JPH07324318A - Penetrating-type wave dissipating structure - Google Patents

Penetrating-type wave dissipating structure

Info

Publication number
JPH07324318A
JPH07324318A JP6249996A JP24999694A JPH07324318A JP H07324318 A JPH07324318 A JP H07324318A JP 6249996 A JP6249996 A JP 6249996A JP 24999694 A JP24999694 A JP 24999694A JP H07324318 A JPH07324318 A JP H07324318A
Authority
JP
Japan
Prior art keywords
wave
horizontal plate
plate
submerged horizontal
dissipating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6249996A
Other languages
Japanese (ja)
Other versions
JP3367768B2 (en
Inventor
Masahiko Ozaki
雅彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24999694A priority Critical patent/JP3367768B2/en
Priority to TW084101934A priority patent/TW288075B/zh
Priority to KR1019950007666A priority patent/KR100212344B1/en
Priority to SG1995000211A priority patent/SG47342A1/en
Publication of JPH07324318A publication Critical patent/JPH07324318A/en
Application granted granted Critical
Publication of JP3367768B2 publication Critical patent/JP3367768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To obtain sufficient wave dissipating effect specially on waves of long wavelength with smaller scale structure than conventional structure regarding a penetrating type wave dissipating structure. CONSTITUTION:A submerged horizontal plate positioned below the water surface, and a vertical flat plate 2 erected near the end part on the wave lower side or wave upper side of the submerged horizontal plate 1 are supported by a supporting frame 4 erected on the sea bottom. The vertical flat plate 2 is disposed in such a way as to go through the water surface almost orthogonally to the proceeding direction of approaching waves W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、港湾内に静穏水域を造
成したり、沿岸における火力発電所の取水口や放水口へ
の波の進入を軽減したりするための透過型消波構造物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent wave-dissipating structure for constructing a calm water area in a harbor and for reducing the penetration of waves into the intake and discharge ports of a thermal power plant on the coast. Regarding

【0002】[0002]

【従来の技術】港湾内に桟橋やマリーナを設けたり増養
殖場を造成したり、あるいは海洋工事作業の稼働率を高
めたり係留された構造物を保護したりする場合には、所
要の水域に消波構造物を設置することによってその水域
の静穏度を確保する必要がある。通常の重力式の防波堤
は、水深の増大に対してコストの点で限界があるばかり
でなく、水域内外の水の入れ替わりを疎外するので、環
境重視の観点から制限される場合もある。このような比
較的水深が大きい場合や水域内外の水の入れ替わりを重
視する場合、水深方向に関し全く遮蔽してしまうという
ことのないようにした透過型消波構造物の使用が考えら
れている。従来の透過型消波構造物の例を図6,7に示
す。
2. Description of the Related Art If you want to build a pier or marina in a harbor, build an aquaculture farm, increase the operating rate of offshore construction work, or protect moored structures, make sure that the required water area It is necessary to secure the calmness of the water area by installing a wave-dissipating structure. A normal gravity breakwater not only has a limit in terms of cost with respect to an increase in water depth, but also alienates the exchange of water inside and outside the water area, and thus may be limited from the viewpoint of environmental consideration. When the water depth is relatively large or when the water exchange inside and outside the water area is emphasized, it is considered to use a transmission type wave-breaking structure that does not block the water in the depth direction at all. An example of a conventional transmissive wave-breaking structure is shown in FIGS.

【0003】図6はカーテンウォールと称される型式の
消波構造物の側面図であって、鉛直の板構造体aが水面
を貫いて水深の途中まで到達するように配設されてい
る。この型式の消波構造物は波による水粒子の運動のう
ち表面近くのものを遮ぎることによって背後への波の伝
播を低減させるもので、波長の長い波に対しては水深方
向への貫入量を増やすことで対処することになる。そし
て消波性能の指標としての透過係数Ct(透過波高Htと
入射波高Hiとの比Ht/Hi)を0.5以下に抑えようと
する場合、カーテンウオールの貫入量は波長の1/7倍
程度必要であることがこれまでにわかっている。したが
って、たとえば周期4秒・波長25mの波に対しては4m
弱の貫入量でよいが、周期8秒、波長100mの波に対し
ては14mもの貫入量が必要となって、消波構造物として
の規模が大きくなってしまうという不具合がある。ま
た、この場合は水の透過性が悪くなってしまい、さらに
頻繁に生じる周期の短い波に対しては透過係数は小さい
ものの、反射波を無視できず、カーテンウオール前面で
入射波と反射波とが重畳する水域での船舶・作業船の航
行に支障を来すという不具合もある。
FIG. 6 is a side view of a wave-dissipating structure of a type called a curtain wall, in which a vertical plate structure a is arranged so as to penetrate the water surface and reach the middle of the water depth. This type of wave-dissipating structure reduces the propagation of waves to the back by blocking the movement of water particles near the surface in the movement of water particles due to waves, and penetrates in the depth direction for waves with long wavelengths. It will be dealt with by increasing the amount. When the transmission coefficient Ct (the ratio Ht / Hi between the transmitted wave height Ht and the incident wave height Hi) as an index of the wave-dissipating performance is to be kept below 0.5, the penetration amount of the curtain wall is 1/7 times the wavelength. I know that it is necessary to some extent. Therefore, for example, 4 m for a wave with a cycle of 4 seconds and a wavelength of 25 m
A weak penetration amount is sufficient, but a penetration amount of 14 m is required for a wave having a period of 8 seconds and a wavelength of 100 m, which causes a problem that the scale of the wave-dissipating structure becomes large. Also, in this case, the permeability of water deteriorates, and although the transmission coefficient is small for waves that occur more frequently and have a shorter cycle, the reflected waves cannot be ignored, and the incident and reflected waves cannot be ignored in front of the curtain wall. There is also a problem that it hinders the navigation of vessels and work vessels in the water area where

【0004】図7は没水水平板式と称される型式の消波
構造物の側面図であって、水平の板構造体bが水面付近
に完全に没水して設けられている。この型式の消波構造
物は平板によって水粒子の運動を妨げたり、平板の上で
波が砕けたり、あるいは平板の端部で渦が生成したりす
ることを利用して、波エネルギーを消費させ、透過係数
が低減されるほか反射波も小さいが、波長の長い波に対
しては平板の幅を増大させることで対処することにな
り、透過係数を0.5以下に抑えようとすると、平板の
幅は波長の1/3〜1/4必要となる。したがって、波長
100mの波に対しては板幅が30m近くなり著しく大規模
な構造物になってしまうという不具合がある。
FIG. 7 is a side view of a wave-dissipating structure of a type called a submerged horizontal plate type, in which a horizontal plate structure b is completely submerged near the water surface. This type of wave-dissipating structure consumes wave energy by utilizing the fact that a flat plate impedes the movement of water particles, the wave breaks on the flat plate, or a vortex is generated at the end of the flat plate. Although the transmission coefficient is reduced and the reflected wave is also small, the wave with a long wavelength is dealt with by increasing the width of the plate, and if the transmission coefficient is suppressed to 0.5 or less, Is required to be 1/3 to 1/4 of the wavelength. Therefore, the wavelength
There is a problem that the plate width becomes close to 30 m for a wave of 100 m and it becomes a remarkably large-scale structure.

【0005】[0005]

【発明が解決しようとする課題】前述のように、従来の
透過型消波構造物では、長い波長の波に対し消波効果を
発揮するためには、規模が大きくなってコストの増大を
招くという欠点がある。また規模の大型化に伴い水の透
過性が悪くなることもある。特にカーテンウオールの場
合反射波の影響を無視できない。本発明は、上述のよう
な問題点の解消をはかろうとするもので、長い波長の波
に対して、従来よりもはるかに小さな規模の構造で十分
な消波効果を得られるようにするとともに、反射波を低
減させることができるようにした、透過型消波構造物を
提供することを目的とする。
As described above, in the conventional transmissive wave-dissipating structure, in order to exert the wave-dissipating effect on a wave having a long wavelength, the scale becomes large and the cost is increased. There is a drawback that. In addition, water permeability may deteriorate as the scale increases. Especially in case of curtain wall, the influence of reflected wave cannot be ignored. The present invention is intended to solve the above-mentioned problems, and makes it possible to obtain a sufficient wave-dissipating effect with respect to a wave having a long wavelength with a structure having a much smaller scale than the conventional one. An object of the present invention is to provide a transmissive wave-dissipating structure capable of reducing reflected waves.

【0006】[0006]

【課題を解決するための手段】前述の目的を達成するた
め、本発明では、波が進入してくる方向とほぼ直交する
水平方向に展開する没水水平板が水面とほぼ平行で完全
に水没するように配設されるとともに、同没水水平板の
波上側または波下側の端部付近で水面を貫くように上方
へ向かって立設固定される鉛直平板板が配設されるよう
になっている。すなわち、本発明の透過型消波構造物
は、海底に立設され海水の透過を許容する支持枠と、同
支持枠に支持され水面下に位置する没水水平板とをそな
えるとともに、同没水水平板の波下側または波上側の端
部付近に、進入波の進行方向とほぼ直交し水面を貫通す
るように鉛直板が立設されていることを特徴としてい
る。
In order to achieve the above-mentioned object, in the present invention, a submerged horizontal plate which is developed in a horizontal direction substantially orthogonal to the direction in which waves enter is completely parallel to the water surface and completely submerged. And a vertical flat plate that is erected and fixed upwards so as to penetrate the water surface near the end on the wave upper side or wave lower side of the submerged horizontal plate. Has become. That is, the transmission type wave-dissipating structure of the present invention is provided with a support frame which is erected on the seabed and allows the permeation of seawater, and a submerged horizontal plate which is supported by the support frame and is located below the water surface. It is characterized in that a vertical plate is erected upright near the end of the water horizontal plate on the wave lower side or the wave upper side so as to pass through the water surface substantially orthogonal to the traveling direction of the incoming wave.

【0007】また、本発明の透過型消波構造物は、上記
の没水水平板と鉛直平板とを結合する複数の仕切り板
が、進入波の進行方向に沿うように互いに間隔をあけて
並設されていることを特徴としている。
Further, in the transmission type wave-dissipating structure of the present invention, a plurality of partition plates for connecting the submerged horizontal plate and the vertical flat plate are arranged at intervals along the traveling direction of the incoming wave. It is characterized by being installed.

【0008】また本発明の透過型消波構造物は、上記仕
切り板が上記鉛直平板の上縁付近から上記没水水平板の
端縁付近へ斜行する斜辺をそなえた直角三角形状に形成
されていることを特徴としている。
In the transmission type wave-dissipating structure of the present invention, the partition plate is formed in the shape of a right triangle having a hypotenuse obliquely inclined from the vicinity of the upper edge of the vertical flat plate to the vicinity of the edge of the submerged horizontal plate. It is characterized by

【0009】さらに本発明の透過型消波構造物は、上記
没水水平板の幅が上記鉛直平板の高さより大きく設定さ
れていることを特徴としている。
Further, the transmission type wave-dissipating structure of the present invention is characterized in that the width of the submerged horizontal plate is set larger than the height of the vertical flat plate.

【0010】さらにまた本発明の透過型消波構造物は、
上記没水水平板の上記鉛直平板を立設されていない側の
端部に、同没水水平板の上面あるいは下面に沿う流れを
妨げるべく突起部材が取り付けられていることを特徴と
している。
Furthermore, the transmission type wave-dissipating structure of the present invention is
A projecting member is attached to an end of the submerged horizontal plate on which the vertical flat plate is not erected so as to prevent a flow along an upper surface or a lower surface of the submerged horizontal plate.

【0011】さらに本発明の透過型消波構造物は、上記
没水水平板の上記鉛直平板を立設されていない側の端部
近傍で、同没水水平板より上方でかつ上記水面より下方
に位置して、板構造体が設けられていることを特徴とし
ている。
Further, in the transmission type wave-dissipating structure of the present invention, near the end of the submerged horizontal plate on which the vertical flat plate is not erected, above the submerged horizontal plate and below the water surface. It is characterized in that the plate structure is provided at the position.

【0012】さらにまた本発明の透過型消波構造物は、
上記没水水平板から波上側に離れて、上記水面より下方
に位置するように板構造体が配設されていることを特徴
としている。
Furthermore, the transmission type wave-breaking structure of the present invention is
It is characterized in that the plate structure is disposed so as to be positioned below the water surface and away from the submerged horizontal plate on the wave upper side.

【0013】[0013]

【作用】上述の本発明の透過型消波構造物では、鉛直平
板が没水水平板の波下側の端部付近に立設される場合、
水面を伝播してきた進入波は、一旦没水水平板の上面に
沿い通過しようとして鉛直平板で反射された後、没水水
平板の上を戻り、その後、没水水平板の下を通過してい
くという動作を行なう。そして、返し波の場合は、上述
の逆の経路をたどる動作が行なわれる。このようにし
て、波の一部は位相が遅れるとともに、没水水平板上の
水を運動させることで、波のエネルギーの一部が消費さ
れるので、透過波は減衰することになる。
In the transmission type wave-dissipating structure of the present invention described above, when the vertical flat plate is erected near the wave-side end of the submerged horizontal plate,
The incoming wave propagating on the water surface is reflected once by the vertical flat plate in order to pass along the upper surface of the submerged horizontal plate, returns on the submerged horizontal plate, and then passes under the submerged horizontal plate. Perform the action of going. Then, in the case of a returning wave, the operation of tracing the reverse path described above is performed. In this way, a part of the wave is delayed in phase, and a part of the energy of the wave is consumed by moving the water on the submerged horizontal plate, so that the transmitted wave is attenuated.

【0014】また鉛直平板が没水水平板の波上側の端部
付近に立設される場合も、鉛直平板および没水水平板の
波に対する相乗作用により、透過波は十分に減衰するよ
うになる。そして、上記の没水水平板と鉛直平板とを結
合する複数の仕切り板が波の進行方向と平行に互いに間
隔をあけて並設されると、上述の没水水平板に沿う波の
動きが円滑に行なわれるとともに、没水水平板と鉛直平
板との結合強度が増すようになる。
Also, when the vertical flat plate is erected near the end of the submerged horizontal plate on the wave upper side, the transmitted wave is sufficiently attenuated by the synergistic action on the waves of the vertical flat plate and the submerged horizontal plate. . Then, when a plurality of partition plates that connect the submerged horizontal plate and the vertical flat plate are arranged in parallel with each other in parallel with the traveling direction of the wave, the movement of the wave along the submerged horizontal plate described above. The operation is smoothly performed, and the joint strength between the submerged horizontal plate and the vertical flat plate is increased.

【0015】また、上記仕切り板が鉛直平板の上縁付近
から没水水平板の端縁付近へ斜行する斜辺をそなえた直
角三角形状に形成されることにより、同仕切り板自体の
取付け強度が適切に保たれるようになる。さらに、請求
項5〜7における突起部材あるいは板構造体が、没水水
平板の周辺の流れを利用して渦を生成させるなどして、
波の持つエネルギーを減少するように作用する。そして
突起部材あるいは板構造体が、没水水平板上の共振現象
を阻害せず、かつ流れの速い箇所に配設されているた
め、上記作用が顕著に行なわれる。
Further, since the partition plate is formed in the shape of a right-angled triangle having a hypotenuse inclined from the vicinity of the upper edge of the vertical flat plate to the vicinity of the edge of the submerged horizontal plate, the mounting strength of the partition plate itself is improved. Be properly maintained. Furthermore, the projecting member or the plate structure according to claims 5 to 7 uses a flow around the submerged horizontal plate to generate a vortex,
It acts to reduce the energy of the waves. Further, since the projecting member or the plate structure does not hinder the resonance phenomenon on the submerged horizontal plate and is arranged at a location where the flow is fast, the above-mentioned action is remarkably performed.

【0016】[0016]

【実施例】以下、図面により本発明の一実施例としての
透過型消波構造物について説明すると、図1はその斜視
図、図2はその規則波に対する消波性能を示すグラフ、
図3(a)〜(c)はその第1変形例の模式側断面図、図4
(a)〜(c)はその第2変形例の模式側断面図、図5(a)〜
(e)はその第3変形例の模式側断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A transmission type wave-breaking structure as one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view thereof, and FIG.
3 (a) to 3 (c) are schematic side sectional views of the first modification, and FIG.
(a) ~ (c) is a schematic side sectional view of the second modified example, Fig. 5 (a) ~
(e) is a schematic side sectional view of the third modification.

【0017】まず、図1に示した透過型消波構造物につ
いて説明すると、符号1は水面下の深度dの位置に配設
される没水水平板を示しており、この没水水平板1と同
没水水平板1の波下側の端部に立設された鉛直平板2と
で消波構造物が形成され、これが、海水の透過を許容す
るように海底に立設された支持枠4に支持されている。
このようにして、鉛直平板2は進入波Wの進行方向5と
ほぼ直交し水面を貫通するように設けられており、没水
水平板1の没水深度dと幅Bとの比(d/B)は、1/2
〜1/3程度に設定されている。
First, the transmissive wave-dissipating structure shown in FIG. 1 will be described. Reference numeral 1 denotes a submerged horizontal plate disposed at a position of a depth d below the water surface. A wave-dissipating structure is formed between the submerged horizontal plate 1 and a vertical flat plate 2 that is erected on the wave-side end of the submerged horizontal plate 1. This support frame is erected on the seabed so as to allow the permeation of seawater. It is supported by 4.
In this way, the vertical flat plate 2 is provided so as to penetrate the water surface substantially orthogonal to the traveling direction 5 of the incoming wave W, and the ratio of the submerged depth d of the submerged horizontal plate 1 to the width B (d / B) is 1/2
It is set to about 1/3.

【0018】また没水水平板1と鉛直平板2とを結合す
る複数の仕切り板3が、進入波Wの進行方向5に沿うよ
うに互いに間隔をあけて並設されている。そして各仕切
り板3は、鉛直平板2の上縁付近から没水水平板1の端
縁付近へ斜行する斜辺3aをそなえた直角三角形状に形
成されている。なお、支持枠4は、鉄骨や鉄パイプなど
の細長部材により構成され、これにより水の透過性が高
められている。ここで、消波構造物の長手方向6が進入
波Wの進行方向5に直交して配置されている。なお図1
中の符号Bは没水水平板1の幅を、符号Dは鉛直平板2
の高さを、符号sは鉛直平板2の乾舷部分を、符号10は
水面をそれぞれ示している。
A plurality of partition plates 3 connecting the submerged horizontal plate 1 and the vertical flat plate 2 are arranged side by side along the traveling direction 5 of the incoming wave W at intervals. Each partition plate 3 is formed in the shape of a right triangle having a hypotenuse 3a that obliquely extends from near the upper edge of the vertical flat plate 2 to near the edge of the submerged horizontal plate 1. The support frame 4 is composed of an elongated member such as a steel frame or an iron pipe, which enhances the water permeability. Here, the longitudinal direction 6 of the wave-dissipating structure is arranged orthogonal to the traveling direction 5 of the incoming wave W. Figure 1
The symbol B in the figure indicates the width of the submerged horizontal plate 1, and the symbol D indicates the vertical plate 2.
, The reference numeral s indicates the freeboard portion of the vertical flat plate 2, and the reference numeral 10 indicates the water surface.

【0019】本実施例の透過型消波構造物は上述のよう
に構成されているので、水面を伝播してきた進入波W
は、一旦没水水平板1の上面に沿い通過しようとして鉛
直平板2で反射された後、没水水平板1の上を戻り、そ
の後、没水水平板1の下を通過していくという動作を行
なう。そして、返し波の場合は、上述の逆の経路をたど
る動作が行なわれる。このようにして、波の一部は位相
が遅れるとともに、没水水平板1上の水を運動させるこ
とで、波のエネルギーの一部が消費されるので、透過波
は減衰することになる。
Since the transmission type wave-dissipating structure of this embodiment is constructed as described above, the ingress wave W propagating on the water surface is obtained.
Is an operation of passing along the upper surface of the submerged horizontal plate 1, once reflected by the vertical flat plate 2, returned over the submerged horizontal plate 1, and then passed under the submerged horizontal plate 1. Do. Then, in the case of a returning wave, the operation of tracing the reverse path described above is performed. In this way, a part of the wave is delayed in phase, and by moving the water on the submerged horizontal plate 1, a part of the wave energy is consumed, so that the transmitted wave is attenuated.

【0020】また鉛直平板が没水水平板の波上側の端部
付近に立設される場合も、鉛直平板および没水水平板の
波に対する相乗作用により、透過波は十分に減衰するよ
うになる。そして、没水水平板1と鉛直平板2とを結合
する複数の仕切り板3が波の進行方向と平行に互いに間
隔をあけて並設されると、上述の没水水平板1に沿う波
の動きが円滑に行なわれるとともに、没水水平板1と鉛
直平板2との結合強度が増すようになる。
Also, when the vertical flat plate is erected near the end of the submerged horizontal plate on the wave upper side, the transmitted wave is sufficiently attenuated due to the synergistic action on the wave of the vertical flat plate and the submerged horizontal plate. . When a plurality of partition plates 3 for connecting the submerged horizontal plate 1 and the vertical flat plate 2 are arranged in parallel with each other in parallel with the traveling direction of the wave, the wave along the above-mentioned submerged horizontal plate 1 is generated. The movement is smoothly performed, and the joint strength between the submerged horizontal plate 1 and the vertical flat plate 2 is increased.

【0021】また、仕切り板3が鉛直平板2の上縁付近
から没水水平板1の端縁付近へ斜行する斜辺3aをそな
えた直角三角形状に形成されることにより、同仕切り3
板自体の取付け強度が適切に保たれるようになる。図2
(a),(b)に、シミュレーション計算や水槽実験で得られ
る規則波に対する消波性能曲線を示す。横軸は進入波
(規則波)の波長λを没水水平板1の幅Bで無次元化し
た値、縦軸は波の透過係数である。
Further, the partition plate 3 is formed in the shape of a right triangle having a hypotenuse 3a obliquely running from the vicinity of the upper edge of the vertical flat plate 2 to the vicinity of the edge of the submerged horizontal plate 1, so that the partition 3
The mounting strength of the plate itself can be maintained appropriately. Figure 2
(a) and (b) show the wave-dissipation performance curves for regular waves obtained by simulation calculations and tank experiments. The abscissa represents a value obtained by making the wavelength λ of the incoming wave (regular wave) dimensionless by the width B of the submerged horizontal plate 1, and the ordinate represents the wave transmission coefficient.

【0022】図2(a)は没水水平板1の没水深度dと幅
Bとの比が1/3の場合について示しているが、透過係
数が0.5以下になる場合の波長λの最大値は、没水水
平板1の幅Bの18倍にいたっている。また、図2(b)は
没水水平板1の没水深度dと幅Bとの比が1/2の場合
について示しているが、透過係数が0.5以下になる波
長λの最大値は、没水水平板の幅Bの約12倍近くにいた
っている。
FIG. 2 (a) shows the case where the ratio of the submerged depth d of the submerged horizontal plate 1 to the width B is 1/3, and the wavelength λ when the transmission coefficient is 0.5 or less. The maximum value of is 18 times the width B of the submerged horizontal plate 1. Further, FIG. 2B shows the case where the ratio of the submerged depth d of the submerged horizontal plate 1 to the width B is 1/2, but the maximum value of the wavelength λ at which the transmission coefficient is 0.5 or less. Is approximately 12 times the width B of the submerged horizontal plate.

【0023】これらのことから、潮位変動のために没水
水平板1の没水深度が変わってdとBの比が1/2〜1/
3の範囲で変わる場合でも、例えば周期8秒,波長100
mの進入波に対して、没水水平板1の幅は約8m,没水
深度は約2.7〜4mという、かなり小規模な消波構造
物で足りることになる。周期6秒,波長56mでは幅は約
5mでよく、周期12秒,波長225mでは幅は約20m必要
である。なお本実施例では、没水水平板1および鉛直平
板2を単純な板としたが、ある程度厚みのある鋼板構造
やコンクリートで被覆されたブロック構造などにしても
よい。
From the above, the submerged depth of the submerged horizontal plate 1 is changed due to the tide level change, and the ratio of d and B is 1/2 to 1/1 /.
Even if it changes within the range of 3, for example, a period of 8 seconds, a wavelength of 100
For an incoming wave of m, a considerably small wave-dissipating structure with a width of the submerged horizontal plate 1 of about 8 m and a submerged depth of about 2.7 to 4 m is sufficient. At a period of 6 seconds and a wavelength of 56 m, the width may be about 5 m, and at a period of 12 seconds and a wavelength of 225 m, the width needs to be about 20 m. Although the submerged horizontal plate 1 and the vertical flat plate 2 are simple plates in this embodiment, they may have a steel plate structure having a certain thickness or a block structure covered with concrete.

【0024】また、図示のものでは没水水平板1と鉛直
平板2との断面形状をL字型としたが、没水水平板1あ
るいは鉛直平板2からの突き出しが若干あっても差し支
えない。さらに図示の例では鉛直平板2を没水水平板1
の波下側の端部に設けたが、波上側でも同様の効果が得
られることが計算と実験で確認されている。なお、鉛直
平板2を没水水平板1の波上側の端部に設ける場合は、
図1において進入波は符号W′で示すようになる。
In the illustrated example, the submerged horizontal plate 1 and the vertical flat plate 2 have an L-shaped cross-section, but a slight protrusion from the submerged horizontal plate 1 or the vertical flat plate 2 is acceptable. Further, in the illustrated example, the vertical flat plate 2 is replaced by the submerged horizontal plate 1.
Although it is provided at the lower end of the wave, it has been confirmed by calculation and experiment that the same effect can be obtained at the upper side of the wave. When the vertical flat plate 2 is provided at the end of the submerged horizontal plate 1 on the wave side,
In FIG. 1, the incoming wave is represented by the symbol W '.

【0025】ここで、上述の没水水平板1と鉛直平板2
とから構成された透過型消波構造物における消波作用の
原理について説明する。波の波長λは、水深が大きい時
には波周期Tを用いて[数1]式のように表される。
Here, the submerged horizontal plate 1 and the vertical flat plate 2 described above are used.
The principle of the wave-dissipating action in the transmission-type wave-dissipating structure composed of and will be described. The wavelength λ of the wave is expressed as in [Equation 1] using the wave period T when the water depth is large.

【数1】 ただしgは重力加速度,πは円周率[Equation 1] Where g is gravitational acceleration and π is the circular constant

【0026】一方、水深が非常に小さい場合には、水深
hの影響を考慮した波長λhは、[数2]式のように表
される。
On the other hand, when the water depth is very small, the wavelength λ h considering the influence of the water depth h is expressed by the formula [2].

【数2】λh=T√(gh) したがって水深が小さいほど波長は短くなる。## EQU2 ## λ h = T√ (gh) Therefore, the smaller the water depth, the shorter the wavelength.

【0027】本発明は、鉛直平板前面で波の腹、没水水
平板他端で波の節が生じる、没水水平板上で発生するい
わゆる共振現象を利用し、入射波のエネルギーを散逸さ
せ、透過係数を小さくするようにしている。すなわち没
水水平板の上で波長が没水水平板の幅の4倍になる時を
考えると、[数3]式になる。
The present invention utilizes the so-called resonance phenomenon which occurs on the submerged horizontal plate in which the antinode of the wave is generated on the front surface of the vertical flat plate and the node of the wave is generated on the other end of the submerged horizontal plate to dissipate the energy of the incident wave. , The transmission coefficient is reduced. That is, when the wavelength on the submerged horizontal plate is four times the width of the submerged horizontal plate, the formula [3] is obtained.

【数3】4B=λd ここでλdは没水水平板上の波長、Bは没水水平板の幅4B = λ d where λ d is the wavelength on the submerged horizontal plate, and B is the width of the submerged horizontal plate.

【0028】上述の透過型消波構造物の構造形式におい
て、没水水平板の上では、見かけ上水深hがあたかも没
水水平板の没水深度dであるとみなされるので、[数
2]式の水深hをdで置き換えて[数3]式に代入し、
幅Bと共振時の波周期Tとの関係を求めると、[数4]
式が成り立つ。
In the structure type of the transmission type wave-dissipating structure described above, the apparent water depth h on the submerged horizontal plate is regarded as the submerged depth d of the submerged horizontal plate. Substituting the water depth h in the formula with d and substituting it in the formula [3],
When the relationship between the width B and the wave period T at resonance is obtained, [Equation 4]
The formula holds.

【数4】 [Equation 4]

【0029】[数4]式は、没水水平板他端の外の水の
動きを考慮に入れていない近似式であるため、実際には
次のような補正された[数5]式になると考えられる。
Since the equation (4) is an approximate equation that does not take into consideration the movement of water outside the other end of the submerged horizontal plate, it is actually corrected to the following equation (5). It is considered to be.

【数5】 没水水平板他端の外の水は質量として効くので、共振周
期は長めに修正される必要があり、したがってαは1よ
りも大きい値になると考えられる。
[Equation 5] Since the water outside the other end of the submerged horizontal plate works as a mass, the resonance period needs to be corrected longer, and therefore α is considered to be a value larger than 1.

【0030】沖合の波(進入波)では、波周期と波長と
の間に[数1]式が成立しているため、これと[数5]
式とでTを消去すると、結局、[数6]式が得られる。
In the offshore wave (incoming wave), the equation [1] is established between the wave period and the wavelength.
Eliminating T by the equations and ## EQU6 ## eventually yields the equation [6].

【数6】 [Equation 6]

【0031】例えばαが1.5であるなら、B/dが2
の時にはλ/Bが約11.5の時に共振現象を起こすこと
になる。つまり進入波の波長に対して約1/12以下の幅
の構造物で消波性能を発揮できることになる。
For example, if α is 1.5, B / d is 2
At that time, a resonance phenomenon occurs when λ / B is about 11.5. In other words, the wave-dissipating performance can be demonstrated with a structure having a width of about 1/12 or less with respect to the wavelength of the incoming wave.

【0032】以上より、上述の透過型消波構造物の構造
形式では、共振現象を起こすために片側が開かれた空間
を鉛直平板と没水水平板との組み合わせで作り、さらに
没水水平板の没水深度を浅くすることで波の長さを短く
することによって構造物の規模を小さくできる。αにつ
いては厳密な解が不明であるので、構造物の周りの流体
現象を数値計算手法を用いて求めることにより、本発明
による構造形式の効果が推定される。そして水槽実験に
より効果が確認されており、結果の一例は前述のとおり
である。
From the above, in the structure type of the above-mentioned transmission type wave-dissipating structure, a space opened on one side for causing a resonance phenomenon is formed by a combination of a vertical flat plate and a submerged horizontal plate, and further a submerged horizontal plate. The scale of the structure can be reduced by shortening the wave length by making the submersion depth of shallow. Since the exact solution for α is unknown, the effect of the structural form according to the present invention can be estimated by obtaining the fluid phenomenon around the structure using a numerical calculation method. The effect was confirmed by a water tank experiment, and an example of the result is as described above.

【0033】なおできるだけ長い波に有効であるよう
に、B/dを大きくしていくと、波長の短い波が透過し
やすくなる。実験結果などに基づくと、B/dとしては
2〜3が適しており、乾舷部分sや潮位差を考慮する
と、没水水平板1の幅(すなわちB)は、鉛直平板の高
さ(dと乾舷sの和=D)の1〜2倍強が適当である。
また、原理から言って、鉛直平板2は没水水平板1の端
部に置くことに意義があり、それは波上側でも波下側で
も構わない。
If B / d is increased so as to be effective for a wave as long as possible, a wave having a short wavelength is easily transmitted. Based on experimental results, 2-3 is suitable as B / d, and considering the freeboard part s and the tide difference, the width of the submerged horizontal plate 1 (that is, B) is the height of the vertical flat plate ( It is appropriate that the sum of d and the freeboard s = D) is slightly more than 1 to 2 times.
In principle, it is significant to place the vertical flat plate 2 at the end of the submerged horizontal plate 1, which may be on the wave side or the wave side.

【0034】次に、図3〜6に示した各変形例について
説明する。これらの各変形例では、上述の構成の透過型
消波構造物において鉛直平板で反射された反射波を低減
させるための手段が付加されている。すなわち図3の第
1変形例では、没水水平板1の鉛直平板2を立設されて
いない側の端部に、没水水平板1の上面あるいは下面に
沿う流れを妨げるために、突起部材7が取り付けられて
いる。符号10は水面を示している。
Next, each modification shown in FIGS. 3 to 6 will be described. In each of these modified examples, means for reducing the reflected wave reflected by the vertical flat plate in the transmission type wave-dissipating structure having the above-mentioned configuration is added. That is, in the first modified example of FIG. 3, in order to prevent the flow along the upper surface or the lower surface of the submerged horizontal plate 1 at the end of the submerged horizontal plate 1 where the vertical flat plate 2 is not erected, 7 is attached. Reference numeral 10 indicates the water surface.

【0035】突起部材7は、図3(a)に示すように、没
水水平板1の上側に突出するように設けられたり、図3
(b)に示すように、没水水平板1に下側に突出するよう
に設けられたりしている。また図3(c)に示すように、
突起部材7は没水水平板1の上下両方に突出するように
設けられているが、いずれにしても、突起部材7によ
り、消波構造物周辺の流れを利用して渦を生成させるな
どして、波の持つエネルギーを減らす作用が行なわれ
る。
As shown in FIG. 3 (a), the projecting member 7 is provided so as to project above the submerged horizontal plate 1, or as shown in FIG.
As shown in (b), the submerged horizontal plate 1 is provided so as to project downward. Also, as shown in FIG. 3 (c),
The protruding member 7 is provided so as to protrude both above and below the submerged horizontal plate 1, but in any case, the protruding member 7 is used to generate a vortex by utilizing the flow around the wave-dissipating structure. As a result, the action of reducing the energy of the wave is performed.

【0036】したがって、突起部材7に上記の作用を効
果的に行なわせるために、突起部材7は没水水平板1上
の上述の共振現象を阻害せず、かつ流れの速い箇所、す
なわち没水水平板1の鉛直平板2を立設されていない側
の端部に設けられている。図4の第2変形例では、没水
水平板1の鉛直平板2を立設されていない側の端部近傍
で、没水水平板1より上方で水面10より下方に位置し
て、板構造体8が設けられている。
Therefore, in order to allow the projecting member 7 to effectively perform the above-mentioned action, the projecting member 7 does not hinder the above-mentioned resonance phenomenon on the submerged horizontal plate 1 and has a high flow rate, that is, submerged water. The horizontal flat plate 1 is provided at the end of the side where the vertical flat plate 2 is not erected. In the second modified example of FIG. 4, in the vicinity of the end of the submerged horizontal plate 1 on which the vertical flat plate 2 is not erected, the submerged horizontal plate 1 is located above the submerged horizontal plate 1 and below the water surface 10, and has a plate structure. A body 8 is provided.

【0037】この板構造体8は、上述の第1変形例にお
ける突起部材7とほぼ同様の作用効果を奏するもので、
図4(a)に示すように没水水平板1に対して鉛直状に取
り付けられたり、図4(b)に示すように没水水平板1に
対して傾斜して取り付けられたりしている。また図4
(c)に示すようにT字断面の板構造体の場合も、ほぼ同
様の作用効果が得られる。図5の第3変形例では、没水
水平板1から波上側に離れて、水面10より下方に位置す
るように板構造体9が設けられている。
The plate structure 8 has substantially the same function and effect as the projecting member 7 in the above-mentioned first modified example.
It is attached vertically to the submerged horizontal plate 1 as shown in FIG. 4 (a), or is attached so as to be inclined with respect to the submerged horizontal plate 1 as shown in FIG. 4 (b). . See also FIG.
In the case of a plate structure having a T-shaped cross section as shown in (c), almost the same action and effect can be obtained. In the third modification of FIG. 5, the plate structure 9 is provided so as to be separated from the submerged horizontal plate 1 to the wave upper side and to be located below the water surface 10.

【0038】この板構造体9は、図5(a),(b),(c)に
示すように、没水水平板1に対して鉛直状または傾斜状
に配設され、あるいはT字断面をそなえるほか、図5
(d),(e)に示すように、鉛直状とほぼ同一水深に、ある
いは斜め方向に水深をずらされて複数配置されるが、い
ずれの場合も板構造体9を設けることにより、この第3
変形例のものも突起部材7を設けた第1変形例の場合と
同様の、反射波を低減することができるという、作用効
果を奏することができる。
As shown in FIGS. 5 (a), 5 (b) and 5 (c), this plate structure 9 is arranged vertically or inclined with respect to the submerged horizontal plate 1, or has a T-shaped cross section. In addition to
As shown in (d) and (e), a plurality of water vapors are arranged at substantially the same water depth as the vertical shape or at different water depths in an oblique direction. In either case, by providing the plate structure 9, Three
The modified example can also provide the same operational effect that the reflected wave can be reduced as in the case of the first modified example in which the protruding member 7 is provided.

【0039】[0039]

【発明の効果】以上詳述したように、本発明の透過型消
波構造物によれば、次のような効果ないし利点が得られ
る。 (1) 長い波長の波に対して従来より小さな規模の構造で
透過波を低減することが可能であり、コストが縮小する
ばかりでなく、構造物周辺の流れの透過性も良くなり、
産業上極めて有用な効果が得られる。 (2) 反射波を低減するための付加構造物の設置により、
消波構造物前面での船舶・作業船の航行に支障をきたさ
ないことが可能となる。
As described in detail above, according to the transmissive wave-breaking structure of the present invention, the following effects and advantages can be obtained. (1) It is possible to reduce transmitted waves with a structure smaller than conventional ones for long wavelength waves, which not only reduces cost but also improves the permeability of the flow around the structure.
An extremely useful effect can be obtained industrially. (2) By installing additional structures to reduce reflected waves,
This makes it possible to prevent navigation of vessels and work vessels in front of the wave-dissipating structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての透過型消波構造物の
全体構成を示す斜視図。
FIG. 1 is a perspective view showing an overall configuration of a transmission type wave-breaking structure as one embodiment of the present invention.

【図2】(a) 図1の透過型消波構造物の規則波に対する
消波性能を示すグラフ。 (b) 図1の透過型消波構造物の規則波に対する消波性能
を示すグラフ。
FIG. 2 (a) is a graph showing the wave-dissipating performance of the transmission-type wave-dissipating structure of FIG. 1 against regular waves. (b) A graph showing the wave-dissipating performance of the transmission-type wave-dissipating structure of FIG. 1 against regular waves.

【図3】(a) 図1の透過型消波構造物の第1変形例の模
式側断面図。 (b) 図1の透過型消波構造物の第1変形例の模式側断面
図。 (c) 図1の透過型消波構造物の第1変形例の模式側断面
図。
FIG. 3 (a) is a schematic side sectional view of a first modification of the transmission-type wave-breaking structure of FIG. (b) A schematic sectional side view of the 1st modification of the transmission type wave-breaking structure of FIG. (c) A schematic side sectional view of a first modified example of the transmission type wave-dissipating structure of FIG. 1.

【図4】(a) 図1の透過型消波構造物の第2変形例の模
式側断面図。 (b) 図1の透過型消波構造物の第2変形例の模式側断面
図。 (c) 図1の透過型消波構造物の第2変形例の模式側断面
図。
FIG. 4 (a) is a schematic side sectional view of a second modification of the transmissive wave-breaking structure of FIG. (b) A schematic side sectional view of a second modification of the transmission-type wave-breaking structure of FIG. 1. (c) A schematic side sectional view of a second modification of the transmissive wave-breaking structure of FIG. 1.

【図5】(a) 図1の透過型消波構造物の第3変形例の模
式側断面図。 (b) 図1の透過型消波構造物の第3変形例の模式側断面
図。 (c) 図1の透過型消波構造物の第3変形例の模式側断面
図。 (d) 図1の透過型消波構造物の第3変形例の模式側断面
図。 (e) 図1の透過型消波構造物の第3変形例の模式側断面
図。
5 (a) is a schematic side cross-sectional view of a third modified example of the transmissive wave-breaking structure in FIG. 1. FIG. (b) The schematic side sectional view of the 3rd modification of the transmission type wave-breaking structure of FIG. (c) A schematic side sectional view of a third modification of the transmission-type wave-breaking structure of FIG. 1. (d) A schematic side sectional view of a third modification of the transmission-type wave-breaking structure of FIG. 1. (e) A schematic side sectional view of a third modified example of the transmission type wave-dissipating structure of FIG. 1.

【図6】従来の透過型消波構造物の一例としてカーテン
ウォール型式のものを示す側面図。
FIG. 6 is a side view showing a curtain wall type as an example of a conventional transmission type wave-dissipating structure.

【図7】従来の透過型消波構造物の他の例として没水水
平板型式のものを示す側面図。
FIG. 7 is a side view showing a submerged horizontal plate type as another example of the conventional transmission type wave-dissipating structure.

【符号の説明】[Explanation of symbols]

1 没水水平板 2 鉛直平板 3 仕切り板 3a 斜辺 4 支持枠 5 進入波の方向 6 長手方向 7 突起部材 8,9 板構造体 10 水面 1 Submerged horizontal plate 2 Vertical flat plate 3 Partition plate 3a hypotenuse 4 Support frame 5 Direction of incoming wave 6 Longitudinal direction 7 Projection member 8, 9 Plate structure 10 Water surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 海底に立設され海水の透過を許容する支
持枠と、同支持枠に支持され水面下に位置する没水水平
板とをそなえるとともに、同没水水平板の波下側または
波上側の端部付近に、進入波の進行方向とほぼ直交し水
面を貫通するように鉛直平板が立設されていることを特
徴とする、透過型消波構造物。
1. A support frame, which is erected on the sea floor and allows permeation of sea water, and a submerged horizontal plate which is supported by the support frame and is located below the water surface. A transmissive wave-dissipating structure, in which a vertical flat plate is erected near the end on the upper side of the wave so as to penetrate the water surface substantially orthogonal to the traveling direction of the incoming wave.
【請求項2】 請求項1に記載の透過型消波構造物にお
いて、上記の没水水平板と鉛直平板とを結合する複数の
仕切り板が、進入波の進行方向に沿うように互いに間隔
をあけて並設されていることを特徴とする、透過型消波
構造物。
2. The transmission type wave-dissipating structure according to claim 1, wherein a plurality of partition plates connecting the submerged horizontal plate and the vertical flat plate are spaced from each other so as to extend along the traveling direction of the incoming wave. A transmissive wave-dissipating structure characterized by being installed side by side.
【請求項3】 請求項2に記載の透過型消波構造物にお
いて、上記仕切り板が上記鉛直平板の上縁付近から上記
没水水平板の端縁付近へ斜行する斜辺をそなえた直角三
角形状に形成されていることを特徴とする、透過型消波
構造物。
3. The transparent wave-dissipating structure according to claim 2, wherein the partition plate has a right-angled triangle having a hypotenuse obliquely extending from near the upper edge of the vertical flat plate to near the edge of the submerged horizontal plate. A transmissive wave-dissipating structure characterized by being formed into a shape.
【請求項4】 請求項1〜3のいずれかに記載の透過型
消波構造物において、上記没水水平板の幅が上記鉛直平
板の高さよりも大きく設定されていることを特徴とす
る、透過型消波構造物。
4. The transparent wave-dissipating structure according to claim 1, wherein a width of the submerged horizontal plate is set larger than a height of the vertical flat plate. Transparent wave-dissipating structure.
【請求項5】 請求項1〜4のいずれかに記載の透過型
消波構造物において、上記没水水平板の上記鉛直平板を
立設されていない側の端部に、同没水水平板の上面ある
いは下面に沿う流れを妨げるべく突起部材が取り付けら
れていることを特徴とする、透過型消波構造物。
5. The transmissive wave-dissipating structure according to claim 1, wherein the submerged horizontal plate is provided at an end of the submerged horizontal plate on which the vertical flat plate is not erected. A transmissive wave-dissipating structure, wherein a protruding member is attached to prevent the flow along the upper surface or the lower surface of the.
【請求項6】 請求項1〜4のいずれかに記載の透過型
消波構造物において、上記没水水平板の上記鉛直平板を
立設されていない側の端部近傍で、同没水水平板より上
方でかつ上記水面より下方に位置して、板構造体が設け
られていることを特徴とする、透過型消波構造物。
6. The transmissive wave-dissipating structure according to any one of claims 1 to 4, wherein the submerged horizontal plate is near the end of the submerged horizontal plate on which the vertical flat plate is not erected. A transparent wave-dissipating structure, wherein a plate structure is provided above the plate and below the water surface.
【請求項7】 請求項1〜4のいずれかに記載の透過型
消波構造物において、上記没水水平板から波上側に離れ
て、上記水面より下方に位置するように板構造体が配設
されていることを特徴とする、透過型消波構造物。
7. The transparent wave-dissipating structure according to claim 1, wherein the plate structure is arranged so as to be located above the submerged horizontal plate on the wave upper side and below the water surface. A transmissive wave-dissipating structure characterized by being installed.
JP24999694A 1994-04-05 1994-09-19 Transmission type wave-breaking structure Expired - Fee Related JP3367768B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24999694A JP3367768B2 (en) 1994-04-05 1994-09-19 Transmission type wave-breaking structure
TW084101934A TW288075B (en) 1994-04-05 1995-02-28
KR1019950007666A KR100212344B1 (en) 1994-04-05 1995-04-03 Penetration type breakwater structure
SG1995000211A SG47342A1 (en) 1994-04-05 1995-04-04 Flow-permeable breakwater structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-90606 1994-04-05
JP9060694 1994-04-05
JP24999694A JP3367768B2 (en) 1994-04-05 1994-09-19 Transmission type wave-breaking structure

Publications (2)

Publication Number Publication Date
JPH07324318A true JPH07324318A (en) 1995-12-12
JP3367768B2 JP3367768B2 (en) 2003-01-20

Family

ID=26432069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24999694A Expired - Fee Related JP3367768B2 (en) 1994-04-05 1994-09-19 Transmission type wave-breaking structure

Country Status (1)

Country Link
JP (1) JP3367768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452184B1 (en) * 2013-01-17 2014-10-22 가톨릭관동대학교산학협력단 Structure having Y type slit for preventing erosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452184B1 (en) * 2013-01-17 2014-10-22 가톨릭관동대학교산학협력단 Structure having Y type slit for preventing erosion

Also Published As

Publication number Publication date
JP3367768B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
KR101207609B1 (en) Floating type breakwater
RU197845U1 (en) FLOATING WAVE
JPH07324318A (en) Penetrating-type wave dissipating structure
JP3457755B2 (en) Transmission type wave-breaking structure
KR100542332B1 (en) Floating breakwater with reduced rolling
JP4078006B2 (en) Wave-resistant large floating body
JP4370375B2 (en) High wave breakwater breakwater
JPH0860634A (en) Submarine fixed type penetrating wave dissipating revetment
KR20040105634A (en) A caisson structure
KR100764915B1 (en) Floating breakwater of low centroid comprising extending pannel
JP4370374B2 (en) Seawater exchange type breakwater
JPH11229350A (en) Floating breakwater
JP2011122314A (en) Seawater exchange-hastening wave absorbing dyke
JP2908718B2 (en) Pendulum-type wave power generator attached to wave-breaking structure
JPH08144240A (en) Low reflection type floating wave dissipation embankment
JP2004270433A (en) Sea-water exchange acceleration type wave absorbing dyke
KR100212344B1 (en) Penetration type breakwater structure
JP2010144437A (en) Structure for reducing long-period wave
JP2003096742A (en) Sea-water crossflow breakwater caisson
JPH0823129B2 (en) Double slope breakwater
KR100563654B1 (en) A steel floating breakwater
JP3294028B2 (en) Low reflection type floating breakwater
JP2650819B2 (en) Floating breakwater
JP2000154518A (en) Reflected wave reducing structure having different draft type double curtain wall
JP2825423B2 (en) Wave-dissipating caisson

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021009

LAPS Cancellation because of no payment of annual fees