JPH07324199A - Cleaning composition and method for cleaning semiconductor substrate using same - Google Patents

Cleaning composition and method for cleaning semiconductor substrate using same

Info

Publication number
JPH07324199A
JPH07324199A JP6798395A JP6798395A JPH07324199A JP H07324199 A JPH07324199 A JP H07324199A JP 6798395 A JP6798395 A JP 6798395A JP 6798395 A JP6798395 A JP 6798395A JP H07324199 A JPH07324199 A JP H07324199A
Authority
JP
Japan
Prior art keywords
cleaning
water
complexing agent
metal
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6798395A
Other languages
Japanese (ja)
Inventor
Naoki Sako
迫  直樹
Masayuki Watanabe
真之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6798395A priority Critical patent/JPH07324199A/en
Publication of JPH07324199A publication Critical patent/JPH07324199A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a safe cleaning compsn. which exerts a high cleaning power on stains, such as those due to a metal or particles, without degrading electrical characteristics by compounding an electrolytic ionic water with a complexing agent and, if necessary, a dispersant. CONSTITUTION:A cleaning compsn. contains an electrolytic ionic water obtd. by electrolyzing water [an acidic water having a strong oxidizing power and formed on the anode side or an alkaline water having a strong reducing power and formed on the cathode side, both being formed by installing a porous partition film at the center of a water vessel filled with water, immersing the electrodes in both sides of the partition, and applying a voltage (usually 2-10V) to conduct electrolysis], a complexing agent (one which forms a complex with a metal which degrades electrical characteristics, pref. a combination of at least two complexing agents including a first component which forms a highly water-sol. complex and a second component which forms a complex specifically with a metal with a high electronegativity), and, if necessary, a dispersant. The compsn. can completely remove stains on a substrate at low temps. without degrading electrical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解イオン水と錯化剤
及び/又は分散剤とからなる洗浄組成物と、それを用い
た半導体基板の洗浄方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning composition comprising electrolytic ionized water and a complexing agent and / or a dispersant, and a method for cleaning a semiconductor substrate using the cleaning composition.

【0002】[0002]

【従来の技術】集積回路等に代表される微細加工技術
は、近年益々その加工精度を向上させており、ダイナミ
ックランダムアクセスメモリー(DRAM)を例にとれ
ば、現在では、デザインルールとしてサブミクロンの加
工技術が大量生産レベルの技術として確立されている。
2. Description of the Related Art In recent years, fine processing technology typified by integrated circuits has been improved more and more in precision. Taking dynamic random access memory (DRAM) as an example, the design rule is now submicron. Processing technology is established as a mass production level technology.

【0003】こういった微細パターンにおいては、基板
上に存在する汚染が加工精度ひいては歩留まりに重大な
悪影響を及ぼすため、エッチングやイオン注入等の各工
程では、硫酸、塩酸、アンモニア、過酸化水素等の洗浄
剤を用いて、こうした汚染を除去して使用するのが通例
である。集積回路等の集積度が向上するに伴い、パター
ンの微細化、凹凸の複雑化も相まって洗浄工程に要求さ
れる汚染の除去レベルに対してもより厳しい要求がなさ
れてきている。
In such a fine pattern, the contamination existing on the substrate has a serious adverse effect on the processing accuracy and hence on the yield. It is customary to use such cleaning agents to remove such contaminants before use. As the degree of integration of integrated circuits and the like has improved, stricter requirements have been placed on the level of contamination removal required in the cleaning process, due to the miniaturization of patterns and the complication of irregularities.

【0004】[0004]

【発明が解決しようとする課題】硫酸、塩酸に代表され
る酸性洗浄液、または、アンモニアに代表されるアルカ
リ性洗浄液は、通常高温で使用されるため、洗浄効果は
高いが、薬液の危険性、腐食性等により洗浄装置に及ぼ
す負担が大きい。また、洗浄後の廃液処理にも莫大なコ
ストが掛かるという問題点がある。
An acidic cleaning solution represented by sulfuric acid or hydrochloric acid or an alkaline cleaning solution represented by ammonia usually has a high cleaning effect because it is usually used at a high temperature, but the danger of chemicals and corrosion. The load on the cleaning device is large due to the nature and the like. In addition, there is a problem that the waste liquid treatment after cleaning requires a huge cost.

【0005】これらの問題を解決するため、水を電気分
解してなる電解イオン水を用いて、半導体基板を洗浄す
る方法が提案されている(特開平6−260480号公
報)。この方法によれば、陽極側の酸化性の強い酸性水
と、陰極側の還元性の強いアルカリ性水の使い分けによ
り、ウエハ上の汚染が洗浄される。また、処理温度も5
0〜70℃と比較的低温で扱いやすい。
In order to solve these problems, a method of cleaning a semiconductor substrate using electrolytic ionized water obtained by electrolyzing water has been proposed (JP-A-6-260480). According to this method, contamination on the wafer is cleaned by properly using acidic water having strong oxidizing property on the anode side and alkaline water having strong reducing property on the cathode side. Also, the processing temperature is 5
Easy to handle at a relatively low temperature of 0 to 70 ° C.

【0006】しかしながら、これらのものを使用して洗
浄しても、洗浄力が十分でなく若干量の残留物が残るた
め、半導体の電気特性を劣化させ、ひいては歩留まりの
低下につながる等の問題点がある。本発明の目的は、前
記の背景に鑑み、既に提案されている電解イオン水の特
性を改良し、低温で基板上の汚染を完全に除去できて電
気特性の劣化を引き起こすこともなく、かつ安全で廃液
処理も容易な洗浄組成物と、それを用いた半導体基板の
洗浄方法を提供することにある。
However, even if these materials are used for cleaning, the cleaning power is not sufficient and a small amount of residue remains, so that the electrical characteristics of the semiconductor are deteriorated and the yield is lowered. There is. In view of the above background, the object of the present invention is to improve the properties of the electrolytically-ionized water that have already been proposed, to completely remove the contamination on the substrate at low temperatures without causing the deterioration of electrical properties, and to ensure safety. Therefore, it is an object of the present invention to provide a cleaning composition which is easy to treat waste liquid, and a semiconductor substrate cleaning method using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上述の如
き問題点を解決するために種々検討を重ねた結果、水を
電気分解してなる電解イオン水に特定の添加剤を添加す
ると、基板上の汚染が完全に除去され、電気特性の劣化
が起きないことを見いだし、本発明に到達した。
Means for Solving the Problems As a result of various studies to solve the above-mentioned problems, the present inventors have found that a specific additive is added to electrolytic ionic water obtained by electrolyzing water. The inventors have found that the contamination on the substrate is completely removed and the electrical characteristics are not deteriorated, and have reached the present invention.

【0008】すなわち、本発明の要旨は、水を電気分解
してなる電解イオン水と錯化剤及び/又は分散剤とを含
むことを特徴とする洗浄組成物、並びに、該洗浄組成物
を用いて半導体基板を洗浄することを特徴とする半導体
基板の洗浄方法に存する。以下、本発明を詳細に説明す
る。本発明における電解イオン水とは、電解槽に水(純
水)を満たし、その中央に多孔質の膜状の隔壁を設置し
て、両側に電極を浸して電圧を印加し、電気分解を行
い、陽極側に生成する酸化力の強い酸性水もしくは陰極
側に生成する還元力の強いアルカリ性水を抜き出して用
いるものである。
That is, the gist of the present invention is to use a cleaning composition containing electrolytic ionic water obtained by electrolyzing water and a complexing agent and / or a dispersant, and the cleaning composition. A method of cleaning a semiconductor substrate is characterized in that the semiconductor substrate is cleaned by means of a cleaning method. Hereinafter, the present invention will be described in detail. The electrolyzed ion water in the present invention means that an electrolytic cell is filled with water (pure water), a porous membrane-like partition wall is installed in the center, electrodes are immersed on both sides to apply a voltage, and electrolysis is performed. The acidic water with strong oxidizing power generated on the anode side or the alkaline water with strong reducing power generated on the cathode side is extracted and used.

【0009】電極としては、金属の溶出の少ない白金等
の貴金属電極が用いられるが、その他高純度炭素電極を
用いてもよい。電気分解に際して、電圧は通常2〜10
Vであり、また、分解時間には特に限定はなく適当な時
間行われるが、好ましくは、0.5〜2時間である。上
記時間より短すぎると電解が十分でなく、長すぎても効
果が上がらず意味がない。
As the electrode, a noble metal electrode, such as platinum, which hardly elutes the metal is used, but other high purity carbon electrode may be used. During electrolysis, the voltage is usually 2-10
The decomposition time is V and the decomposition time is not particularly limited and may be an appropriate time, but is preferably 0.5 to 2 hours. If the time is shorter than the above time, the electrolysis is not sufficient, and if it is too long, the effect is not improved and it is meaningless.

【0010】また、水の比抵抗が大きく、電流が十分に
流れない場合には、水に支持電解質を添加する。本発明
の好ましい態様の一つとして、超純水に支持電解質を添
加する方法が挙げられる。支持電解質としては、電離度
の高い電解質が用いられる。また、金属イオンを含む電
解質は、電解質の金属イオンが半導体基板の汚染源とな
る場合があるので好ましくない。支持電解質の具体例と
して、硝酸アンモニウム、酢酸アンモニウム、塩化アン
モニウム等が挙げられ、特に塩化アンモニウムが好まし
い。支持電解質の添加量としては通常、5mmol/l
以下であり、好ましくは1〜5mmol/lである。
When the specific resistance of water is large and a sufficient current does not flow, a supporting electrolyte is added to water. One of the preferred embodiments of the present invention is a method of adding a supporting electrolyte to ultrapure water. An electrolyte having a high degree of ionization is used as the supporting electrolyte. Further, an electrolyte containing metal ions is not preferable because the metal ions of the electrolyte may become a contamination source of the semiconductor substrate. Specific examples of the supporting electrolyte include ammonium nitrate, ammonium acetate, ammonium chloride and the like, and ammonium chloride is particularly preferable. The amount of the supporting electrolyte added is usually 5 mmol / l.
It is below, preferably 1 to 5 mmol / l.

【0011】本発明における錯化剤は、電気特性の劣化
を引き起こす金属に対して錯形成するものが選ばれる。
このような錯化剤としては例えば、エチレンジアミン−
N,N,N’,N’−四酢酸(EDTA)二アンモニウ
ム塩、ジエチレントリアミン−N,N,N’,N”,
N”−五酢酸(DTPA)、トリエチレンテトラミン−
N,N,N’,N”,N''',N'''−六酢酸(TTH
A)、エチレンジアミン−N,N’−二酢酸(EDD
A)、エチレンジアミン−N,N’−二プロピオン酸二
塩酸塩(EDDP)等のアミノポリカルボン酸系キレー
ト剤、3−フェニル−5−メルカプト−1,3,4−チ
アジアゾール−2−チオンアンモニウム塩等のキレート
剤、エチレンジアミン−N,N,N’,N’−テトラキ
ス(メチレンホスホン酸)(EDTPO)、ニトリロト
リス(メチレンホスホン酸)三アンモニウム塩(NTP
O)等のホスホン酸系キレート剤、トリポリリン酸等の
縮合リン酸系化合物もしくは塩酸等の、錯形成能の高い
イオンを有する錯化剤、あるいは、3−フェニル−5−
メルカプト−1,3,4−チアジアゾール−2−チオン
アンモニウム塩等の電気陰性度の高い金属に対して特異
的に錯形成する錯化剤、等が挙げられる。
The complexing agent used in the present invention is selected to form a complex with a metal that causes deterioration of electrical properties.
Examples of such a complexing agent include ethylenediamine-
N, N, N ′, N′-tetraacetic acid (EDTA) diammonium salt, diethylenetriamine-N, N, N ′, N ″,
N "-pentaacetic acid (DTPA), triethylenetetramine-
N, N, N ', N ", N'", N '"-hexaacetic acid (TTH
A), ethylenediamine-N, N'-diacetic acid (EDD
A), an aminopolycarboxylic acid type chelating agent such as ethylenediamine-N, N'-dipropionic acid dihydrochloride (EDDP), 3-phenyl-5-mercapto-1,3,4-thiadiazole-2-thione ammonium salt Chelating agents such as ethylenediamine-N, N, N ′, N′-tetrakis (methylenephosphonic acid) (EDTPO), nitrilotris (methylenephosphonic acid) triammonium salt (NTP
O) or the like, a phosphonic acid-based chelating agent, a condensed phosphoric acid-based compound such as tripolyphosphoric acid, or a complexing agent having an ion having a high complex-forming ability such as hydrochloric acid, or 3-phenyl-5-
Examples thereof include complexing agents that specifically form a complex with a metal having a high electronegativity such as mercapto-1,3,4-thiadiazole-2-thione ammonium salt.

【0012】錯化剤の添加量としては、通常、0.01
〜2重量%であり、好ましくは0.05〜0.5重量%
である。上記添加量より少なすぎると錯形成作用に乏し
く、多すぎても、それ以上の効果が得られず、むしろ、
半導体基板表面等の被洗浄物を汚染する恐れがあり好ま
しくない。
The addition amount of the complexing agent is usually 0.01
~ 2 wt%, preferably 0.05-0.5 wt%
Is. If the amount added is too small, the complex-forming effect is poor, and if the amount is too large, no further effect can be obtained, rather,
This is not preferable because it may contaminate the object to be cleaned such as the surface of the semiconductor substrate.

【0013】また、本発明においては、錯化剤を2種類
以上併用して添加する方がなお好ましく、第1成分とし
ては水溶性の高い錯体を生成するもの、また、第2成分
としては電極材料に用いられるような電気陰性度の高い
金属に対して特異的に錯形成するものを添加するのがよ
い。すなわち、第1成分としては、EDTA二アンモニ
ウム塩、DTPA、TTHA、EDDA、EDDP等の
アミノカルボン酸系キレート剤、EDTPO、NTPO
等のホスホン酸系キレート剤、トリポリリン酸等の縮合
リン酸又はその塩、もしくは塩酸等の、金属に対して錯
形成する陰イオンを有する錯化剤が挙げられ、第2成分
としては、電気陰性度の高い金属に対して特異的に錯形
成するもの、すなわち、3−フェニル−5−メルカプト
−1,3,4−チアジアゾール−2−チオンアンモニウ
ム塩等が挙げられる。
Further, in the present invention, it is more preferable to add two or more kinds of complexing agents in combination. The first component produces a highly water-soluble complex, and the second component is an electrode. It is preferable to add a substance that specifically forms a complex with a metal having a high electronegativity as used in the material. That is, as the first component, an aminocarboxylic acid type chelating agent such as EDTA diammonium salt, DTPA, TTHA, EDDA, and EDDP, EDTPO, and NTPO.
And a complexing agent having an anion that forms a complex with a metal, such as phosphonic acid-based chelating agent such as tripolyphosphoric acid, condensed polyphosphoric acid such as tripolyphosphoric acid or a salt thereof, or hydrochloric acid, and the like. Examples thereof include those that specifically form a complex with a highly concentrated metal, that is, 3-phenyl-5-mercapto-1,3,4-thiadiazole-2-thione ammonium salt and the like.

【0014】これらの添加量としては、第1成分、第2
成分ともに、通常、各々0.01〜1重量%であり、好
ましくは0.05〜0.5重量%である。上記添加量よ
り少なすぎると錯形成作用に乏しく、多すぎても、それ
以上の効果は得られず、むしろ、半導体基板表面を汚染
する恐れがあり都合が悪い。
The amounts of these added are the first component and the second component.
The content of each component is usually 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight. If the amount is less than the above amount, the complex-forming effect is poor, and if the amount is too large, no further effect can be obtained. Rather, the surface of the semiconductor substrate may be contaminated, which is not convenient.

【0015】また、本発明において、錯化剤の第2成分
として電極材料に用いられるような電気陰性度の高い金
属に対して特異的に錯形成する錯化剤を用いる場合は、
これを電解イオン水に添加する代わりに、電解イオン水
として上記錯化剤で処理したものを用いることとしても
よい。このような処理方法としては、例えば、電気陰性
度の高い金属に対して特異的に錯形成する錯化剤で満た
されたカラム内に上記電解イオン水を通液する等の方法
が用いられる。
In the present invention, when a complexing agent that specifically forms a complex with a metal having a high electronegativity, such as that used in an electrode material, is used as the second component of the complexing agent,
Instead of adding this to electrolytic ionized water, electrolytic ionized water treated with the above complexing agent may be used. As such a treatment method, for example, a method of passing the electrolytic ionic water through a column filled with a complexing agent that specifically forms a complex with a metal having a high electronegativity is used.

【0016】本発明における分散剤としては、周知の界
面活性剤が挙げられ、特に本発明の効果の上からアニオ
ン系界面活性剤が好ましい。このようなアニオン系界面
活性剤としては、ラウリル硫酸エステルアンモニウム
塩、アルキルベンゼンスルホン酸アンモニウム塩等の炭
化水素系界面活性剤や、ペルフルオロアルキルスルホン
酸等のフッ素系界面活性剤、あるいは縮合リン酸系の界
面活性剤等が挙げられる。
As the dispersant in the present invention, well-known surfactants can be mentioned, and anionic surfactants are particularly preferable from the viewpoint of the effect of the present invention. Examples of such anionic surfactants include hydrocarbon-based surfactants such as ammonium lauryl sulfate ester and ammonium salts of alkylbenzene sulfonate, fluorine-based surfactants such as perfluoroalkyl sulfonic acid, and condensed phosphoric acid-based surfactants. Examples thereof include surfactants.

【0017】このような分散剤が好ましく用いられる理
由は、未だ明らかではなく、それぞれの分散剤が優れた
洗浄能力を付与する役割を果たしているが、その中でも
炭化水素系界面活性剤は特に洗浄後の残留物が電気特性
に与える影響が少なく、フッ素系界面活性剤は長時間の
安定性に優れている。また、縮合リン酸は、洗浄後の残
留物が少なく好ましい。
The reason why such a dispersant is preferably used has not been clarified yet, and each dispersant plays a role of imparting an excellent cleaning ability. Among them, a hydrocarbon surfactant is particularly preferable after cleaning. The residue has a small effect on the electrical characteristics, and the fluorine-based surfactant is excellent in long-term stability. In addition, condensed phosphoric acid is preferable because it has less residue after washing.

【0018】分散剤の添加量としては、通常、0.01
〜1重量%であり、好ましくは0.05〜0.5重量%
である。上記添加量より少なすぎると分散作用に乏し
く、多すぎても、それ以上の効果は得られず、むしろ半
導体基板表面を汚染する恐れがあり好ましくない。
The amount of the dispersant added is usually 0.01.
~ 1% by weight, preferably 0.05 to 0.5% by weight
Is. If it is less than the above-mentioned addition amount, the dispersing action is poor, and if it is too much, no further effect is obtained, and the surface of the semiconductor substrate may be contaminated, which is not preferable.

【0019】本発明は、錯化剤又は分散剤のいずれか一
方のみを添加すればよいが、より好ましくは錯化剤及び
分散剤を併用する。併用する場合には、錯化剤、分散剤
は、適当な組合せで添加されるが、反応して不溶物を作
るような組合せは避けるのが好ましい。
In the present invention, only one of the complexing agent and the dispersant may be added, but more preferably the complexing agent and the dispersant are used in combination. When used in combination, the complexing agent and the dispersant are added in an appropriate combination, but it is preferable to avoid a combination that reacts to form an insoluble matter.

【0020】本発明の洗浄組成物の調製方法としては、
特に制限はなく、水を電気分解する前に錯化剤と分散剤
を添加する方法、水を電気分解した後に錯化剤と分散剤
を添加する方法のいずれでもよい。尚、本発明における
電解イオン水、錯化剤、分散剤は半導体製造工程で使用
されるものであるから、高純度のものが使用される。
As a method for preparing the cleaning composition of the present invention,
There is no particular limitation, and either a method of adding a complexing agent and a dispersant before electrolyzing water or a method of adding a complexing agent and a dispersant after electrolyzing water. The electrolyzed ionic water, complexing agent and dispersant used in the present invention are used in the semiconductor manufacturing process, and therefore high purity ones are used.

【0021】本発明の洗浄組成物が良好な効果を発揮す
る原因については、未だ明らかではないが、従来の電解
イオン水による洗浄の場合には、酸性水中ではシリコン
ウエハとパーティクルの帯電が正負異なるため静電気力
が生じてパーティクルが付着しやすくなり、また、金属
についても、電解イオン水中の活性種が従来の酸洗浄法
に比べて少なく、汚染が激しい場合には十分に洗浄しき
れず残留するために洗浄が不十分となり、また、アルカ
リ性水の場合では、特に金属が水酸化物を形成しやすく
ウエハ表面に残留しやすいために洗浄が不十分となり、
どちらで洗浄しても電気特性を劣化させていたと推定さ
れる。また、電極材料として用いられる白金等の貴金属
の溶出もウエハに悪影響を及ぼしていたと考えられる。
すなわち、本発明の洗浄組成物においては、このような
問題点をすべて解決しているため、優れた洗浄効果を発
揮するものと推定される。
The reason why the cleaning composition of the present invention exerts a good effect is not yet clear, but in the case of conventional cleaning with electrolytic ionic water, the charge of the silicon wafer and the particles are different in positive and negative in acidic water. As a result, electrostatic force is generated and particles are likely to adhere, and for metals, active species in electrolyzed ionized water are smaller than in conventional acid cleaning methods, and when the contamination is severe, the particles cannot be sufficiently cleaned and remain. In addition, the cleaning is insufficient, and in the case of alkaline water, the cleaning is insufficient because the metal is likely to form a hydroxide and easily remain on the wafer surface.
It is presumed that the electrical characteristics were deteriorated by either cleaning. Further, it is considered that the elution of noble metal such as platinum used as an electrode material had a bad influence on the wafer.
That is, since the cleaning composition of the present invention solves all of these problems, it is presumed that it exhibits an excellent cleaning effect.

【0022】本発明における洗浄方法としては、洗浄液
による湿式洗浄であるから、液を直接、半導体基板に接
触させる方法が用いられる。このような洗浄方法として
は、洗浄槽に洗浄液を満たして半導体基板を浸漬させる
ディップ式クリーニング、半導体基板に液を噴霧して洗
浄するスプレー式クリーニング、半導体基板上に洗浄液
を滴下して高速回転させるスピン式クリーニング等が挙
げられる。本発明においては、上記洗浄方法のうち適当
なものが用いられるが、好ましくは洗浄槽に洗浄液を満
たして半導体基板を浸漬させるディップ式クリーニング
が用いられる。
Since the cleaning method in the present invention is wet cleaning with a cleaning liquid, a method of directly contacting the liquid with the semiconductor substrate is used. Examples of such cleaning methods include dip-type cleaning in which a cleaning tank is filled with a cleaning solution to immerse the semiconductor substrate, spray-type cleaning in which the semiconductor substrate is sprayed with the cleaning solution, and cleaning solution is dropped onto the semiconductor substrate and rotated at high speed. Spin cleaning and the like can be mentioned. In the present invention, an appropriate one of the above-mentioned cleaning methods is used, but dip-type cleaning in which a cleaning tank is filled with a cleaning liquid and the semiconductor substrate is immersed is preferably used.

【0023】また、洗浄液の温度としては、適当な温度
に設定されるが、通常は10〜80℃の範囲であり、加
温洗浄液として用いる場合には、好ましくは、30〜8
0℃であり、より好ましくは50〜70℃である。上記
温度より低すぎると洗浄効果が十分でなく、高すぎると
洗浄液が揮散してしまい好ましくない。
The temperature of the cleaning liquid is set to an appropriate temperature, but it is usually in the range of 10 to 80 ° C. When used as a warm cleaning liquid, it is preferably 30 to 8
It is 0 degreeC, More preferably, it is 50-70 degreeC. If it is lower than the above temperature, the cleaning effect is not sufficient, and if it is too high, the cleaning liquid is volatilized, which is not preferable.

【0024】洗浄時間についても、特に制限はなく適当
な時間洗浄されるが、好ましくは3〜20分、より好ま
しくは5〜15分である。上記時間より短すぎると洗浄
効果が十分でなく、長すぎるとスループットが悪くなる
だけで、洗浄効果は上がらず意味がない。また、洗浄の
際には、物理力による洗浄方法と併用させてもよい。こ
のような物理力による洗浄方法としては、例えば、超音
波洗浄、洗浄ブラシを用いた機械的洗浄等が挙げられ
る。
The washing time is not particularly limited, and washing is performed for an appropriate time, but it is preferably 3 to 20 minutes, more preferably 5 to 15 minutes. If the time is shorter than the above time, the cleaning effect is not sufficient, and if it is too long, the throughput is deteriorated, and the cleaning effect is not improved and is meaningless. Further, at the time of washing, a washing method using physical force may be used in combination. Examples of the cleaning method using such physical force include ultrasonic cleaning and mechanical cleaning using a cleaning brush.

【0025】[0025]

【実施例】次に実施例を用いて、本発明の具体的態様を
説明するが、本発明はその要旨を越えない限り以下の実
施例により何ら限定されるものではない。 〈参考例−1:洗浄組成物の調製〉超純水に酢酸アンモ
ニウムを0.015重量%添加し、これを白金電極を用
いて5Vの電圧で2時間電気分解した後、酸性水、アル
カリ性水を抜き出し、表−1に示す錯化剤もしくは分散
剤を、同じく表−1に記載の割合で添加した。このよう
にして洗浄組成物A〜P(内Pは比較例用)を得た。
尚、更に比較のためQ、R、Sを調製した。
EXAMPLES Specific examples of the present invention will be described below with reference to examples, but the present invention is not limited to the following examples without departing from the scope of the invention. Reference Example-1 Preparation of Cleaning Composition 0.015% by weight of ammonium acetate was added to ultrapure water, and this was electrolyzed with a platinum electrode at a voltage of 5 V for 2 hours, and then acid water or alkaline water was added. Was extracted and the complexing agent or dispersant shown in Table 1 was added in the same proportion as shown in Table 1. Thus, cleaning compositions A to P (wherein P is for comparative example) were obtained.
For comparison, Q, R and S were prepared.

【0026】[0026]

【表1】 [Table 1]

【0027】〈実施例−1〜12〉参考例−1で得られ
た洗浄組成物を洗浄槽内に満たし、65℃に加熱したと
ころに金属で汚染させた半導体基板を10分間浸漬し、
次いで純水で5分間リンスした後乾燥させた。その後、
該半導体基板表面の金属をフッ酸0.1%と過酸化水素
1%の混合液で回収し、フレームレス原子吸光法により
該金属量を測定し、表面濃度に換算した。表−2に実験
結果、および洗浄前の金属量を示す。
<Examples 1 to 12> The cleaning composition obtained in Reference Example 1 was filled in a cleaning tank and heated to 65 ° C., and a semiconductor substrate contaminated with metal was immersed for 10 minutes,
Then, it was rinsed with pure water for 5 minutes and then dried. afterwards,
The metal on the surface of the semiconductor substrate was recovered with a mixed solution of 0.1% hydrofluoric acid and 1% hydrogen peroxide, and the amount of the metal was measured by a flameless atomic absorption method and converted into a surface concentration. Table 2 shows the experimental results and the amount of metal before cleaning.

【0028】洗浄に用いた半導体基板としては、5イン
チウエハを用い、金属としてFe、Cu、Alで汚染さ
せたものを用意した。また、実施例−8の場合は、洗浄
組成物を加熱せずに20℃で行った場合も、実施例−8
と同様な効果が得られた。
As a semiconductor substrate used for cleaning, a 5-inch wafer was used, and a metal contaminated with Fe, Cu and Al was prepared. In addition, in the case of Example-8, even when the cleaning composition was performed at 20 ° C without heating,
The same effect as was obtained.

【0029】[0029]

【表2】 [Table 2]

【0030】〈実施例−13〜23〉参考例1で得られ
た洗浄組成物を洗浄槽内に満たし、65℃に加熱したと
ころに、0.3μmPSL(ポリスチレンラテックス)
球を1000個程度付着させた半導体基板を10分間浸
漬し、次いで純水で5分間リンスした後乾燥させた。そ
の後、該半導体基板上に残留したパーティクル数をレー
ザー散乱方式によるパーティクルカウンターで測定し
た。表−3に実験結果、および洗浄前のパーティクル量
を示す。
<Examples 13 to 23> When the cleaning composition obtained in Reference Example 1 was filled in a cleaning tank and heated to 65 ° C., 0.3 μm PSL (polystyrene latex) was obtained.
A semiconductor substrate having about 1000 spheres attached was immersed for 10 minutes, rinsed with pure water for 5 minutes, and then dried. After that, the number of particles remaining on the semiconductor substrate was measured by a particle counter using a laser scattering method. Table 3 shows the experimental results and the amount of particles before cleaning.

【0031】洗浄に用いた半導体基板としては、5イン
チウエハを用いた。また、実施例−20の場合は、洗浄
組成物を加熱せずに20℃で行った場合も実施例−20
と同様な効果が得られた。
A 5-inch wafer was used as a semiconductor substrate used for cleaning. In addition, in the case of Example-20, the case where the cleaning composition was carried out at 20 ° C without heating was also carried out in Example-20.
The same effect as was obtained.

【0032】[0032]

【表3】 [Table 3]

【0033】〈比較例−1〉比較例として、実施例と同
様の方法で、P、Q、R、Sの洗浄液を用いて汚染残留
量を測定したところ、P、Rについては、特に金属の残
留量が多く、Q、Sについては特にパーティクルの残留
量が多く、電気特性を著しく劣化させた。尚、Q、R、
Sについては、洗浄槽の温度は各々25℃(Q)、80
℃(R)、130℃(S)とした。
<Comparative Example-1> As a comparative example, the residual contamination amount was measured using the cleaning liquids of P, Q, R, and S in the same manner as in the Examples. The residual amount was large, and particularly for Q and S, the residual amount of particles was large, and the electrical characteristics were significantly deteriorated. In addition, Q, R,
For S, the temperature of the cleaning tank is 25 ° C (Q), 80
℃ (R) and 130 ℃ (S).

【0034】〈参考例−2〉超純水に塩化アンモニウム
を0.015重量%添加し、これを白金電極を用いて5
Vの電圧で2時間電気分解した後、酸性水を抜き出し、
表−4に示す錯化剤もしくは分散剤を、同じく表−4に
記載の割合で添加した。このようにして洗浄組成物T〜
Y(内Yは比較例用)を得た。
Reference Example 2 0.015% by weight of ammonium chloride was added to ultrapure water, and this was added to 5% by using a platinum electrode.
After electrolysis for 2 hours at a voltage of V, extract the acidic water,
The complexing agent or dispersant shown in Table 4 was added in the same proportion as shown in Table 4. In this way, the cleaning composition T ~
Y (in which Y is for a comparative example) was obtained.

【0035】[0035]

【表4】 [Table 4]

【0036】〈実施例−24〜33及び比較例−2〜
3〉参考例−1及び2で得られた洗浄組成物の内、酸性
水を洗浄槽内に満たし、65℃に加熱したところに、
0.3μmPSL球を10000個程度と大量(〜10
14atoms/cm2)の金属(Fe,Cu,Al)の両方を付
着させた半導体基板を10分間浸漬し、次いで純水で5
分間リンスした後乾燥させた。その後、該半導体基板上
に残留したパーティクル数をレーザー散乱方式によるパ
ーティクルカウンターで測定し、次いで該半導体基板表
面の金属をフッ酸0.1%と過酸化水素1%の混合液で
回収し、フレームレス原子吸光法により該金属量を測定
し、表面濃度に換算した。表−5に実験結果、および洗
浄前のパーティクル量及び金属量を示す。また、実施例
−30の場合は、洗浄組成物を加熱せずに20℃で行っ
た場合も実施例−30と同様な効果が得られた。
<Examples 24 to 33 and Comparative Examples 2 to 2>
3> Of the cleaning compositions obtained in Reference Examples 1 and 2, when a cleaning tank was filled with acidic water and heated to 65 ° C.,
A large number (about 10) of 0.3 μm PSL spheres
A semiconductor substrate on which both 14 atoms / cm 2 of metal (Fe, Cu, Al) are attached is immersed for 10 minutes, and then pure water is applied for 5 minutes.
After rinsing for a minute, it was dried. Then, the number of particles remaining on the semiconductor substrate is measured by a particle counter using a laser scattering method, and then the metal on the surface of the semiconductor substrate is recovered with a mixed solution of 0.1% hydrofluoric acid and 1% hydrogen peroxide, The amount of the metal was measured by the less atomic absorption method and converted into the surface concentration. Table 5 shows the experimental results and the amount of particles and the amount of metal before cleaning. Further, in the case of Example-30, the same effect as in Example-30 was obtained even when the cleaning composition was heated at 20 ° C without heating.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【発明の効果】本発明の洗浄組成物は、電解イオン水と
錯化剤及び/又は分散剤との効果により、酸性水、アル
カリ性水の双方で金属、パーティクル等の汚染に対して
非常に良好な洗浄力を発揮するため、半導体の電気特性
の劣化を引き起こすことがない。また、安全でかつ、廃
水処理コストも大幅に低減できるため、高集積回路の工
業生産上利するところ大である。
EFFECTS OF THE INVENTION The cleaning composition of the present invention is very good against contamination of metals, particles and the like with both acidic water and alkaline water due to the effect of the electrolytic ionic water and the complexing agent and / or dispersant. Since it exhibits excellent detergency, it does not cause deterioration of the electrical characteristics of the semiconductor. In addition, since it is safe and the wastewater treatment cost can be greatly reduced, it is a great advantage in industrial production of highly integrated circuits.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】水を電気分解してなる電解イオン水と錯化
剤とを含むことを特徴とする洗浄組成物。
1. A cleaning composition comprising electrolytic ionic water obtained by electrolyzing water and a complexing agent.
【請求項2】水を電気分解してなる電解イオン水と錯化
剤および分散剤とを含むことを特徴とする洗浄組成物。
2. A cleaning composition comprising electrolytic ionic water obtained by electrolyzing water, a complexing agent and a dispersant.
【請求項3】錯化剤の含有量が0.01〜2重量%であ
る請求項1又は2に記載の洗浄組成物。
3. The cleaning composition according to claim 1, wherein the content of the complexing agent is 0.01 to 2% by weight.
【請求項4】錯化剤が、生成する錯体の水溶性が高い錯
化剤と、電気陰性度の高い金属に対して錯形成する錯化
剤とからなることを特徴とする、請求項1〜3のいずれ
か1つに記載の洗浄組成物。
4. The complexing agent comprises a complexing agent having a high water-solubility of the produced complex and a complexing agent which forms a complex with a metal having a high electronegativity. The cleaning composition according to any one of 3 to 3.
【請求項5】水を電気分解してなる電解イオン水と分散
剤とを含むことを特徴とする洗浄組成物。
5. A cleaning composition comprising electrolytic ionic water obtained by electrolyzing water and a dispersant.
【請求項6】分散剤の含有量が0.01〜1重量%であ
る請求項2〜5のいずれか1つに記載された洗浄組成
物。
6. The cleaning composition according to claim 2, wherein the content of the dispersant is 0.01 to 1% by weight.
【請求項7】電解イオン水が、電気陰性度の高い金属に
対して錯形成する錯化剤によって処理されていることを
特徴とする、請求項1〜6のいずれか1つに記載の洗浄
組成物。
7. The cleaning according to claim 1, wherein the electrolytic ionized water is treated with a complexing agent that forms a complex with a metal having a high electronegativity. Composition.
【請求項8】半導体基板を、請求項1〜7のいずれか1
つに記載の洗浄組成物を用いて洗浄することを特徴とす
る半導体基板の洗浄方法。
8. A semiconductor substrate according to claim 1.
7. A method for cleaning a semiconductor substrate, which comprises cleaning with the cleaning composition described in 1.
JP6798395A 1994-04-06 1995-03-27 Cleaning composition and method for cleaning semiconductor substrate using same Pending JPH07324199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6798395A JPH07324199A (en) 1994-04-06 1995-03-27 Cleaning composition and method for cleaning semiconductor substrate using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6861894 1994-04-06
JP6-68618 1994-04-06
JP6798395A JPH07324199A (en) 1994-04-06 1995-03-27 Cleaning composition and method for cleaning semiconductor substrate using same

Publications (1)

Publication Number Publication Date
JPH07324199A true JPH07324199A (en) 1995-12-12

Family

ID=26409226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6798395A Pending JPH07324199A (en) 1994-04-06 1995-03-27 Cleaning composition and method for cleaning semiconductor substrate using same

Country Status (1)

Country Link
JP (1) JPH07324199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086977A (en) * 2006-10-05 2008-04-17 Jeol Ltd Electrolytic water making apparatus and electrolytic water making method
CN100413606C (en) * 1996-03-27 2008-08-27 阿尔卑斯电气株式会社 Cleaning Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413606C (en) * 1996-03-27 2008-08-27 阿尔卑斯电气株式会社 Cleaning Method
JP2008086977A (en) * 2006-10-05 2008-04-17 Jeol Ltd Electrolytic water making apparatus and electrolytic water making method

Similar Documents

Publication Publication Date Title
CN1205655C (en) Post chemical-mechanical planarization (CMP) cleaning composition
JP3883401B2 (en) Wet method for manufacturing semiconductor device using anode water containing oxidizing substance and / or cathode water containing reducing substance, and anode water and / or cathode water used in this method
US20060073997A1 (en) Solutions for cleaning silicon semiconductors or silicon oxides
JP4752270B2 (en) Cleaning liquid and cleaning method using the same
JPH07263430A (en) Wet treatment of semiconductor substrate
JP2007525836A (en) Improved alkaline chemical product for post-cleaning of chemical mechanical planarization
JP2009055020A (en) Improved alkaline chemical for post-cmp cleaning
EP1389496A1 (en) Method for cleaning surface of substrate
WO2000034996A1 (en) Stripping agent against resist residues
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
JP2859081B2 (en) Wet processing method and processing apparatus
JP4498726B2 (en) Washing soap
TW302496B (en)
KR101572639B1 (en) Post-cmp washiing liquid composition
CN1711349B (en) Semiconductor surface treatment and mixture used therein
CN1127121C (en) Detergent for process for producing semiconductor device or producing liquid crystal device
JP6317580B2 (en) Manufacturing method of semiconductor device
JP2008244434A (en) Method for removing bulk metal contamination from iii-v semiconductor substrate
KR100784938B1 (en) Composition for cleaning semiconductor device
JPH07324199A (en) Cleaning composition and method for cleaning semiconductor substrate using same
JPH11162953A (en) Etching of silicon wafer
JPH08264498A (en) Silicon wafer cleaning method
JP4122171B2 (en) Resist residue remover or cleaning agent for semiconductor device or liquid crystal device manufacturing process
EP1477859A1 (en) Composition for removal of sidewall polymer and etchant residues without a separate solvent rinse step
JPH10296198A (en) Cleaning method