JPH0732859B2 - Method for producing mixed gas for synthesis - Google Patents

Method for producing mixed gas for synthesis

Info

Publication number
JPH0732859B2
JPH0732859B2 JP1329469A JP32946989A JPH0732859B2 JP H0732859 B2 JPH0732859 B2 JP H0732859B2 JP 1329469 A JP1329469 A JP 1329469A JP 32946989 A JP32946989 A JP 32946989A JP H0732859 B2 JPH0732859 B2 JP H0732859B2
Authority
JP
Japan
Prior art keywords
gas
mixed gas
adsorption tower
synthesis
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1329469A
Other languages
Japanese (ja)
Other versions
JPH03193112A (en
Inventor
昌弘 川野
努 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP1329469A priority Critical patent/JPH0732859B2/en
Publication of JPH03193112A publication Critical patent/JPH03193112A/en
Publication of JPH0732859B2 publication Critical patent/JPH0732859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】 イ.発明の目的 産業上の利用分野 本発明は炭化水素の水蒸気改質ガスからH2及びCOよりな
る合成用混合ガス、なかんずくオキソ反応に供するため
の合成用混合ガスを製造する方法に関するものである。
Detailed Description of the Invention a. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mixed gas for synthesis consisting of H 2 and CO from a steam reforming gas of a hydrocarbon, in particular, a mixed gas for synthesis to be subjected to an oxo reaction.

従来の技術 水蒸気改質法は、原料として、天然ガス(主成分:メタ
ン)、LPG、ナフサなどの炭化水素をニッケル触媒上で
水蒸気と反応させてH2を主成分とし、その他CO、CO2
らなるガスに変える方法である。
Conventional technology The steam reforming method uses hydrocarbons such as natural gas (main component: methane), LPG, and naphtha as raw materials to react with steam on a nickel catalyst to make H 2 the main component, and other CO, CO 2 It is a method of changing to gas consisting of.

ブタンを例にした場合の反応式は、 C4H10+4H2O→4CO+9H2 (1) この場合、下記のごとき反応も起こり C4H10+8H2O→4CO2+13H2 (2) CO+H2OCO2+H2 (3) CO+3H2CH4+H2O (4) CO2+4H2CH4+2H2O (5) CO2やメタンも副生する。In the case of butane as an example, the reaction formula is C 4 H 10 + 4H 2 O → 4CO + 9H 2 (1) In this case, the following reactions also occur and C 4 H 10 + 8H 2 O → 4CO 2 + 13H 2 (2) CO + H 2 OCO 2 + H 2 (3) CO + 3H 2 CH 4 + H 2 O (4) CO 2 + 4H 2 CH 4 + 2H 2 O (5) CO 2 and methane are also by-produced.

従って、CO及びH2のみからなる合成用混合ガスを得るた
めには改質反応温度を高くして(4)、(5)の反応を
左に進行させメタンを少なくしたうえでCO2を除去しな
ければならない。
Therefore, in order to obtain a mixed gas for synthesis consisting only of CO and H 2 , the reforming reaction temperature is raised (4), the reaction of (5) proceeds to the left to reduce methane, and then CO 2 is removed. Must.

H2/CO比調節のため、従来は改質ガス中のCO2を吸収液に
て吸収除去し、吸収液の再生時に発生するCO2を改質反
応器にリサイクルする方法がとられている。
In order to adjust the H 2 / CO ratio, CO 2 in the reformed gas is conventionally absorbed and removed by an absorbing solution, and the CO 2 generated during regeneration of the absorbing solution is recycled to the reforming reactor. .

例えばオキソ合成用混合ガス製造プロセスではCO2を吸
収するためにモノエタノールアミンなどのアルカリ性吸
収液を用いているが、この方法は吸収液の再生に多量の
熱エネルギーが必要で、吸収液の循環量も多く、装置も
高価で腐食トラブルが多いという問題がある。
For example, in the mixed gas manufacturing process for oxo synthesis, an alkaline absorption liquid such as monoethanolamine is used to absorb CO 2 , but this method requires a large amount of heat energy to regenerate the absorption liquid, and the absorption liquid is circulated. There are problems that the amount is large, the apparatus is expensive, and there are many corrosion troubles.

また前記(4)式及び(5)式の反応を左に進行させメ
タンを少なくするために水蒸気改質反応において炭化水
素に対する水蒸気の比率を量論比以上に大にし且つ高温
にしなければならない。
Further, in order to allow the reactions of the above formulas (4) and (5) to proceed to the left and reduce the amount of methane, the ratio of steam to hydrocarbon in the steam reforming reaction must be made larger than the stoichiometric ratio and at a high temperature.

発明が解決しようとする課題 本発明は、上記の問題点を解決した合成用混合ガスの製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a mixed gas for synthesis that solves the above problems.

ロ.発明の構成 課題を解決するための手段 本発明に係る合成用混合ガス製造方法は、炭化水素を水
蒸気改質した後改質ガスからCO2を除去してH2及びCOよ
りなる合成用混合ガスを得る方法において、水蒸気改質
されたガスを加圧状態でCO2を吸着する吸着剤を充填し
た吸着塔に通しCO2を吸着剤に吸着させH2及びCOをリー
クさせて合成用混合ガスを得、前記吸着塔からCO2がリ
ークする前又は少量リークした時点で吸着塔を切り替
え、異なる吸着塔でCO2の吸着を続行すると共に使用済
の吸着塔を落圧し水素ガス又は水素−CO混合ガスを導入
して吸着剤の再生を行い、落圧、再生時に流出するガス
と共に系外からCO2を水蒸気改質反応器に供給すること
を特徴とする。
B. Means for Solving the Problems A method for producing a mixed gas for synthesis according to the present invention is a mixed gas for synthesis comprising H 2 and CO by removing CO 2 from the reformed gas after steam reforming a hydrocarbon. a method of obtaining a steam reformed gas pressurized with CO 2 adsorption to the adsorbent the filled with CO 2 passed through the adsorption tower is adsorbed on the adsorbent H 2 and CO leaked was synthesized gas mixture The adsorption tower is switched before CO 2 leaks from the adsorption tower or when a small amount leaks, and the adsorption of CO 2 is continued in a different adsorption tower and the pressure of the used adsorption tower is reduced to hydrogen gas or hydrogen-CO. It is characterized in that a mixed gas is introduced to regenerate the adsorbent, and CO 2 is supplied from the outside of the system to the steam reforming reactor together with the gas flowing out during the pressure reduction and regeneration.

水蒸気改質工程で使用される原料炭化水素としては、天
然ガス(メタンが主成分)やLPG、ナフサ等の炭化水素
が使用される。
As the raw material hydrocarbons used in the steam reforming process, hydrocarbons such as natural gas (mainly composed of methane), LPG and naphtha are used.

以下添付第1図により本発明を具体的に説明するが、本
発明の実施態様は第1図に限定されるものではない。
The present invention will be described in detail below with reference to the attached FIG. 1, but the embodiment of the present invention is not limited to FIG.

炭化水素原料1及び水素2を混合し加熱炉3で加熱して
から、水添脱硫塔4で原料中の硫黄化合物を水素化分解
し、生成した硫化水素を吸着させて脱硫する。脱硫させ
た原料を水蒸気発生器15からの水蒸気と共に高温水蒸気
改質反応器5に導入して前記(1)〜(5)式で示され
るような水蒸気改質反応を行わせる。
After the hydrocarbon raw material 1 and hydrogen 2 are mixed and heated in the heating furnace 3, the sulfur compound in the raw material is hydrocracked in the hydrodesulfurization tower 4, and the produced hydrogen sulfide is adsorbed and desulfurized. The desulfurized raw material is introduced into the high temperature steam reforming reactor 5 together with the steam from the steam generator 15 to carry out the steam reforming reaction as represented by the above formulas (1) to (5).

生成ガスはクーラー6で冷却して凝縮した水を分離し、
CO2を吸着する吸着剤を充填した吸着塔8A、8B、8Cのい
ずれかに導入し、CO2を吸着剤に吸着させて吸着塔の頂
部からH2及びCOを流出させ、バッファータンク9を経て
合成用混合ガス10を得る。吸着工程で流出してくるガス
は初期は水素、次いで水素−CO混合気になり組成が変動
するので、これを平滑化するためにバッファータンク9
を設ける。
The produced gas is cooled by a cooler 6 to separate condensed water,
Adsorption tower 8A packed with an adsorbent for adsorbing CO 2, 8B, and introduced into one of 8C, the CO 2 was drained of H 2 and CO from the top of the adsorption tower is adsorbed on the adsorbent, the buffer tank 9 After that, a mixed gas for synthesis 10 is obtained. The gas flowing out in the adsorption process becomes hydrogen at first and then becomes a mixture of hydrogen and CO, and the composition fluctuates.
To provide.

水蒸気改質触媒の種類や温度、圧力、水蒸気/炭素比等
の操業条件については従来技術で用いられている条件、
即ち、温度750℃〜850℃、圧力〜30Kg/cm2G、水蒸気/
炭素比2.0〜4.5モル/アトム、CO2/C比0〜4.5モル/ア
トムなる条件を用いても良いが、原料がLPGやナフサの
場合、高温水蒸気改質反応器の前に低温水蒸気改質反応
器を設置し、原料を予め低温水蒸気改質反応器でCH4、H
2、CO、CO2にしてからCO2を追加して高温改質する場合
には、低温改質反応条件は400℃〜500℃、圧力〜30Kg/c
m2G、水蒸気/炭素比1.5〜2.5モル/アトムで行い、高
温改質では水蒸気/炭素比2.4〜4.5モル/アトム、CO2/
C比2.0〜4.5モル/アトムで操業しても良い。
Regarding the operating conditions such as the type and temperature of the steam reforming catalyst, pressure, steam / carbon ratio, etc., the conditions used in the prior art,
That is, the temperature is 750 ° C to 850 ° C, the pressure is 30 Kg / cm 2 G, water vapor /
Conditions such as a carbon ratio of 2.0 to 4.5 mol / atom and a CO 2 / C ratio of 0 to 4.5 mol / atom may be used, but when the raw material is LPG or naphtha, low temperature steam reforming is performed before the high temperature steam reforming reactor. A reactor is installed, and the raw materials are preliminarily CH 4 and H 2 in the low temperature steam reforming reactor.
2 , when CO, CO 2 and then CO 2 is added for high temperature reforming, low temperature reforming reaction conditions are 400 ℃ ~ 500 ℃, pressure ~ 30 Kg / c
m 2 G, steam / carbon ratio 1.5 to 2.5 mol / atom, high temperature reforming steam / carbon ratio 2.4 to 4.5 mol / atom, CO 2 /
It is also possible to operate with a C ratio of 2.0 to 4.5 mol / atom.

吸着塔で使用する吸着剤としては活性アルミナ(除湿)
及び活性炭(CO2除去)を用いるのが良い。
Activated alumina (dehumidification) as the adsorbent used in the adsorption tower
And it is better to use activated carbon (CO 2 removal).

吸着運転を行うと吸着塔からCO2が吸着塔の頂部からリ
ークするようになるが、その直前又は少量リークした時
点で吸着塔を切り替え、異なる吸着塔でCO2吸着を続行
して合成用混合ガスを得ると共に使用済の吸着塔を落圧
し水素ガス又は水素・CO混合ガスを導入して吸着剤の再
生を行う。
When adsorption operation is performed, CO 2 leaks from the top of the adsorption tower, but the adsorption tower is switched immediately before or when a small amount leaks, and CO 2 adsorption is continued in a different adsorption tower to continue mixing for synthesis. When gas is obtained, the pressure of the used adsorption tower is reduced and hydrogen gas or hydrogen / CO mixed gas is introduced to regenerate the adsorbent.

再生の為の水素ガス又は水素−CO混合ガスの吸着塔への
導入は吸着塔の上方から行い、吸着塔の下方から流出す
るガス(H2、CO、CO2)はバッファータンク12、コンプ
レッサー13を経て高温水蒸気改質炉5にリサイクルす
る。吸着塔の落圧、再生時に流出するガスも組成及び量
が変動するのでバッファータンク12を設けてリサイクル
ガスの組成及び量を平均化する。
The hydrogen gas or hydrogen-CO mixed gas for regeneration is introduced into the adsorption tower from above the adsorption tower, and the gas (H 2 , CO, CO 2 ) flowing out from below the adsorption tower is the buffer tank 12 and the compressor 13. And is recycled to the high temperature steam reforming furnace 5. Since the composition and amount of the gas flowing out at the time of regeneration and regeneration of the pressure in the adsorption tower also vary, the buffer tank 12 is provided to average the composition and amount of the recycled gas.

吸着剤の再生用水素は系外から導入しても良いが、吸着
工程初期の精製高純度水素の一部を高純度水素タンク11
に貯留しておき、これを利用するのが良い。
Hydrogen for regenerating the adsorbent may be introduced from outside the system, but a portion of the purified high-purity hydrogen in the early stage of the adsorption process may be transferred to the high-purity hydrogen tank 11.
It is good to store it in and use it.

吸着塔は3塔以上設け吸着、(移圧)、落圧、再生、
(移圧)、昇圧を順繰りに行うのが良い。
Adsorption of three or more adsorption towers, adsorption (transfer pressure), depressurization, regeneration,
(Transfer pressure) and boosting should be performed in sequence.

CO2を吸着させ、H2及びCOをリークさせるに適した吸着
塔の操業条件は、吸着剤の種類にもよるが、圧力5〜30
Kg/cm2Gが適当である。
The CO 2 was absorbed, the operating conditions of the adsorption tower suitable to leakage of H 2 and CO, depending on the kind of the adsorbent, pressure 5-30
Kg / cm 2 G is suitable.

高温水蒸気改質反応器5で使用する水蒸気も系外から導
入しても良いが、第1図に示すように、高温水蒸気改質
反応器5の加熱炉14の余熱でボイラー15の水を加熱し、
発生した水蒸気を更に過熱して高温水蒸気改質反応器5
に導入するのが熱経済の点で最も効果的である。
The steam used in the high temperature steam reforming reactor 5 may also be introduced from outside the system, but as shown in FIG. 1, the water in the boiler 15 is heated by the residual heat of the heating furnace 14 of the high temperature steam reforming reactor 5. Then
High temperature steam reforming reactor 5 by further heating the generated steam
It is most effective in terms of heat economy.

高温水蒸気改質反応器にリサイクルされたガス中のCO2
は、水蒸気及び原料炭化水素と共に(1)、(2)、
(3)、(4)、(5)及び下記(6)の反応によりH2
とCOになる。
CO 2 in the gas recycled to the high temperature steam reforming reactor
Is (1), (2), together with steam and raw hydrocarbons.
H 2 is produced by the reactions of (3), (4), (5) and (6) below.
Becomes CO.

C4H10+4CO2→8CO+5H2 (6) このようにしてCO2は系外へは放出されず、すべてCOに
変換できる。
C 4 H 10 + 4CO 2 → 8CO + 5H 2 (6) In this way, CO 2 is not released to the outside of the system, but all can be converted to CO.

得られた合成用混合ガス中のH2/COの比は原料炭化水素
中のH/C比に支配されることになる。
The H 2 / CO ratio in the obtained mixed gas for synthesis is governed by the H / C ratio in the raw material hydrocarbon.

原料炭化水素をCHXで表わすと、 CHX+H2O→CO+(1+1/2X)H2 となり、H2/COの比は(1+1/2X)で、常に1より大き
い値である。
When the raw material hydrocarbon is represented by CH X, it becomes CH X + H 2 O → CO + (1 + 1/2 X ) H 2 , and the H 2 / CO ratio is (1 + 1/2 X ), which is always greater than 1.

H2/COの値は原料がメタンの場合3.0、エタンの場合2.
5、プロパンの場合2.33、ブタンの場合2.25となる。
The value of H 2 / CO is 3.0 when the raw material is methane and 2.
5, 2.33 for propane and 2.25 for butane.

そこでH2/COの比をこれより小さい値にするとき、例え
ばH2/CO値が1.0前後のオキソ合成用混合ガスを製造する
場合には、系外から水蒸気改質反応器に必要量のCO2
入して CHX+CO2→2CO+1/2XH2の反応、 例えばブタンの場合には前記 C4H10+4CO2→8CO+5H2 (6) の反応(H2/CO比=5/8)を(1)式の反応と共に行わせ
る。このようにして、原料の種類に応じて水蒸気改質反
応器に導入する水蒸気と系外から導入するCO2の比率を
調節することにより任意のH2/CO比を有する合成用混合
ガスを得ることができる。
Therefore, when the ratio of H 2 / CO is set to a smaller value, for example, when producing a mixed gas for oxo synthesis with a H 2 / CO value of around 1.0, the amount of the steam reforming reactor required outside the system When CO 2 is introduced, the reaction of CH X + CO 2 → 2CO + 1/2 X H 2 , for example, in the case of butane, the reaction of C 4 H 10 + 4CO 2 → 8CO + 5H 2 (6) (H 2 / CO ratio = 5/8 ) With the reaction of formula (1). In this way, a mixture gas for synthesis having an arbitrary H 2 / CO ratio is obtained by adjusting the ratio of steam introduced into the steam reforming reactor and CO 2 introduced from outside the system according to the type of raw material. be able to.

ハ.発明の効果 改質ガス中のCO2を吸収液により吸収除去する従来法に
比較して次の利点がある。
C. EFFECTS OF THE INVENTION Compared with the conventional method of absorbing and removing CO 2 in the reformed gas with an absorbing liquid, there are the following advantages.

吸収液の再生用熱エネルギーが不要である。No heat energy is required to regenerate the absorbing liquid.

吸収液の循環のためのポンプ及び動力エネルギーが不
要である。
There is no need for a pump and kinetic energy for circulating the absorbent.

アルカリ性吸収液による腐食トラブルがない。There is no corrosion trouble due to the alkaline absorbent.

吸収液を使用しないので、ローディング、フラッディ
ング、フォーミングなどの運転管理上の問題がない。
Since no absorbent is used, there are no operational management problems such as loading, flooding and forming.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様をを具体的に説明するための
工程図である。
FIG. 1 is a process chart for specifically explaining an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭化水素を水蒸気改質した後改質ガスから
CO2を除去いてH2及びCOよりなる合成用混合ガスを得る
方法において、水蒸気改質されたガスを加圧状態でCO2
を吸着する吸着剤を充填した吸着塔に通しCO2を吸着剤
に吸着させH2及びCOをリークさせて合成用混合ガスを
得、前記吸着塔からCO2がリークする前又は少量リーク
した時点で吸着塔を切り替え、異なる吸着塔でCO2の吸
着を続行すると共に使用済の吸着塔を落圧し水素ガス又
は水素−CO混合ガスを導入して吸着剤の再生を行い、落
圧、再生時に流出するガスと共に系外からCO2を水蒸気
改質反応器に供給することを特徴とする合成用混合ガス
製造方法。
1. From a reformed gas after steam reforming a hydrocarbon
In the method of removing CO 2 to obtain a mixed gas for synthesis consisting of H 2 and CO, the steam-reformed gas is subjected to CO 2 under pressure.
CO 2 is adsorbed through an adsorption tower filled with an adsorbent that adsorbs H 2 and CO is leaked to obtain a mixed gas for synthesis, and before the CO 2 leaks from the adsorption tower or when a small amount leaks. Switch the adsorption tower with, continue adsorbing CO 2 in a different adsorption tower, depressurize the used adsorption tower and introduce hydrogen gas or hydrogen-CO mixed gas to regenerate the adsorbent. A method for producing a mixed gas for synthesis, characterized in that CO 2 is supplied to the steam reforming reactor from the outside together with the gas flowing out.
【請求項2】3塔以上の吸着塔を順次切り替えて実施す
る請求項1項記載の合成用混合ガス製造方法。
2. The method for producing a mixed gas for synthesis according to claim 1, which is carried out by sequentially switching three or more adsorption towers.
【請求項3】吸着工程における初期の高純度水素ガス又
は水素−CO混合ガスをそのまま又は一時貯蔵した後使用
済吸着塔の再生用ガスとして利用する請求項第1項又は
第2項記載の合成用混合ガス製造方法。
3. The synthesis according to claim 1, wherein the high-purity hydrogen gas or hydrogen-CO mixed gas in the initial stage of the adsorption step is used as it is or after being temporarily stored and then used as a regeneration gas for a used adsorption tower. Method for mixed gas production.
JP1329469A 1989-12-21 1989-12-21 Method for producing mixed gas for synthesis Expired - Lifetime JPH0732859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329469A JPH0732859B2 (en) 1989-12-21 1989-12-21 Method for producing mixed gas for synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329469A JPH0732859B2 (en) 1989-12-21 1989-12-21 Method for producing mixed gas for synthesis

Publications (2)

Publication Number Publication Date
JPH03193112A JPH03193112A (en) 1991-08-22
JPH0732859B2 true JPH0732859B2 (en) 1995-04-12

Family

ID=18221729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329469A Expired - Lifetime JPH0732859B2 (en) 1989-12-21 1989-12-21 Method for producing mixed gas for synthesis

Country Status (1)

Country Link
JP (1) JPH0732859B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681101B2 (en) * 2000-05-30 2011-05-11 三菱重工業株式会社 Method for producing synthesis gas for gasoline, light oil and kerosene
JP2003034503A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Process for producing synthesis gas and methanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197403A (en) * 1985-02-27 1986-09-01 Jgc Corp Production of hydrogen

Also Published As

Publication number Publication date
JPH03193112A (en) 1991-08-22

Similar Documents

Publication Publication Date Title
RU2378188C2 (en) Hydrogen synthesis method using steam reforming with partial oxidation
JP5191888B2 (en) Syngas production method and conversion method
US4869894A (en) Hydrogen generation and recovery
RU2479484C2 (en) Method of producing synthesis gas for ammonia synthesis
US6726852B2 (en) Method of manufacturing synthesis gas
US20130243686A1 (en) Hydrogen Production Process with Low CO2 Emissions
KR20070100962A (en) Method for producing syngas with low carbon dioxide emission
JP2003081605A (en) Hydrogen producing method accompanying recovery of liquefied co2
US4203915A (en) Process of producing methanol
CN115667131A (en) Process for the production of hydrogen
JP2003165707A (en) Method and apparatus for manufacturing hydrogen
JPH0732859B2 (en) Method for producing mixed gas for synthesis
JPH10273301A (en) Hydrogen manufacturing equipment
US3345136A (en) Multi-stage shift conversion method for hydrogen production
JPS6230603A (en) Manufacture of industrial hydrogen
JP4187569B2 (en) Hydrogen production equipment
JPH06191801A (en) Production of hydrogen
JPH06211502A (en) Production of carbon monoxide and hydrogen
JPH03242302A (en) Production of hydrogen and carbon monoxide
JP2000233918A (en) Production of carbon monoxide
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
JP4363969B2 (en) Hydrogen production equipment
JP7122042B1 (en) Purge method and system
KR910005726B1 (en) Production of high-btu town gas from methanol
JPH0517163B2 (en)