JPH0732560U - Dissolved ozone concentration measuring device - Google Patents

Dissolved ozone concentration measuring device

Info

Publication number
JPH0732560U
JPH0732560U JP6668893U JP6668893U JPH0732560U JP H0732560 U JPH0732560 U JP H0732560U JP 6668893 U JP6668893 U JP 6668893U JP 6668893 U JP6668893 U JP 6668893U JP H0732560 U JPH0732560 U JP H0732560U
Authority
JP
Japan
Prior art keywords
sample water
polymer film
ozone concentration
dissolved ozone
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6668893U
Other languages
Japanese (ja)
Other versions
JP2591770Y2 (en
Inventor
美智男 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP1993066688U priority Critical patent/JP2591770Y2/en
Publication of JPH0732560U publication Critical patent/JPH0732560U/en
Application granted granted Critical
Publication of JP2591770Y2 publication Critical patent/JP2591770Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】 【目的】 微孔性の高分子膜による薄膜分離法を採用
し、更に、気相に移動させたオゾンを半導体素子構造等
のガスセンサにより測定することで、簡易構造の溶存オ
ゾン濃度を提供する。 【構成】 請求項1は、試料水導入口と試料水排出口と
を設けた密閉容体を形成し、密閉容体へは微孔性の高分
子膜の壁面を形成すると共に該高分子膜の外側に測定室
を形成させ、測定室へガスセンサを配設させ、試料水導
入口へは高分子膜の壁面に向けて試料水を吐出させる接
触管を設け、請求項2は、請求項1に記載の溶存オゾン
濃度測定装置において測定室を密閉容体の外側から中側
へ貫通状態で配設させた筒状継手と、筒状継手の密閉容
体の中側と成る先端部へ着脱自在に固定させると共に先
端面に微孔性の高分子膜の壁面を設けたキャップ体とで
形成させる。
(57) [Abstract] [Purpose] A simple structure is dissolved by adopting a thin film separation method using a microporous polymer film and measuring ozone transferred to the gas phase with a gas sensor such as a semiconductor device structure. Provides ozone concentration. According to a first aspect of the present invention, a closed container having a sample water inlet and a sample water outlet is formed, and a wall of a microporous polymer film is formed on the sealed container and the outside of the polymer film is formed. A measurement tube is formed in the measurement chamber, a gas sensor is arranged in the measurement chamber, and a contact tube for discharging the sample water toward the wall surface of the polymer film is provided to the sample water introduction port. In the apparatus for measuring dissolved ozone concentration, the cylindrical joint in which the measurement chamber is arranged in a penetrating state from the outside to the inside of the sealed container, and the tubular joint is detachably fixed to the inner end of the sealed container. It is formed with a cap body having a wall surface of a microporous polymer film on the tip surface.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、上水、工業用水等から採取させた試料水中の溶存オゾンを微孔性の 高分子膜を介して気相中に移動させて半導体素子構造等のガスセンサにより測定 し、その測定値に基づいて試料水中の溶存オゾン濃度を測定する溶存オゾン濃度 測定装置に関するものである。 The present invention moves dissolved ozone in sample water collected from tap water, industrial water, etc. into a gas phase through a microporous polymer membrane, and measures it with a gas sensor such as a semiconductor device structure. The present invention relates to a dissolved ozone concentration measuring device for measuring the dissolved ozone concentration in sample water based on the above.

【0002】[0002]

【従来技術とその問題点】[Prior art and its problems]

一般に、上水、工業用水等のオゾンの利用分野においては、オゾンの水中への 溶解度が、水温や気相中のオゾン濃度により大きく変化し、また、オゾンそのも のが生成と同時に分解する等の不安定な性質を有しているために、オゾン濃度の 連続的な測定を必要としている。 In general, in the field of using ozone such as tap water and industrial water, the solubility of ozone in water greatly changes depending on the water temperature and the ozone concentration in the gas phase, and ozone itself decomposes at the same time as it is generated. Due to its unstable nature, it requires continuous measurements of ozone concentration.

【0003】 従来より主に使用されている溶存オゾンの濃度測定装置には、例えば、試薬を 使用した濃度測定と比較して極めて精度が高く、また、自動化等にも優れた吸光 光度法の紫外線吸収方式による濃度測定装置が知られている。この紫外線吸収方 式は、オゾンが紫外線領域に254nm付近をピークとする吸収スペクトル(ハ ートレー帯)を有していることを利用して、紫外線透過性のフローセル内の試料 水へ253.7nmに強い輝線スペクトルを有する低圧水銀ランプ等で紫外線を 直接照射し、その透過量を測定することにより、ランバート.ベールの法則に基 づいて濃度測定するものである。The concentration measuring apparatus for dissolved ozone, which has been mainly used conventionally, has an extremely high accuracy compared with, for example, the concentration measurement using a reagent, and it is also excellent in automation. An absorption type concentration measuring device is known. This ultraviolet absorption method utilizes the fact that ozone has an absorption spectrum (Hartley band) with a peak at around 254 nm in the ultraviolet region, so that the sample water in the ultraviolet-transparent flow cell has a wavelength of 253.7 nm. By directly irradiating ultraviolet rays with a low-pressure mercury lamp having a strong emission line spectrum and measuring the amount of transmission, the Lambert. The concentration is measured based on Beer's law.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、従来型の一般的な吸光光度法の濃度測定装置は、試料水中の含有成 分を波長の違いにより選択的に測定できる等の多くの利点が存在するものの、オ ゾン以外の共存物質である無機物イオンやアミノ酸、蛋白質、アンモニア、塩化 アミン、ミクロルアシアン等が測定値に悪影響を与えるため、これ等のオゾン以 外の共存物質を除去する特別な装置を設けなければならない。 However, conventional concentration-measuring devices using absorptiometry have many advantages, such as the ability to selectively measure the components contained in sample water by the difference in wavelength, but coexisting substances other than ozone do not exist. Certain inorganic ions, amino acids, proteins, ammonia, amine chloride, microluacean, etc. adversely affect the measured values, so special equipment must be provided to remove these coexisting substances other than ozone.

【0005】 これに対して、紫外線吸収方式による濃度測定装置と同様に、試薬を用いない 方式として、膜分離法を用いて液相オゾンを測定する測定装置が提案されている 。この種の膜分離法を採用した装置は、例えば、微孔性の高分子膜であるPTF E等から成る小径の内管の外周へ硝子等の外管を配置した二重管を気相への溶存 オゾンを移すための分離器及びフローセルとして用いたものである。On the other hand, as with the concentration measuring apparatus using the ultraviolet absorption method, a measuring apparatus that measures liquid-phase ozone using a membrane separation method has been proposed as a method that does not use a reagent. An apparatus that employs this type of membrane separation method is, for example, a double tube in which an outer tube such as glass is placed on the outer circumference of a small-diameter inner tube made of a microporous polymer membrane such as PTFE, etc. It was used as a separator and a flow cell for transferring dissolved ozone.

【0006】 上記の構成の装置において、内管に流入させた試料水中のオゾンは、微孔性の 高分子膜の内管を通過して、内管と外管の間に設けた空間部に移動するので、空 間部内へ清浄空気を流入させることによりオゾンを含有したガスを化学発光式等 の適宜な測定手段に導くことができ、この方法によれば試料水中の共存物質の測 定値への影響を回避できる。In the apparatus having the above-mentioned configuration, ozone in the sample water flowing into the inner tube passes through the inner tube of the microporous polymer film, and enters the space provided between the inner tube and the outer tube. Since it moves, ozone-containing gas can be guided to an appropriate measurement means such as chemiluminescence by injecting clean air into the space. The effect of can be avoided.

【0007】 然し乍ら、これ等の濃度測定装置は、何れも低濃度のオゾンの濃度測定には適 しておらず、メンテナンスに手間がかかり、又、装置構成が複雑で大型化やコス ト高を免れない等の問題があった。However, none of these concentration measuring devices are suitable for measuring the concentration of low-concentration ozone, and it requires time and effort for maintenance, and the device configuration is complicated, resulting in large size and high cost. There were problems such as inevitability.

【0008】[0008]

【課題を解決する手段】[Means for solving the problem]

本考案は、上記の事由に鑑みて、微孔性の高分子膜による薄膜分離法を採用し 、更に装置構成を工夫して簡易構造の濃度測定装置の提供を試みたものである。 即ち、試料水中の溶存オゾンを密閉容体に設けた微孔性の高分子膜を介して気相 中に移動し、そのオゾンを半導体素子構造等のガスセンサで測定させることによ り、装置構成の簡略化とコストの低減を図ると共に、請求項1で開示した溶存オ ゾン濃度測定装置では、試料水の導入口へ接触管を設けることにより、気相への オゾンの移動を円滑に行わせて、より機能性、信頼性を向上させ、請求項2で開 示した溶存オゾン濃度測定装置では、具体的な構造として、ガスセンサを配設す る測定室を筒状継手で形成する一方、先端面に微孔性の高分子膜の壁面を設けた キャップ体を形成して、これを筒状継手へ着脱自在に取付ける構造とさせてメン テナンス性を向上させたものである。 In view of the above-mentioned reasons, the present invention has tried to provide a concentration measuring device having a simple structure by adopting a thin film separation method using a microporous polymer film and further devising the device configuration. That is, the dissolved ozone in the sample water is moved into the gas phase through the microporous polymer film provided in the sealed container, and the ozone is measured by the gas sensor of the semiconductor device structure or the like. In addition to simplification and cost reduction, the dissolved ozone concentration measuring apparatus disclosed in claim 1 is provided with a contact pipe at the inlet of the sample water so that ozone can be smoothly transferred to the gas phase. In the dissolved ozone concentration measuring device disclosed in claim 2 which is further improved in functionality and reliability, as a concrete structure, the measuring chamber in which the gas sensor is arranged is formed by a cylindrical joint, while the tip end surface is formed. A cap body with a wall of a microporous polymer membrane is formed on the inside, and the cap body is detachably attached to the tubular joint to improve the maintainability.

【0009】[0009]

【考案の目的】[The purpose of the device]

本考案の主たる目的は、前述の如く、この種の濃度測定装置として、微孔性の 高分子膜による薄膜分離法を採用し、更に、気相に移動させたオゾンを半導体素 子構造等のガスセンサにより測定することで、簡易構造の溶存オゾン濃度を提供 する目的である。 As described above, the main purpose of the present invention is to adopt a thin-film separation method using a microporous polymer film as a concentration measuring device of this kind, and further, to move ozone that has been transferred to the gas phase to a semiconductor device structure or the like. The purpose is to provide a dissolved ozone concentration with a simple structure by measuring with a gas sensor.

【0010】[0010]

【考案の構成】[Constitution of device]

本考案の実用新案登録請求の範囲の請求項1の構成は、試料水導入口と試料水 排出口とを設けた密閉容体を形成し、密閉容体へは微孔性の高分子膜の壁面を形 成すると共に該高分子膜の外側に測定室を形成させ、測定室へガスセンサを配設 させ、試料水導入口へは高分子膜の壁面に向けて試料水を吐出させる接触管を設 けた構成であり、実用新案登録請求の範囲の請求項2の構成は、実用新案登録請 求の範囲の請求項1に記載の溶存オゾン濃度測定装置において、測定室を密閉容 体の外側から中側へ貫通状態で配設させた筒状継手と、筒状継手の密閉容体の中 側と成る先端部へ着脱自在に固定させると共に先端面に微孔性の高分子膜の壁面 を設けたキャップ体とで形成させた構成である。 The constitution of claim 1 of the utility model registration claim of the present invention forms a closed container provided with a sample water inlet and a sample water outlet, and a wall of a microporous polymer membrane is formed on the sealed container. A measurement chamber was formed on the outside of the polymer film while forming, a gas sensor was installed in the measurement chamber, and a contact tube for discharging the sample water toward the wall surface of the polymer film was provided to the sample water inlet. In the dissolved ozone concentration measuring apparatus according to claim 1 within the scope of the utility model registration request, the measurement chamber is arranged from the outside to the inside of the sealed container. A cap body that is detachably fixed to the inner end of the cylindrical joint of the tubular joint that is disposed in a penetrating state and that has a wall surface of a microporous polymer film on the front end surface. It is a structure formed by and.

【0011】[0011]

【考案の実施例〕 斯る目的を達成した本考案を以下実施例の図面によって
説明する。 【0012】 図1は本考案の実用新案登録請求の範囲の請求項1の溶存オゾン濃度測定装置 の概要図であり、図2は本考案の実用新案登録請求の範囲の請求項2の第1実施 例の溶存オゾン濃度測定装置を示す概要断面図であり、図3は本考案の実用新案 登録請求の範囲の請求項2の第2実施例の溶存オゾン濃度測定装置を示す概要断 面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings of the embodiments. FIG. 1 is a schematic view of the dissolved ozone concentration measuring apparatus according to claim 1 of the present invention, and FIG. 2 is the first of claim 2 of the present invention. FIG. 3 is a schematic cross-sectional view showing a dissolved ozone concentration measuring apparatus according to an embodiment, and FIG. 3 is a schematic cross-sectional view showing a dissolved ozone concentration measuring apparatus according to a second embodiment of claim 2 of the utility model registration claim of the present invention. is there.

【0013】 本考案の溶存オゾン濃度測定装置は、図1及び図2に図示の如く、上水、工業 用水等から採取させた試料水A中の溶存オゾンを密閉容体1に設けた微孔性の高 分子膜2を介して測定室3の気相中に移動させ、気相中のオゾンを測定室3に配 置した半導体素子構造等のガスセンサ4により測定させて、その測定値に基づい て試料水A中の溶存オゾンの濃度測定を行う簡易構造の溶存オゾン濃度測定装置 である。As shown in FIGS. 1 and 2, the apparatus for measuring dissolved ozone concentration of the present invention has a microporous structure in which the dissolved ozone in the sample water A collected from tap water, industrial water, etc. is provided in the sealed container 1. It is moved into the gas phase of the measurement chamber 3 through the high molecular weight film 2 and the ozone in the gas phase is measured by the gas sensor 4 such as a semiconductor device structure arranged in the measurement chamber 3, and based on the measured value. It is a dissolved ozone concentration measuring device having a simple structure for measuring the concentration of dissolved ozone in sample water A.

【0014】 実用新案登録請求の範囲の請求項1に記載の溶存オゾン濃度測定装置は、図1 の概要図に図示の如く、試料水導入口1aと試料水排出口1bとを設けた密閉容 体1を形成し、該密閉容体1へは微孔性の高分子膜2の壁面を形成すると共に該 高分子膜2の外側に測定室3を形成させ、該測定室3へガスセンサ4を配設させ 、前記試料水導入口1aへは高分子膜2の壁面に向けて試料水Aを吐出させる接 触管5を設けたことを要旨とする。The dissolved ozone concentration measuring device according to claim 1 of the utility model registration claim is a closed container provided with a sample water inlet 1a and a sample water outlet 1b as shown in the schematic view of FIG. A body 1 is formed, a wall surface of a microporous polymer film 2 is formed on the closed container 1, a measurement chamber 3 is formed outside the polymer film 2, and a gas sensor 4 is arranged in the measurement chamber 3. The main point is that the sample water inlet 1a is provided with a contact tube 5 for discharging the sample water A toward the wall surface of the polymer film 2.

【0015】 即ち、請求項1に記載の溶存オゾン濃度測定装置1は、測定用のフローセルの 役割を果たすものとして、底面等の下方辺に試料水導入口1aを設けると共に側 面等の上方辺に試料水排出口1bを設けた適宜形状の密閉容体1を形成させたも のである。That is, the dissolved ozone concentration measuring apparatus 1 according to claim 1 plays a role of a flow cell for measurement, and the sample water inlet 1a is provided on the lower side such as the bottom surface and the upper side such as the side surface. The sealed container 1 having an appropriate shape having the sample water discharge port 1b formed therein is formed.

【0016】 前記密閉容体1の試料水導入口1aはポンプ装置等を配設させた試料水Aの導 入側配管路(図示せず)に接続されると共に試料水排出口1bは試料水Aの排出 側配管路(図示せず)に接続されており、試料水A中の溶存オゾン濃度の測定は 、前記試料水導入口1aから試料水排出口1bに向けて試料水Aを連続的に流入 させ乍ら、後述する測定室3内に配設させたガスセンサ4により行われる。The sample water inlet 1a of the sealed container 1 is connected to a sample water A inlet side pipe line (not shown) in which a pump device or the like is arranged, and the sample water outlet 1b is connected to the sample water A. Is connected to a discharge side pipe line (not shown), and the concentration of dissolved ozone in the sample water A is measured continuously from the sample water inlet 1a toward the sample water outlet 1b. The gas is introduced into the measuring chamber 3 by a gas sensor 4 which will be described later.

【0017】 前記測定室3は、例えば、密閉容体1の上面を内部側に膨出させた気密空間と して形成させるもので、該測定室3の底面へは水等の液体は通過させさないがオ ゾン等の気体を透過させるPTFE等の微孔性の薄膜から成る高分子膜2の壁面 を形成させると共に、測定室3の空間部へは表示装置6等と接続させた半導体素 子構造等のガスセンサ4を配設させたものである。The measurement chamber 3 is formed, for example, by forming an upper surface of the sealed container 1 as an airtight space that bulges inward, and a liquid such as water does not pass through the bottom surface of the measurement chamber 3. Although a wall of a polymer film 2 made of a microporous thin film such as PTFE that allows gas such as ozone to pass through is formed, a semiconductor device connected to the display device 6 and the like in the space of the measurement chamber 3 is formed. A gas sensor 4 having a structure or the like is arranged.

【0018】 前記ガスセンサ4は、抵抗器等を用いた解析回路、制御回路等へ電気的に接続 させた、例えば、SnO2、ZnO、Fe22等の金属酸化物半導体から成り、 該ガスセンサ4の表面へオゾンが接触すると電気抵抗値(電気伝導率)が変化す るものである。The gas sensor 4 is made of, for example, a metal oxide semiconductor such as SnO 2 , ZnO, Fe 2 O 2 electrically connected to an analysis circuit using a resistor or the like, a control circuit, or the like. When ozone comes into contact with the surface of No. 4, the electric resistance value (electrical conductivity) changes.

【0019】 本考案の溶存オゾン濃度測定装置は、前記密閉容体1の内部の試料水A中に溶 存するオゾンを微孔性の高分子膜2を介して測定室3内の気相中にオゾンガスと して移動させると共にオゾンガスの接触により変化したガスセンサ4の電気抵抗 値に基づいて溶存オゾン濃度を測定させるものであるが、この高分子膜2の表面 に気泡が蓄積すると、試料水A中の溶存オゾンが測定室3内の気相中へ円滑に移 動せず、その結果、測定値にバラツキが生じる等の精度の低下を招く。The dissolved ozone concentration measuring apparatus of the present invention is designed to measure ozone dissolved in the sample water A inside the sealed container 1 into the gas phase in the measuring chamber 3 through the microporous polymer film 2. Then, the dissolved ozone concentration is measured based on the electric resistance value of the gas sensor 4 changed by the contact with the ozone gas while being moved. However, when bubbles accumulate on the surface of the polymer film 2, Dissolved ozone does not move smoothly into the gas phase in the measurement chamber 3, resulting in a decrease in accuracy such as variations in measured values.

【0020】 この為、本考案の溶存オゾン濃度測定装置においては、前記試料水導入口1a へ前記高分子膜2の近傍に排出口を配置した接触管5を設け、試料水Aの密閉容 体1内への導入時には高分子膜2の壁面に向けて試料水Aを吐出させて高分子膜 2上の気泡発生を防止させたものである。Therefore, in the dissolved ozone concentration measuring apparatus of the present invention, the sample water inlet 1a is provided with the contact tube 5 having the outlet in the vicinity of the polymer membrane 2, and the sample water A is hermetically sealed. At the time of introduction into the inside of the polymer film 1, the sample water A is discharged toward the wall surface of the polymer film 2 to prevent generation of bubbles on the polymer film 2.

【0021】 次に、実用新案登録請求の範囲の請求項2に記載の溶存オゾン濃度測定装置は 、図2及び図3の概要断面図に図示の如く、試料水導入口1aと試料水排出口1 bとを設けた密閉容体1を形成し、該密閉容体1へは微孔性の高分子膜2の壁面 を形成すると共に該高分子膜2の外側に測定室3を形成させ、該測定室3へガス センサ4を配設させ、前記試料水導入口1aへは前記高分子膜2の壁面に向けて 試料水Aを吐出させる接触管5を設けた請求項1に記載の溶存オゾン濃度測定装 置において、前記測定室3を密閉容体1の外側から内側へ貫通状態で配設させた 筒状継手3aと、該筒状継手3aの密閉容体1の内側と成る管端部へ着脱自在に 固定させると共に先端面に微孔性の高分子膜2の壁面を設けたキャップ体3bと で形成させたことを要旨とする。Next, the dissolved ozone concentration measuring apparatus according to claim 2 of the scope of utility model registration claims has a sample water inlet 1a and a sample water outlet as shown in the schematic sectional views of FIGS. 1b is formed to form a closed container 1, a wall of a microporous polymer film 2 is formed on the closed container 1, and a measurement chamber 3 is formed outside the polymer film 2 to perform the measurement. The dissolved ozone concentration according to claim 1, wherein a gas sensor 4 is arranged in the chamber 3, and a contact tube 5 for discharging the sample water A toward the wall surface of the polymer film 2 is provided to the sample water inlet 1a. In the measuring device, the measuring chamber 3 is arranged in a penetrating state from the outside to the inside of the sealed container 1, and the tubular joint 3a can be freely attached to and detached from the pipe end of the cylindrical joint 3a inside the sealed container 1. And the cap body 3b having the wall surface of the microporous polymer membrane 2 provided on the front end surface. The point is that they are formed.

【0022】 即ち、実用新案登録請求の範囲の請求項2に記載の溶存オゾン濃度測定装置は 、請求項1で開示した溶存オゾン濃度測定装置において、更に、具体的な装置構 造を開示させたものであり、主として、密閉容体1と高分子膜2の壁面及び測定 室3を形成するための汎用の筒状継手3a及びキャップ体3bとで構成されたも のである。That is, the dissolved ozone concentration measuring apparatus according to claim 2 of the scope of utility model registration is the dissolved ozone concentration measuring apparatus disclosed in claim 1, which further discloses a specific device structure. It is mainly composed of a closed container 1, a wall surface of the polymer membrane 2 and a general-purpose cylindrical joint 3a for forming the measurement chamber 3 and a cap body 3b.

【0023】 前記密閉容体1は、例えば、円筒状の容器本体と該容器本体の上面開口部及び 底面開口部へ環状リング等の適宜なシール手段を介して嵌合させた蓋体等から成 り、該上面の蓋体の一部へ略円形状の貫通孔を形成し、該貫通孔へ適宜なシール 手段を介して筒状継手3aを挿入固定させたものであり、図2及び図3の実施例 では、貫通孔へ螺子部を形成し、該螺子部へ筒状継手3aの螺子部を螺入させて 固定したものである。The hermetically sealed container 1 is composed of, for example, a cylindrical container main body and a lid or the like fitted to the top opening and bottom opening of the container main body through an appropriate sealing means such as an annular ring. A substantially circular through hole is formed in a part of the lid on the upper surface, and the tubular joint 3a is inserted and fixed in the through hole through an appropriate sealing means. In the embodiment, the threaded portion is formed in the through hole, and the threaded portion of the tubular joint 3a is screwed into and fixed to the threaded portion.

【0024】 前記筒状継手3aは、密閉容体1の内部側と成る一方の管端部の外周面に螺子 部を備えた汎用の合成樹脂製の管継手等で形成されると共に、該筒状継手3aの 螺子部へ螺合可能なキャップ体3bを形成して、該筒状継手3aとキャップ体3 bとを着脱自在に固定させたものである。The tubular joint 3a is formed of a general-purpose synthetic resin pipe joint or the like having a screw portion on the outer peripheral surface of one pipe end portion which is the inner side of the sealed container 1, and A cap body 3b that can be screwed into the threaded portion of the joint 3a is formed, and the tubular joint 3a and the cap body 3b are detachably fixed.

【0025】 前記密閉容体1の外部側と成る他方の管端部から胴部内の空間部へは外部に配 設された表示手段6と接続させた半導体素子構造のガスセンサ4を配設させると 共に、該他方の管端部を適宜手段により密閉させ、前記キャップ体3bと筒状継 手3aの胴部で囲まれた空間部を測定室3として用いたものである。A gas sensor 4 having a semiconductor element structure connected to a display means 6 disposed outside is provided from the other end of the tube, which is the outer side of the sealed container 1, to the space inside the body. The other end of the tube is sealed by an appropriate means, and the space surrounded by the body of the cap body 3b and the tubular joint 3a is used as the measurement chamber 3.

【0026】 前記キャップ体3bの先端面には開口部が形成されており、該キャップ体3b を前記筒状継手3aへ螺合させる際に、シート状の微孔性の高分子膜2をキャッ プ体3bと筒状継手3aの間に挾み込んで、キャップ体3bの開口部を高分子膜 2で閉塞させることにより、前記測定室3へ高分子膜2の壁面を形成させるもの である。An opening is formed in the tip end surface of the cap body 3b, and when the cap body 3b is screwed into the tubular joint 3a, the sheet-shaped microporous polymer film 2 is capped. The wall of the polymer film 2 is formed in the measurement chamber 3 by inserting the cap 3b between the cap body 3b and the tubular joint 3a and closing the opening of the cap body 3b with the polymer film 2. .

【0027】 本考案の請求項2の溶存オゾン濃度測定装置は、高分子膜2を配設したキャッ プ体3bが筒状継手3aに対して着脱可能であるため、経時の使用で高分子膜2 が劣化した際には、キャップ体3bを取り外して高分子膜2を交換するだけで良 く、メンテナンスが極めて容易である。In the dissolved ozone concentration measuring apparatus according to claim 2 of the present invention, since the cap body 3b having the polymer film 2 can be attached to and detached from the tubular joint 3a, the polymer film can be used over time. When 2 deteriorates, all that is necessary is to remove the cap body 3b and replace the polymer film 2, and maintenance is extremely easy.

【0028】 尚、図示の溶存オゾン濃度測定装置では、試料水導入口1aは、有底円筒状の 密閉容体1の底壁に設けられると共に試料水排出口1bは密閉容体1の側壁に形 成されているが、試料水導入口1aを底面開口部に嵌合させた蓋体に設けたり、 また、試料水排出口1bを上面開口部に嵌合させた蓋体に設ける等の種々の設計 的変更が可能である。In the illustrated dissolved ozone concentration measuring apparatus, the sample water inlet 1 a is provided on the bottom wall of the closed container 1 having a cylindrical shape with a bottom, and the sample water outlet 1 b is formed on the side wall of the sealed container 1. However, various designs such as providing the sample water inlet 1a in the lid fitted in the bottom opening and providing the sample water outlet 1b in the lid fitted in the upper opening, etc. Changeable.

【0029】[0029]

【考案の効果】[Effect of device]

本考案は、試料水中の溶存オゾンを密閉容体に設けた微孔性の高分子膜を介し て気相中に移動し、そのオゾンを半導体素子構造等のガスセンサで測定させたの で、紫外線吸収方式の濃度測定装置の如く、試料水中の共存物質による妨害がな く、装置構成を簡略化させて低コストの装置を提供することができるだけでなく 、特に、半導体素子構造のガスセンサを使用すれば、低濃度の溶存オゾンを高感 度で測定することができると共に残留オゾン濃度のリーク管理に適した測定装置 を提供できる。 また、本考案の請求項1で開示した溶存オゾン濃度測定装置では、試料水の導 入口へ接触管を設けたので、高分子膜上へ気泡が蓄積することなく、気相へのオ ゾンの移動が円滑に行われるので、機能性、信頼性に優れ、請求項2で開示した 溶存オゾン濃度測定装置では、更に、ガスセンサを配設する測定室を筒状継手で 形成し、これに先端面に微孔性の高分子膜の壁面を設けたキャップ体を着脱自在 に取付ける構造とさせたので、前述の効果に加えて、膜交換の簡易化等のメンテ ナンス性にも優れた画期的で且つ極めて有意義な考案である。 In the present invention, the dissolved ozone in the sample water was moved into the gas phase through the microporous polymer film provided in the sealed container, and the ozone was measured by the gas sensor of the semiconductor device structure, etc. Not only is it possible to provide a low-cost device by simplifying the device configuration without the interference of coexisting substances in the sample water as in the case of the concentration measuring device of the method, especially when using a gas sensor with a semiconductor element structure. In addition, it is possible to provide a measuring device that can measure low concentration of dissolved ozone with high sensitivity and that is suitable for leak control of residual ozone concentration. Further, in the dissolved ozone concentration measuring apparatus disclosed in claim 1 of the present invention, since the contact tube is provided at the inlet of the sample water, bubbles are not accumulated on the polymer membrane, and the ozone in the gas phase is not accumulated. Since it moves smoothly, it is excellent in functionality and reliability. In the dissolved ozone concentration measuring apparatus disclosed in claim 2, the measuring chamber in which the gas sensor is arranged is further formed by a cylindrical joint, and the tip surface is In addition to the above effects, the epoch-making is excellent in maintenance such as simplification of membrane exchange because the cap body with the wall surface of the microporous polymer membrane is attached detachably. It is a very meaningful idea.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実用新案登録請求の範囲の請求項1の
溶存オゾン濃度測定装置の概要図である。
FIG. 1 is a schematic view of a dissolved ozone concentration measuring apparatus according to claim 1 of the present invention, which is a utility model registration claim.

【図2】本考案の実用新案登録請求の範囲の請求項2の
第1実施例の溶存オゾン濃度測定装置を示す概要断面図
である。
FIG. 2 is a schematic cross-sectional view showing a dissolved ozone concentration measuring apparatus of a first embodiment of claim 2 within the scope of utility model registration claims of the present invention.

【図3】本考案の実用新案登録請求の範囲の請求項2の
第2実施例の溶存オゾン濃度測定装置を示す概要断面図
である。
FIG. 3 is a schematic sectional view showing a dissolved ozone concentration measuring apparatus according to a second embodiment of claim 2 of the utility model registration claim of the present invention.

【0030】[0030]

【符号の説明】[Explanation of symbols]

A 試料水 1 密閉容体 1a 試料水導入口 1b 試料水排出口 2 高分子膜 3 測定室 3a 筒状継手 3b キャップ体 4 ガスセンサ 5 接触管 6 表示装置 A Sample water 1 Sealed container 1a Sample water inlet 1b Sample water outlet 2 Polymer membrane 3 Measuring chamber 3a Cylindrical joint 3b Cap body 4 Gas sensor 5 Contact tube 6 Display device

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】試料水導入口と試料水排出口とを設けた密
閉容体を形成し、該密閉容体へは微孔性の高分子膜の壁
面を形成すると共に該高分子膜の外側に測定室を形成さ
せ、該測定室へガスセンサを配設させ、前記試料水導入
口へは高分子膜の壁面に向けて試料水を吐出させる接触
管を設けたことを特徴とする溶存オゾン濃度測定装置。
1. A closed container provided with a sample water inlet and a sample water outlet is formed, and a wall surface of a microporous polymer film is formed on the sealed container and is measured outside the polymer film. Dissolved ozone concentration measuring apparatus characterized in that a chamber is formed, a gas sensor is arranged in the measurement chamber, and a contact tube for discharging sample water toward the wall surface of the polymer film is provided to the sample water inlet port. .
【請求項2】実用新案登録請求の範囲の請求項1に記載
の溶存オゾン濃度測定装置において、前記測定室を密閉
容体の外側から内側へ貫通状態で配設させた筒状継手
と、該筒状継手の密閉容体の内側と成る管端部へ着脱自
在に固定させると共に先端面に微孔性の高分子膜の壁面
を設けたキャップ体とで形成させたことを特徴とする溶
存オゾン濃度測定装置。
2. The dissolved ozone concentration measuring device according to claim 1, which is a claim for utility model registration, and a cylindrical joint in which the measuring chamber is arranged in a penetrating state from the outside to the inside of the sealed container, and the cylinder. Dissolved ozone concentration characterized by being detachably fixed to the pipe end inside the sealed container of the tubular joint and formed with a cap body provided with a wall of a microporous polymer membrane on the tip surface apparatus.
JP1993066688U 1993-11-22 1993-11-22 Dissolved ozone concentration measurement device Expired - Lifetime JP2591770Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993066688U JP2591770Y2 (en) 1993-11-22 1993-11-22 Dissolved ozone concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993066688U JP2591770Y2 (en) 1993-11-22 1993-11-22 Dissolved ozone concentration measurement device

Publications (2)

Publication Number Publication Date
JPH0732560U true JPH0732560U (en) 1995-06-16
JP2591770Y2 JP2591770Y2 (en) 1999-03-10

Family

ID=13323129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993066688U Expired - Lifetime JP2591770Y2 (en) 1993-11-22 1993-11-22 Dissolved ozone concentration measurement device

Country Status (1)

Country Link
JP (1) JP2591770Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000627U (en) * 2019-02-26 2019-03-08 김석규 Cell measuring ozone gas
JP2020008506A (en) * 2018-07-12 2020-01-16 株式会社ピュアロンジャパン Dissolved gas measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008506A (en) * 2018-07-12 2020-01-16 株式会社ピュアロンジャパン Dissolved gas measuring device
KR20190000627U (en) * 2019-02-26 2019-03-08 김석규 Cell measuring ozone gas

Also Published As

Publication number Publication date
JP2591770Y2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US4876068A (en) Test kit for colorimetric analysis
CN105842234A (en) Self-calibration continuous and online nitrogen dioxide detection device and method
JP6684426B2 (en) Water quality analyzer and water quality analysis method
CN106596880B (en) A kind of staged adding method thereof and device for chemical oxygen demand detection
US5811696A (en) Isokinetic fluid sampling method
US11225422B2 (en) Field groundwater filtering and sampling and moving-water flow index measuring device and method
CN205607866U (en) From maring continuous on -line measuring device of formula nitrogen dioxide
CN206509008U (en) A kind of experiment constant water bath box
US4920057A (en) Method for colorimetric analysis of metals
JPH0732560U (en) Dissolved ozone concentration measuring device
US4651087A (en) Apparatus for measuring impurities in ultrapure water
CN103760004A (en) Solvent desorption device and method
JP2013545091A (en) Online titration in a switching device
US3296098A (en) Method and apparatus for gas analysis
US6322751B1 (en) Optrode for the detection of volatile chemicals
CN207923763U (en) A kind of enclosed sampling and moisture content detection device of hydrogen fluoride
JP3622024B2 (en) Gas detection method and gas detection device
CN216622289U (en) Waste liquid collecting bottle for analyzer
RU2690081C1 (en) Measuring cell
JP3043413B2 (en) Countercurrent device and method for reducing the negative impact of contaminant materials used in moisture sensitive devices or techniques
US20050042133A1 (en) Chemical analyzer probe with chemical selective filter
CN220425382U (en) Sampling bottle for water quality detection
CN208766014U (en) The Quick Acquisition detection device of air-borne mercury
CN218157808U (en) Protection device of tail gas analysis instrument in chlorination process production
JPH0514206Y2 (en)