767,856 US5746860A (en) 1994-04-12 1996-12-17 Method of building green tires for low-section profile pneumatic radial tires

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-73083 1994-04-12
JP7308394 1994-04-12
JP05100195A JP3193583B2 (en) 1994-04-12 1995-03-10 Method for molding unvulcanized tire of flat pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH07329208A true JPH07329208A (en) 1995-12-19
JP3193583B2 JP3193583B2 (en) 2001-07-30

Family

ID=26391513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05100195A Expired - Lifetime JP3193583B2 (en) 1994-04-12 1995-03-10 Method for molding unvulcanized tire of flat pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP3193583B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645722B (en) 2012-06-29 2018-12-21 日商精良股份有限公司 Mobile phone
KR101973486B1 (en) 2014-12-18 2019-04-29 파인웰 씨오., 엘티디 Cartilage conduction hearing device using an electromagnetic vibration unit, and electromagnetic vibration unit
EP3248394A4 (en) 2015-01-19 2018-09-12 3M Innovative Properties Company Hearing protection device with convoluted acoustic horn
WO2017010547A1 (en) 2015-07-15 2017-01-19 ローム株式会社 Robot and robot system
JP2020053948A (en) 2018-09-28 2020-04-02 株式会社ファインウェル Hearing device

Also Published As

Publication number Publication date
JP3193583B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US7712500B2 (en) Pneumatic tire with cushion rubber and method for producing the same
JP4523815B2 (en) Heavy duty pneumatic tire and manufacturing method thereof
EP2000292B1 (en) Method for producing pneumatic tire
EP1859924B1 (en) Method for producing pneumatic tire
EP0254996B1 (en) Coextruded seamless tubular tire bodies
EP1795376B1 (en) Run flat tire and method of manufacturing run flat tire
US5746860A (en) Method of building green tires for low-section profile pneumatic radial tires
US6972061B1 (en) Compound apex for vehicle tire
JPH07329208A (en) Formation of unvulcanized tire for flat pneumatic radial tire
JP4625319B2 (en) Pneumatic tire and manufacturing method thereof
JP2000502294A (en) Unvulcanized non-cord reinforced subassembly for incorporation into a tire envelope
JP3138404B2 (en) Method for manufacturing retreaded tires for trucks and buses
EP3725541A1 (en) Reversible pneumatic tyre provided with a double tread
ZA200609443B (en) Vehicle pneumatic tyres having a multi-part core profile, and method for the production thereof
KR100814159B1 (en) Manufacturing process of pneumatic tire
JP3032754B1 (en) Pneumatic tire and method of manufacturing the same
JPH05154941A (en) Manufacture of recap tire and recap tire itself
EP0723884B1 (en) A pneumatic tire and an unvulcanized carcass as an intermediate article in its manufacture
JPH09277402A (en) Production of radial tire for heavy load and radial tire
AU702582B2 (en) A pneumatic tire and an unvulcanized carcass as an intermediate article in its manufacture
KR100917757B1 (en) Joint method of body ply in pneumatic tire
JP3329571B2 (en) Molding method of flat pneumatic radial tire
JPH06227214A (en) Pneumatic radial tire with excellent maneuvering stability
JPH07266453A (en) Production of flat pneumatic radial tire
US6231708B1 (en) Method and device for manufacturing a pneumatic vehicle tire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term