JPH07326587A - Temperature adjustment mechanism of work reaction device - Google Patents

Temperature adjustment mechanism of work reaction device

Info

Publication number
JPH07326587A
JPH07326587A JP14217394A JP14217394A JPH07326587A JP H07326587 A JPH07326587 A JP H07326587A JP 14217394 A JP14217394 A JP 14217394A JP 14217394 A JP14217394 A JP 14217394A JP H07326587 A JPH07326587 A JP H07326587A
Authority
JP
Japan
Prior art keywords
temperature
chamber
wall surface
water
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14217394A
Other languages
Japanese (ja)
Inventor
Naohisa Asaka
香 尚 久 浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP14217394A priority Critical patent/JPH07326587A/en
Publication of JPH07326587A publication Critical patent/JPH07326587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To keep a temperature of an inner wall surface of a chamber wherein a required reaction process is executed nearly fixed in a temperature adjustment mechanism of a work reaction device. CONSTITUTION:A temperature sensor 10 for directly detecting a temperature of an inner wall surface of a chamber 1 is provided thereto, a heat exchanger 8 for preparing cooling water of an arbitrary temperature based on a temperature signal detected by the temperature sensor 10 is provided and a water cooling jacket 7 for circulating cooling water supplied from the heat exchanger 8 around the chamber 1 is installed to enclose a circumference of the chamber 1. A temperature of an inner wall surface of the chamber 1 is made nearly fixed by circulating cooling water from the heat exchanger 8 to the water cooling jacket 7. Thereby, it is possible to restrain thermal stress due to temperature change of an inner wall surface of the chamber 1 and to prevent a film attaching to the inner wall surface from peeling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造工程におい
てワークとしてのウエハなどに所要の反応工程を実行す
る例えばプラズマ処理装置又はスパッタ装置などのワー
ク反応装置のチャンバ内の温度を調整するワーク反応装
置の温度調整機構に関し、特に上記チャンバ内壁面の温
度を略一定に保つことができる温度調整機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a work reaction for adjusting a temperature in a chamber of a work reaction apparatus such as a plasma processing apparatus or a sputtering apparatus for executing a required reaction step on a wafer as a work in a semiconductor manufacturing process. The present invention relates to a temperature adjusting mechanism of an apparatus, and more particularly to a temperature adjusting mechanism capable of keeping the temperature of the inner wall surface of the chamber substantially constant.

【0002】[0002]

【従来の技術】従来のワーク反応装置、例えばプラズマ
CVD装置は、図2に示すように、例えば円筒形に形成
され内部が真空状態とされるチャンバ1を有し、このチ
ャンバ1内の上部にはプラズマを発生させるための上部
電極2があり、その下方に対向して下部電極となる試料
台3があり、この試料台3上には半導体製品を製造する
ためのワーク4(例えばウェハ)が載置されるようにな
っている。そして、上記試料台3の内部にはヒータが埋
め込まれていて、上記ワーク4を約300〜400℃に加熱す
るようになっている。また、上部電極2は、中空状に形
成されると共に多数の孔があけられたシャワー構造とさ
れており、上部ノズル5から反応ガスがチャンバ1内に
吹き出されるようになっている。さらに、上記チャンバ
1内は、図示外の真空ポンプで真空排気され、0.1〜10T
orr程度の真空状態とされるようになっている。なお、
符号6は上部電極2に接続された高周波電源を示してい
る。
2. Description of the Related Art A conventional work reaction apparatus, for example, a plasma CVD apparatus, has a chamber 1 formed in a cylindrical shape and having a vacuum inside, as shown in FIG. Has an upper electrode 2 for generating a plasma, and a sample table 3 serving as a lower electrode facing the lower electrode 2 facing the upper electrode 2. A work 4 (for example, a wafer) for manufacturing a semiconductor product is provided on the sample table 3. It is supposed to be placed. A heater is embedded inside the sample table 3 to heat the work 4 to about 300 to 400 ° C. The upper electrode 2 has a shower structure having a hollow shape and a large number of holes formed therein, and a reaction gas is blown from the upper nozzle 5 into the chamber 1. Further, the inside of the chamber 1 is evacuated by a vacuum pump (not shown),
It is designed to be in a vacuum state of about orr. In addition,
Reference numeral 6 indicates a high frequency power source connected to the upper electrode 2.

【0003】このようなプラズマCVD装置において、
ワーク4に所要の反応工程、例えば該ワーク4の表面に
ある種の膜を形成する工程を実行するには、上記試料台
3の上面にワーク4を載置すると共に所定温度に加熱
し、真空排気系でチャンバ1内を所定圧の真空状態と
し、さらに上部ノズル5から反応ガスを注入して、上部
電極2と試料台3との間に所定の高周波電圧を印加する
ことによって、上記チャンバ1内にプラズマが発生す
る。これにより、上記ワーク4の表面にある種の膜が形
成される。このとき、上記チヤンバ1の内壁面にも膜が
形成されて付着する。
In such a plasma CVD apparatus,
In order to perform a required reaction step on the work 4, for example, a step of forming a kind of film on the surface of the work 4, the work 4 is placed on the upper surface of the sample table 3 and heated to a predetermined temperature, and a vacuum is applied. The chamber 1 is evacuated to a vacuum state with a predetermined pressure by an exhaust system, a reaction gas is further injected from the upper nozzle 5, and a predetermined high-frequency voltage is applied between the upper electrode 2 and the sample stage 3, whereby the chamber 1 Plasma is generated inside. As a result, a kind of film is formed on the surface of the work 4. At this time, a film is also formed and attached to the inner wall surface of the chamber 1.

【0004】上記のようなプラズマ処理中は、チャンバ
1内のプラズマの発生により該チャンバ1の内壁面温度
は上昇し、プラズマの停止により内壁面温度は下降す
る。そして、この温度の上昇下降のサイクルを複数枚の
ワーク4を順次処理する毎に繰り返す。このとき、上記
内壁面の温度変化による熱ストレスにより、上記チャン
バ1の内壁面に付着していた膜が剥離し、ワーク4に異
物となって付着することがあった。
During the above plasma processing, the temperature of the inner wall surface of the chamber 1 rises due to the generation of plasma in the chamber 1, and the temperature of the inner wall surface falls due to the stop of the plasma. Then, this cycle of increasing and decreasing the temperature is repeated every time a plurality of works 4 are sequentially processed. At this time, due to the thermal stress due to the temperature change of the inner wall surface, the film adhered to the inner wall surface of the chamber 1 may peel off and adhere to the work 4 as a foreign matter.

【0005】これに対し、従来の温度調整機構は、図2
に示すように、上記チャンバ1の周りを取り囲むように
水冷ジャケット7を設けると共に、この水冷ジャケット
7に冷却水を供給する熱交換器8を設け、この熱交換器
8で上記チャンバ1の温度よりも低い一定温度の冷却水
を作って水冷ジャケット7に供給し、チャンバ1の周り
に循環させることにより該チャンバ1を冷却していた。
このとき、上記熱交換器8から水冷ジャケット7への冷
却水の供給ライン9a上に温度センサ10を設け、上記
水冷ジャケット7へ供給される冷却水の温度を検出し、
この温度信号に基づいて温度制御器11を動作させ、上
記熱交換器8から供給ライン9aを介して水冷ジャケッ
ト7へ供給する冷却水を一定温度としていた。なお、符
号9bは冷却水の還流ラインを示している。
On the other hand, the conventional temperature adjusting mechanism is shown in FIG.
As shown in FIG. 2, a water cooling jacket 7 is provided so as to surround the chamber 1, and a heat exchanger 8 for supplying cooling water to the water cooling jacket 7 is provided. The cooling water having a low constant temperature is supplied to the water cooling jacket 7 and circulated around the chamber 1 to cool the chamber 1.
At this time, a temperature sensor 10 is provided on the cooling water supply line 9a from the heat exchanger 8 to the water cooling jacket 7 to detect the temperature of the cooling water supplied to the water cooling jacket 7,
The temperature controller 11 was operated based on this temperature signal, and the cooling water supplied from the heat exchanger 8 to the water cooling jacket 7 via the supply line 9a was kept at a constant temperature. The reference numeral 9b indicates a reflux line for the cooling water.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような従
来のワーク反応装置の温度調整機構においては、供給ラ
イン9a上に設けられた温度センサ10により水冷ジャ
ケット7へ供給される冷却水の温度を検出し、熱交換器
8から上記水冷ジャケット7へ供給する冷却水の温度を
一定に保つようにしていたので、チャンバ1を冷却する
ための冷却水の温度は一定とすることはできても、該チ
ャンバ1内の温度は必ずしも一定とすることはできなか
った。すなわち、前述のように、チャンバ1内ではワー
ク4の処理の繰り返しに従ってプラズマの発生と停止が
繰り返され、その都度該チャンバ1の内壁面温度が上昇
及び下降しているので、一定温度の冷却水ではその温度
変化を抑えることはできない。このことから、図3にお
いて破線のカーブC1で示すように、上記チャンバ1の
内壁面温度は、依然としてプラズマの発生により上昇
し、プラズマの停止により下降することを繰り返すもの
であった。従って、このチャンバ1の内壁面の温度変化
による熱ストレスにより、該チャンバ1の内壁面に付着
していた膜が剥離することがあり、ワーク4に異物とな
って付着するものであった。これにより、製造される半
導体製品の品質が低下すると共に、歩留まりが低下する
ことがあった。
However, in such a conventional temperature adjusting mechanism for the work reaction apparatus, the temperature of the cooling water supplied to the water cooling jacket 7 by the temperature sensor 10 provided on the supply line 9a is controlled. Since the temperature of the cooling water which is detected and supplied from the heat exchanger 8 to the water cooling jacket 7 is kept constant, the temperature of the cooling water for cooling the chamber 1 can be kept constant, The temperature inside the chamber 1 cannot always be kept constant. That is, as described above, in the chamber 1, plasma is repeatedly generated and stopped in accordance with the repeated treatment of the work 4, and the inner wall surface temperature of the chamber 1 rises and falls each time, so that the cooling water having a constant temperature is cooled. Then, the temperature change cannot be suppressed. From this, as shown by the broken line curve C 1 in FIG. 3, the temperature of the inner wall surface of the chamber 1 was still increased by the generation of plasma and decreased by the stop of plasma. Therefore, due to the thermal stress due to the temperature change of the inner wall surface of the chamber 1, the film adhered to the inner wall surface of the chamber 1 may be peeled off and adhere to the work 4 as a foreign matter. As a result, the quality of the manufactured semiconductor products may deteriorate and the yield may decrease.

【0007】そこで、本発明は、このような問題点に対
処し、所要の反応工程を実行するチャンバの内壁面の温
度を略一定に保つことができるワーク反応装置の温度調
整機構を提供することを目的とする。
Therefore, the present invention addresses such problems and provides a temperature adjusting mechanism for a work reaction apparatus capable of keeping the temperature of the inner wall surface of a chamber for executing a required reaction process substantially constant. With the goal.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明によるワーク反応装置の温度調整機構は、半
導体製品を製造するためのワークをチャンバ内部に収容
し、所定条件の雰囲気の中で上記ワークに対し所要の反
応工程を実行するワーク反応装置の上記チャンバ内の温
度を調整するワーク反応装置の温度調整機構において、
上記チャンバの内壁面にその温度を直接検出する温度セ
ンサを設け、この温度センサで検出した温度信号に基づ
いて任意温度の冷却水を作る熱交換器を設け、この熱交
換器から供給される冷却水を上記チャンバの周りに循環
させる水冷ジャケットを該チャンバの周りを取り囲むよ
うに設置し、この水冷ジャケットに上記熱交換器からの
冷却水を循環させることにより上記チャンバの内壁面の
温度を略一定とするようにしたものである。
In order to achieve the above object, a temperature adjusting mechanism of a work reaction apparatus according to the present invention accommodates a work for manufacturing a semiconductor product in a chamber and stores it in an atmosphere of a predetermined condition. In the temperature adjusting mechanism of the work reaction device for adjusting the temperature in the chamber of the work reaction device for performing the required reaction process on the work,
A temperature sensor that directly detects the temperature is provided on the inner wall surface of the chamber, and a heat exchanger that produces cooling water at an arbitrary temperature based on the temperature signal detected by the temperature sensor is provided, and the cooling supplied from this heat exchanger A water cooling jacket for circulating water around the chamber is installed so as to surround the chamber, and cooling water from the heat exchanger is circulated through the water cooling jacket to keep the temperature of the inner wall surface of the chamber substantially constant. And so on.

【0009】また、上記熱交換器は、その内部に予め所
定温度の冷水及び温水を用意しておき、上記温度センサ
で検出した温度信号により上記冷水と温水とを任意の割
合で混合して任意温度の冷却水を作るものとするとよ
い。
In the heat exchanger, cold water and hot water having a predetermined temperature are prepared in advance, and the cold water and the hot water are mixed at an arbitrary ratio according to a temperature signal detected by the temperature sensor. It is good to make cooling water of temperature.

【0010】[0010]

【作用】このように構成されたワーク反応装置の温度調
整機構は、チャンバの内壁面に設けられた温度センサで
該チャンバの内壁面の温度を直接検出し、上記チャンバ
とは別個に設けられた熱交換器により上記温度センサで
検出した温度信号に基づいて任意温度の冷却水を作り、
上記チャンバの周りを取り囲むように設置された水冷ジ
ャケットに上記熱交換器からの冷却水を供給し、上記水
冷ジャケットで冷却水をチャンバの周りに循環させるこ
とにより上記チャンバの内壁面の温度を略一定とするよ
うに動作する。これにより、上記チャンバの内壁面の温
度変化による熱ストレスを抑え、その内壁面に付着して
いる膜の剥離を防止することができる。
The temperature adjusting mechanism of the work reaction apparatus thus constructed directly detects the temperature of the inner wall surface of the chamber by the temperature sensor provided on the inner wall surface of the chamber, and is provided separately from the chamber. Make cooling water of any temperature based on the temperature signal detected by the temperature sensor by the heat exchanger,
The cooling water from the heat exchanger is supplied to a water cooling jacket installed so as to surround the chamber, and the cooling water is circulated around the chamber by the water cooling jacket, so that the temperature of the inner wall surface of the chamber is substantially reduced. Operates to be constant. As a result, thermal stress due to temperature change of the inner wall surface of the chamber can be suppressed and peeling of the film adhering to the inner wall surface can be prevented.

【0011】[0011]

【実施例】以下、本発明の実施例を添付図面に基づいて
詳細に説明する。図1は本発明によるワーク反応装置の
温度調整機構の実施例を示す一部断面説明図である。こ
のワーク反応装置の温度調整機構は、半導体製造工程に
おいてワークとしてのウェハなどに所要の反応工程を実
行する例えばプラズマ処理装置のチャンバ内の温度を調
整するものである。まず、プラズマ処理装置のうち例え
ばプラズマCVD装置は、図1に示すように、例えば円
筒形に形成され内部が真空状態とされるチャンバ1を有
し、このチャンバ1内の上部にはブラズマを発生させる
ための上部電極2があり、その下方に対向して下部電極
となる試料台3があり、この試料台3上には半導体製品
を製造するためのワーク4(例えばウェハ)が載置され
るようになっている。そして、上記試料台3の内部には
ヒータが埋め込まれていて、上記ワーク4を約300〜400
℃に加熱するようになっている。また、上部電極2は、
中空状に形成されると共に多数の孔があけられたシャワ
ー構造とされており、上部ノズル5から反応ガスがチャ
ンバ1内に吹き出されるようになっている。さらに、上
記チャンバ1内は、図示外の真空ポンプで真空排気さ
れ、0.1〜10Torr程度の真空状態とされるようになって
いる。なお、符号6は上部電極2に接続された高周波電
源を示している。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 is a partial sectional explanatory view showing an embodiment of a temperature adjusting mechanism of a work reaction apparatus according to the present invention. The temperature adjusting mechanism of the work reaction apparatus is for adjusting the temperature in the chamber of, for example, a plasma processing apparatus that executes a required reaction process on a wafer as a work in a semiconductor manufacturing process. First, as shown in FIG. 1, for example, a plasma CVD apparatus among plasma processing apparatuses has a chamber 1 formed in, for example, a cylindrical shape and the inside of which is in a vacuum state, and a plasma is generated in an upper portion of the chamber 1. There is an upper electrode 2 for making a lower electrode and a sample table 3 serving as a lower electrode facing the lower electrode, and a work 4 (for example, a wafer) for manufacturing a semiconductor product is placed on the sample table 3. It is like this. A heater is embedded in the sample table 3 and the work 4 is placed at about 300-400.
It is designed to be heated to ℃. Also, the upper electrode 2 is
The shower structure is hollow and has a large number of holes, and the reaction gas is blown into the chamber 1 from the upper nozzle 5. Further, the inside of the chamber 1 is evacuated by a vacuum pump (not shown) to be in a vacuum state of about 0.1 to 10 Torr. Reference numeral 6 indicates a high frequency power source connected to the upper electrode 2.

【0012】このようなプラズマCVD装置において、
ワーク4に所要の反応工程、例えば該ワーク4の表面に
ある種の膜を形成する工程を実行するには、上記試料台
3の上面にワーク4を載置すると共に所定温度に加熱
し、真空排気系でチャンバ1内を所定圧の真空状態と
し、さらに上部ノズル5から反応ガスを注入して、上部
電極2と試料台3との間に所定の高周波電圧を印加する
ことによって、上記チャンバ1内にプラズマが発生す
る。これにより、上記ワーク4の表面にある種の膜が形
成される。このとき、上記チャンバ1の内壁面にも膜が
形成されて付着する。
In such a plasma CVD apparatus,
In order to perform a required reaction step on the work 4, for example, a step of forming a kind of film on the surface of the work 4, the work 4 is placed on the upper surface of the sample table 3 and heated to a predetermined temperature, and a vacuum is applied. The chamber 1 is evacuated to a vacuum state with a predetermined pressure by an exhaust system, a reaction gas is further injected from the upper nozzle 5, and a predetermined high-frequency voltage is applied between the upper electrode 2 and the sample stage 3, whereby the chamber 1 Plasma is generated inside. As a result, a kind of film is formed on the surface of the work 4. At this time, a film is also formed and attached to the inner wall surface of the chamber 1.

【0013】上記のようなプラズマ処理中は、チャンバ
1内のプラズマの発生により該チャンバ1の内壁面温度
は上昇し、プラズマの停止により内壁面温度は下降す
る。そして、この温度の上昇下降のサイクルを複数枚の
ワークを順次処理する毎に繰り返す。このチャンバ1内
の温度を調整するのが本発明の温度調整機構である。
During the plasma processing as described above, the inner wall surface temperature of the chamber 1 rises due to the generation of plasma in the chamber 1, and the inner wall surface temperature falls due to the stop of the plasma. Then, the cycle of increasing and decreasing the temperature is repeated every time a plurality of works are sequentially processed. The temperature adjusting mechanism of the present invention adjusts the temperature in the chamber 1.

【0014】すなわち、本発明の温度調整機構は、図1
に示すように、温度センサ10と、熱交換器8と、水冷
ジャケット7とを有して成る。上記温度センサ10は、
前記チャンバ1の内壁面の温度を直接検出するもので、
該チャンバ1の内壁面に近傍又は接触して設けられ、例
えば熱電対又はサーモスタット或いはその他の温度検知
素子から成る。また、熱交換器8は、上記温度センサ1
0で検出した温度信号に基づいて任意温度の冷却水を作
るもので、例えば上記温度センサ10からの温度信号に
よりチャンバ1を冷却するのに適当な温度を設定し、外
部から注入される純水を上記設定温度になるように適宜
加熱又は冷却するようになっている。
That is, the temperature adjusting mechanism of the present invention is shown in FIG.
As shown in, the temperature sensor 10, the heat exchanger 8 and the water cooling jacket 7 are provided. The temperature sensor 10 is
Which directly detects the temperature of the inner wall surface of the chamber 1,
It is provided in the vicinity of or in contact with the inner wall surface of the chamber 1, and is composed of, for example, a thermocouple, a thermostat, or another temperature detecting element. The heat exchanger 8 is the temperature sensor 1 described above.
Cooling water having an arbitrary temperature is produced based on the temperature signal detected by 0. For example, the temperature signal from the temperature sensor 10 is set to an appropriate temperature for cooling the chamber 1, and pure water injected from the outside is set. Is appropriately heated or cooled to reach the above set temperature.

【0015】或いは、上記熱交換器8は、その内部に予
め所定温度の冷水12及び温水13を用意しておき、上
記温度センサ10で検出した温度信号により上記冷水1
2と温水13とを任意の割合で混合して任意温度の冷却
水を作るものとしてもよい。例えば、上記熱交換器8の
内部に、冷水12を貯めた容器と、加熱手段を備え温水
13を貯めた容器とを設け、温調系14でそれぞれ所定
温度に保っておき、上記温度センサ10で検出した温度
信号に基づいて温度制御器11を動作させ、この温度制
御器11でチャンバ1を冷却するのに適当な温度を設定
して制御信号Sを送出し、この制御信号Sにより冷水系
統の流量調節バルブ14a及び温水系統の流量調節バル
ブ14bの開度を制御して、上記冷水12と温水13と
を任意の割合で混合すればよい。なお、符号15a,1
5bはチェックバルブを示している。
Alternatively, in the heat exchanger 8, cold water 12 and hot water 13 having a predetermined temperature are prepared in advance, and the cold water 1 is supplied from the temperature signal detected by the temperature sensor 10.
2 and warm water 13 may be mixed at any ratio to produce cooling water at any temperature. For example, a container for storing cold water 12 and a container for storing warm water 13 having a heating means are provided inside the heat exchanger 8, and each of them is kept at a predetermined temperature by a temperature control system 14, and the temperature sensor 10 is used. The temperature controller 11 is operated based on the temperature signal detected in 1., the temperature controller 11 sets a temperature suitable for cooling the chamber 1, and the control signal S is sent out. The cold water 12 and the hot water 13 may be mixed at an arbitrary ratio by controlling the openings of the flow rate adjusting valve 14a and the flow rate adjusting valve 14b of the hot water system. Note that reference numerals 15a, 1
5b shows a check valve.

【0016】さらに、水冷ジャケット7は、上記熱交換
器8から供給される冷却水を前記チャンバ1の周りに循
環させるもので、例えばチャンバ1の周壁内にて該チャ
ンバ1の周りを取り囲むように設けられ、熱交換器8と
冷却水の供給ライン9a及び還流ライン9bを介して接
続されている。
Further, the water cooling jacket 7 circulates the cooling water supplied from the heat exchanger 8 around the chamber 1. For example, the water cooling jacket 7 surrounds the chamber 1 in the peripheral wall of the chamber 1. It is provided and connected to the heat exchanger 8 via a cooling water supply line 9a and a reflux line 9b.

【0017】次に、このように構成された温度調整機構
の動作について説明する。まず、前記チャンバ1内の試
料台3上にワーク4を載置して、プラズマ処理をして所
要の反応工程を実行しているとする。このとき、プラズ
マの発生により該チャンバ1の内壁面温度は上昇し、プ
ラズマの停止により内壁面温度は下降するが、この場合
のチャンバ1の内壁面温度はその内壁面に設けられた温
度センサ10によって直接検出される。そして、この検
出された温度信号は温度制御器11へ送られ、この温度
制御器11の動作によりチャンバ1を冷却するのに適当
な温度が設定されて制御信号Sが送出される。すなわ
ち、上記チャンバ1の内壁面温度は、図3の破線カーブ
1で示すようにプラズマのON,OFFに従って上昇
及び下降を繰り返すので、この温度変化を抑えるため
に、上記破線カーブC1とは全く反対方向のカーブの温
度変化となるように冷却水の温度が設定される。
Next, the operation of the temperature adjusting mechanism thus constructed will be described. First, it is assumed that the work 4 is placed on the sample table 3 in the chamber 1, plasma processing is performed, and a required reaction process is executed. At this time, the inner wall surface temperature of the chamber 1 rises due to the generation of plasma, and the inner wall surface temperature falls due to the stop of the plasma. In this case, the inner wall surface temperature of the chamber 1 is the temperature sensor 10 provided on the inner wall surface. Detected directly by. Then, the detected temperature signal is sent to the temperature controller 11, the temperature suitable for cooling the chamber 1 is set by the operation of the temperature controller 11, and the control signal S is sent. That is, the inner wall temperature of the chamber 1, plasma ON as shown by the broken line curve C 1 in FIG. 3, since repeated rising and falling in accordance OFF, in order to suppress the temperature change, the above broken line curve C 1 The temperature of the cooling water is set so that the temperature changes in the curve in the opposite direction.

【0018】上記制御信号Sは二つの流量調節バルブ1
4a,14bに送られ、それぞれのバルブ14a,14
bの開度を制御して熱交換器8内の冷水12と温水13
とを任意の割合で混合し、任意温度の冷却水が作られ
る。すなわち、低い温度の冷却水を作るときは冷水系統
の流量調節バルブ14aをより多く開き、高い温度の冷
却水を作るときは温水系統の流量調節バルブ14bをよ
り多く開けばよい。このようにして作られた冷却水は、
供給ライン9aを介してチャンバ1の周りに設けられた
水冷ジャケット7へ供給され、該チャンバ1の周りを循
環してその内壁面を冷却し、その後還流ライン9bを介
して上記熱交換器8内へ戻される。この結果、図3の破
線カーブC1で示されるチャンバ1の内壁面の温度変化
に対し、これと反対方向のカーブの温度変化とされた冷
却水で冷却することにより、図3に実線のカーブC2
示すように、上記チャンバ1の内壁面の温度を略一定と
することができる。従って、上記チャンバ1の内壁面の
温度変化による熱ストレスを抑え、その内壁面に付着し
ている膜の剥離を防止することができる。
The control signal S is sent to the two flow control valves 1
4a, 14b, and the respective valves 14a, 14b
The cold water 12 and the hot water 13 in the heat exchanger 8 are controlled by controlling the opening degree of b.
And are mixed at any ratio to produce cooling water at any temperature. That is, more flow control valves 14a of the cold water system should be opened to produce cooling water at a lower temperature, and more flow control valves 14b of the hot water system should be opened to produce cooling water at a higher temperature. The cooling water made in this way is
It is supplied to a water cooling jacket 7 provided around the chamber 1 through a supply line 9a, circulates around the chamber 1 to cool its inner wall surface, and then inside the heat exchanger 8 through a reflux line 9b. Returned to. As a result, with respect to the temperature change of the inner wall surface of the chamber 1 indicated by the broken line curve C 1 of FIG. 3, the cooling water is cooled with the temperature change of the curve in the opposite direction, and the solid line curve of FIG. As indicated by C 2 , the temperature of the inner wall surface of the chamber 1 can be made substantially constant. Therefore, the thermal stress due to the temperature change of the inner wall surface of the chamber 1 can be suppressed, and the peeling of the film adhering to the inner wall surface can be prevented.

【0019】なお、図1においては、ワーク反応装置と
してプラズマCVD装置でワーク4に所要の反応工程を
実行する例を示したが、本発明はこれに限らず、プラズ
マエッチング装置又はスパッタ装置などにおいても同様
に適用できる。
Although FIG. 1 shows an example in which a plasma CVD apparatus is used as a work reaction apparatus to perform a required reaction process on the work 4, the present invention is not limited to this, and a plasma etching apparatus or a sputtering apparatus is used. Can be similarly applied.

【0020】[0020]

【発明の効果】本発明は以上のように構成されたのでチ
ャンバの内壁面に設けられた温度センサで該チャンバの
内壁面の温度を直接検出し、上記チャンバとは別個に設
けられた熱交換器により上記温度センサで検出した温度
信号に基づいて任意温度の冷却水を作り、上記チャンバ
の周りを取り囲むように設置された水冷ジャケットに上
記熱交換器からの冷却水を供給し、上記水冷ジャケット
で冷却水をチャンバの周りに循環させることにより上記
チャンバの内壁面の温度を略一定とすることができる。
これにより、上記チャンバの内壁面の温度変化による熱
ストレスを抑え、その内壁面に付着している膜の剥離を
防止することができる。従って、ワークへの異物の付着
を防止して、製造される半導体製品の品質を向上するこ
とができると共に、歩留まりを向上することができる。
Since the present invention is constructed as described above, the temperature sensor provided on the inner wall surface of the chamber directly detects the temperature of the inner wall surface of the chamber, and the heat exchange provided separately from the chamber. Cooling water at an arbitrary temperature based on the temperature signal detected by the temperature sensor by the vessel, and supplying the cooling water from the heat exchanger to the water cooling jacket installed so as to surround the chamber, the water cooling jacket By circulating the cooling water around the chamber, the temperature of the inner wall surface of the chamber can be made substantially constant.
As a result, thermal stress due to temperature change of the inner wall surface of the chamber can be suppressed and peeling of the film adhering to the inner wall surface can be prevented. Therefore, it is possible to prevent foreign matter from adhering to the work, improve the quality of the manufactured semiconductor product, and improve the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるワーク反応装置の温度調整機構の
実施例を示す一部断面説明図である。
FIG. 1 is a partial cross-sectional explanatory view showing an embodiment of a temperature adjusting mechanism of a work reaction apparatus according to the present invention.

【図2】従来のワーク反応装置の温度調整機構を示す一
部断面説明図である。
FIG. 2 is a partial cross-sectional explanatory view showing a temperature adjusting mechanism of a conventional work reaction apparatus.

【図3】本発明及び従来例におけるチャンバの内壁面温
度の変化の様子を説明するためのグラフである。
FIG. 3 is a graph for explaining how the temperature of the inner wall surface of the chamber changes in the present invention and the conventional example.

【符号の説明】[Explanation of symbols]

1…チャンバ 2…上部電極 3…試料台 4…ワーク 6…高周波電源 7…水冷ジャケット 8…熱交換器 9a…供給ライン 9b…還流ライン 10…温度センサ 11…温度制御器 14a,14b…流量調節バルブ DESCRIPTION OF SYMBOLS 1 ... Chamber 2 ... Upper electrode 3 ... Sample stand 4 ... Work piece 6 ... High frequency power supply 7 ... Water cooling jacket 8 ... Heat exchanger 9a ... Supply line 9b ... Reflux line 10 ... Temperature sensor 11 ... Temperature controller 14a, 14b ... Flow rate adjustment valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/203 S 8719−4M 21/3065 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/203 S 8719-4M 21/3065

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体製品を製造するためのワークをチ
ャンバ内部に収容し、所定条件の雰囲気の中で上記ワー
クに対し所要の反応工程を実行するワーク反応装置の上
記チャンバ内の温度を調整するワーク反応装置の温度調
整機構において、上記チャンバの内壁面にその温度を直
接検出する温度センサを設け、この温度センサで検出し
た温度信号に基づいて任意温度の冷却水を作る熱交換器
を設け、この熱交換器から供給される冷却水を上記チャ
ンバの周りに循環させる水冷ジャケットを該チャンバの
周りを取り囲むように設置し、この水冷ジャケットに上
記熱交換器からの冷却水を循環させることにより上記チ
ャンバの内壁面の温度を略一定とするようにしたことを
特徴とするワーク反応装置の温度調整機構。
1. A work for manufacturing a semiconductor product is housed in a chamber, and a temperature in the chamber of a work reaction apparatus for executing a required reaction process on the work in an atmosphere of a predetermined condition is adjusted. In the temperature adjusting mechanism of the work reaction device, a temperature sensor that directly detects the temperature is provided on the inner wall surface of the chamber, and a heat exchanger that produces cooling water at an arbitrary temperature based on the temperature signal detected by the temperature sensor is provided. A water cooling jacket that circulates the cooling water supplied from the heat exchanger around the chamber is installed so as to surround the chamber, and the cooling water from the heat exchanger is circulated through the water cooling jacket. A temperature adjusting mechanism for a work reaction device, wherein the temperature of the inner wall surface of the chamber is made substantially constant.
【請求項2】 上記熱交換器は、その内部に予め所定温
度の冷水及び温水を用意しておき、上記温度センサで検
出した温度信号により上記冷水と温水とを任意の割合で
混合して任意温度の冷却水を作るものとしたことを特徴
とする請求項1記載のワーク反応装置の温度調整機構。
2. The heat exchanger is provided with cold water and hot water having a predetermined temperature in advance, and the cold water and the hot water are mixed at an arbitrary ratio according to a temperature signal detected by the temperature sensor. The temperature adjusting mechanism of the work reaction apparatus according to claim 1, wherein cooling water having a temperature is produced.
JP14217394A 1994-06-02 1994-06-02 Temperature adjustment mechanism of work reaction device Pending JPH07326587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14217394A JPH07326587A (en) 1994-06-02 1994-06-02 Temperature adjustment mechanism of work reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14217394A JPH07326587A (en) 1994-06-02 1994-06-02 Temperature adjustment mechanism of work reaction device

Publications (1)

Publication Number Publication Date
JPH07326587A true JPH07326587A (en) 1995-12-12

Family

ID=15309062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14217394A Pending JPH07326587A (en) 1994-06-02 1994-06-02 Temperature adjustment mechanism of work reaction device

Country Status (1)

Country Link
JP (1) JPH07326587A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052126A1 (en) * 1998-04-08 1999-10-14 Applied Materials, Inc. Direct temperature control for a component of a substrate processing chamber
US6433314B1 (en) 1998-04-08 2002-08-13 Applied Materials, Inc. Direct temperature control for a component of a substrate processing chamber
JP2003068726A (en) * 2001-08-23 2003-03-07 Tokyo Electron Ltd Heat treatment apparatus having cooling function
WO2004079805A1 (en) * 2003-03-07 2004-09-16 Tokyo Electron Limited Substrate-processing apparatus and temperature-regulating apparatus
US6916399B1 (en) 1999-06-03 2005-07-12 Applied Materials Inc Temperature controlled window with a fluid supply system
JP2006318806A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Plasma treatment device
JP2008192618A (en) * 2007-02-06 2008-08-21 Se Plasma Inc Plasma generating device in which an inhalation port is formed around projected plasma exhalation port
JP2011124362A (en) * 2009-12-10 2011-06-23 Tokyo Electron Ltd Plasma processing apparatus
CN113604787A (en) * 2021-07-22 2021-11-05 深圳天成真空技术有限公司 Temperature regulation and control equipment and method for vacuum coating chamber

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117245A (en) * 1998-04-08 2000-09-12 Applied Materials, Inc. Method and apparatus for controlling cooling and heating fluids for a gas distribution plate
US6433314B1 (en) 1998-04-08 2002-08-13 Applied Materials, Inc. Direct temperature control for a component of a substrate processing chamber
WO1999052126A1 (en) * 1998-04-08 1999-10-14 Applied Materials, Inc. Direct temperature control for a component of a substrate processing chamber
US6916399B1 (en) 1999-06-03 2005-07-12 Applied Materials Inc Temperature controlled window with a fluid supply system
JP2003068726A (en) * 2001-08-23 2003-03-07 Tokyo Electron Ltd Heat treatment apparatus having cooling function
CN100421209C (en) * 2003-03-07 2008-09-24 东京毅力科创株式会社 Substrate-processing apparatus and temperature-regulating apparatus
WO2004079805A1 (en) * 2003-03-07 2004-09-16 Tokyo Electron Limited Substrate-processing apparatus and temperature-regulating apparatus
US8110044B2 (en) 2003-03-07 2012-02-07 Tokyo Electron Limited Substrate processing apparatus and temperature control device
JP2006318806A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Plasma treatment device
JP2008192618A (en) * 2007-02-06 2008-08-21 Se Plasma Inc Plasma generating device in which an inhalation port is formed around projected plasma exhalation port
JP2011124362A (en) * 2009-12-10 2011-06-23 Tokyo Electron Ltd Plasma processing apparatus
CN113604787A (en) * 2021-07-22 2021-11-05 深圳天成真空技术有限公司 Temperature regulation and control equipment and method for vacuum coating chamber
CN113604787B (en) * 2021-07-22 2023-04-07 深圳天成真空技术有限公司 Temperature regulation and control equipment and method for vacuum coating chamber

Similar Documents

Publication Publication Date Title
EP1371751B1 (en) Film forming device
US5616264A (en) Method and apparatus for controlling temperature in rapid heat treatment system
US5811762A (en) Heater assembly with dual temperature control for use in PVD/CVD system
US7432475B2 (en) Vertical heat treatment device and method controlling the same
US20020025688A1 (en) Heat-processing apparatus and method of semiconductor process
JPH07326587A (en) Temperature adjustment mechanism of work reaction device
US6120610A (en) Plasma etch system
JPH09232297A (en) Heat treatment apparatus
JPH10233370A (en) Heat treatment apparatus for semiconductor substrate
JP2002289601A (en) Substrate processing apparatus and method
JP3177722B2 (en) Temperature control equipment for high-speed heat treatment furnace
JP2003059837A (en) Apparatus and method for heat treatment
JPH07102372A (en) Vacuum treatment of material and device therefor
JPH07283163A (en) Thermal treatment device and temperature controlling method thereof
JPH07283158A (en) Thermal treatment device and temperature controlling method thereof
JPH06168899A (en) Heater unit for heating substrate
JP3328853B2 (en) Heat treatment apparatus and heat treatment method
JP2004115904A (en) Substrate treatment apparatus
JPH09162176A (en) Plasma processing system
JP2543375Y2 (en) Vacuum vent device
JPH05209278A (en) Plasma vapor growth device
JPH05121344A (en) Vertical furnace and temperature control method
JPH0461117A (en) Single-wafer cvd device
JP3612225B2 (en) Plasma processing equipment
JPH0737828A (en) Temperature controlling method of high-speed heat treatment furnace