JPH07322393A - Ultrasonic probe - Google Patents
Ultrasonic probeInfo
- Publication number
- JPH07322393A JPH07322393A JP13655194A JP13655194A JPH07322393A JP H07322393 A JPH07322393 A JP H07322393A JP 13655194 A JP13655194 A JP 13655194A JP 13655194 A JP13655194 A JP 13655194A JP H07322393 A JPH07322393 A JP H07322393A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- matching layer
- metal
- acoustic matching
- ultrasonic probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超音波探触子を利用分野
とし、特に高周波化に適して広帯域を得られる超音波探
触子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field of application of an ultrasonic probe, and more particularly to an ultrasonic probe which is suitable for high frequency and can obtain a wide band.
【0002】[0002]
【発明の背景】超音波探触子は、医用等の超音波診断装
置に超音波の送受波部として有用されている。このよう
なものの中には、圧電素子1個のもの(シングル型とす
る)や、例えば圧電素子を矩形状としてその幅方向に並
べ、電子的にセクタあるいはリニア駆動される配列型の
ものがある。そして、いずれのものでも、近年では、超
音波の放射方向に対する距離分解能を高めて、しかも情
報量を増大し、診断精度を向上する超音波の高周波化
(例えば30MHz以上)が望まれている。BACKGROUND OF THE INVENTION An ultrasonic probe is useful as an ultrasonic wave transmitting / receiving unit in an ultrasonic diagnostic apparatus for medical use. Among these, there are one piezoelectric element (single type) and, for example, an array type in which piezoelectric elements are formed in a rectangular shape and are arranged in the width direction and are electronically sector-driven or linearly driven. . In any of these cases, in recent years, it has been desired to increase the frequency of ultrasonic waves (for example, 30 MHz or higher) to improve the distance resolution in the radiation direction of ultrasonic waves, increase the amount of information, and improve the diagnostic accuracy.
【0003】[0003]
【従来技術】第5図は従来例を説明するシングル型の超
音波探触子の断面図である。超音波探触子は、ジルコン
酸チタン酸鉛(通称PZT)やチタン酸鉛等の圧電素子
1を超音波Uの発生源として構成される。圧電素子1は
両主面に図示しない電極を有し、超音波Uの送受波面と
なる前面に音響整合層2を設けてなる。音響整合層2は
例えばエポキシ樹脂からなり、音響整合層中における超
音波の波長のλ/4とする。そして、そのインピーダン
スZ1は、最も効果的に超音波の送受波ができる規定値
に設定される。例えば圧電素子1の音響インピーダンス
Z0が34.0×106Kg/m2・sで、音響媒質
(水、生体等)3のそれZMが1.5×106Kg/m2
・sのときは、理論上、Z1は4.25×106Kg/m
2・sが最適インピーダンスZSとなる。なお、第6図の
送受波特性に示したように、音響インピーダンスが規定
値より小さくなると、帯域幅は狭くなり、大きくなると
双峰性となる。2. Description of the Related Art FIG. 5 is a sectional view of a single type ultrasonic probe for explaining a conventional example. The ultrasonic probe is configured by using a piezoelectric element 1 such as lead zirconate titanate (commonly called PZT) or lead titanate as a source of the ultrasonic waves U. The piezoelectric element 1 has electrodes (not shown) on both main surfaces, and an acoustic matching layer 2 is provided on the front surface that serves as a wave transmission / reception surface of the ultrasonic waves U. The acoustic matching layer 2 is made of, for example, an epoxy resin and has a wavelength λ / 4 of ultrasonic waves in the acoustic matching layer. Then, the impedance Z 1 is set to a prescribed value that allows the ultrasonic waves to be transmitted and received most effectively. For example, the acoustic impedance Z 0 of the piezoelectric element 1 is 34.0 × 10 6 Kg / m 2 · s, and the acoustic impedance (Z M ) of the acoustic medium (water, living body, etc.) 3 is 1.5 × 10 6 Kg / m 2
・ When s, Z 1 is theoretically 4.25 × 10 6 Kg / m
2 · s becomes the optimum impedance Z S. As shown in the transmission / reception characteristics of FIG. 6, the bandwidth becomes narrower when the acoustic impedance becomes smaller than the specified value, and becomes bimodal when the acoustic impedance becomes larger.
【0004】通常では、円板状に加工された圧電素子1
をバッキング材4上に固着して音響整合層3を形成し、
図示しない円筒状容器内に収納する。あるいは、圧電素
子1に音響整合層2を形成して、円筒状容器の開口面に
仮固定した後、後端面側からバッキング材4としての樹
脂を流入して硬化させる。このようなものでは、例えば
超音波周波数を30MHzとすると、圧電素子1の厚み
は約75μm、音響整合層は約20μmとなる。Normally, a piezoelectric element 1 processed into a disk shape
Is fixed to the backing material 4 to form the acoustic matching layer 3,
It is stored in a cylindrical container (not shown). Alternatively, after the acoustic matching layer 2 is formed on the piezoelectric element 1 and temporarily fixed to the opening surface of the cylindrical container, the resin as the backing material 4 is flowed in from the rear end surface side and cured. In this case, for example, when the ultrasonic frequency is 30 MHz, the piezoelectric element 1 has a thickness of about 75 μm and the acoustic matching layer has a thickness of about 20 μm.
【0005】[0005]
【従来技術の問題点】しかしながら、上記構成の超音波
探触子では、音響整合層2のインピーダンスZ1を正確
に最適インピーダンスZSに一致させることは、物理上
困難である。このため、現実には、前述したように帯域
幅が狭くなったり、双峰性となってリップルを生ずるこ
とがあった。However, it is physically difficult to accurately match the impedance Z 1 of the acoustic matching layer 2 to the optimum impedance Z S in the ultrasonic probe having the above structure. Therefore, in reality, as described above, the bandwidth may be narrowed or bimodal, resulting in ripples.
【0006】また、仮に最適インピーダンスZSが得ら
れたとしても、超音波周波数が高くなるほど、圧電素子
1及び音響整合層2の厚みは、前述のようにきわめて小
さくなる。このため、探触子の前面を生体に押し付けて
擦りながら診断する際、音響整合層2の摩耗や圧電素子
1の破損を招く等の問題があった。Further, even if the optimum impedance Z S is obtained, the thickness of the piezoelectric element 1 and the acoustic matching layer 2 becomes extremely small as described above as the ultrasonic frequency becomes higher. Therefore, there is a problem that the acoustic matching layer 2 is worn or the piezoelectric element 1 is damaged when the diagnosis is performed while rubbing the front surface of the probe against the living body.
【0007】[0007]
【発明の目的】本発明は、上記事情に鑑み、超音波の送
受波特性を良好にし、機械的強度が大きな、高周波化及
び高帯域化に適した超音波探触子の提供を目的とする。SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide an ultrasonic probe having good ultrasonic wave transmission / reception characteristics and high mechanical strength, which is suitable for high frequency and high band. To do.
【0008】[0008]
【着目点】本発明は、樹脂系の音響整合層に代えて金属
にすれば、これ自身の摩耗及び圧電素子の強度を補強し
得る点、及び音響整合層のインピーダンスZ1を最適イ
ンピーダンスZSより大きくすれば、送受波特性が双峰
特性となるものの中心周波数に対する帯域は広がる点
(参照:特公平3−81359号)に着目した。[Points of interest] In the present invention, if a metal is used instead of the resin-based acoustic matching layer, it is possible to reinforce its own wear and the strength of the piezoelectric element, and the impedance Z 1 of the acoustic matching layer is set to the optimum impedance Z S. Attention was paid to the fact that if it is made larger, the transmission / reception characteristic becomes a bimodal characteristic, but the band with respect to the center frequency becomes wider (see Japanese Patent Publication No. 3-81359).
【0009】[0009]
【解決手段】本発明は、音響整合層を金属として、しか
も該金属表面を全体的に凹凸を有する粗面としたことを
基本的な解決手段とする。以下、本発明の一実施例を作
用とともに説明する。The basic solution of the present invention is that the acoustic matching layer is made of metal, and the metal surface is a rough surface having irregularities as a whole. Hereinafter, one embodiment of the present invention will be described together with its operation.
【0010】[0010]
【実施例】第1図は本発明の一実施例を説明する超音波
探触子の図である。なお、前従来例図と同一部分には同
番号を付与してその説明は簡略する。超音波探触子は、
前述同様に、圧電素子1の前面に音響整合層5を形成し
てなる。この実施例では、音響整合層5は半田(P
bSn)からなる金属とする。具体的には、クリーム半田
を圧電素子1上に塗布し、溶融して固化させる。但し、
その厚みは、概ねλ/4に設定される。そして、半田の
表面を全体的に荒して凹凸を有する粗面に形成する。そ
の後、円筒状とした金属容器6の開口面に、半田側を前
面にして接着剤7により仮固着する。そして、金属容器
6の後端面側からバッキング材4としての樹脂を流入し
て硬化させる。さらに、半田と金属容器6を導電性接着
剤8により接続し、半田及び金属容器6の表面に樹脂か
らなり、生体との絶縁を図る保護膜9を形成する。な
お、図中の符号10(ab)はリード線で、一方(9
a)は圧電素子1の後面側電極(未図示)に、他方(9
b)は金属容器6の内周に接続して、外部に導出する。
また、超音波周波数は30MHzとした(半田の厚みは
λ/4として約38μmになる)。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram of an ultrasonic probe for explaining one embodiment of the present invention. It should be noted that the same parts as those of the previous conventional example are given the same numbers to simplify the description. The ultrasonic probe
Similarly to the above, the acoustic matching layer 5 is formed on the front surface of the piezoelectric element 1. In this embodiment, the acoustic matching layer 5 is made of solder (P
b S n ). Specifically, cream solder is applied onto the piezoelectric element 1 and melted and solidified. However,
Its thickness is set to approximately λ / 4. Then, the entire surface of the solder is roughened to form a rough surface having irregularities. After that, the solder side is temporarily fixed to the opening surface of the cylindrical metal container 6 with the adhesive 7 with the solder side as the front surface. Then, the resin as the backing material 4 flows in from the rear end surface side of the metal container 6 and is cured. Further, the solder and the metal container 6 are connected by a conductive adhesive 8, and a protective film 9 made of resin is formed on the surface of the solder and the metal container 6 to insulate the living body. Reference numeral 10 (ab) in the drawing is a lead wire, and one (9)
a) is the rear surface side electrode (not shown) of the piezoelectric element 1, and the other (9)
b) is connected to the inner circumference of the metal container 6 and led out to the outside.
Further, the ultrasonic frequency was set to 30 MHz (the thickness of the solder is about 38 μm when λ / 4).
【0011】第2図(ab)は、本実施例による超音波
探触子の作用を説明する送受波特性図で、横軸は周波数
f(MHz)、縦軸は送信電圧に対する受信電圧の比
(dB)で、それぞれ最大値を0dBとしている。但
し、第2図(a)は半田が平坦面の場合、同図(b)は
半田表面を粗面とした場合の図である。これらの図から
明らかなように、半田が平坦面の場合には「第2図
(a)」、前述したように双峰特性となる。すなわち、
半田の音響インピーダンスZ1が24×106Kg/m2
・sで、前述した最適インピーダンス(4.25×10
6Kg/m2・s)よりも大きいことから、中心周波数f
0から6db減衰域での帯域幅fw1が広い双峰特性にな
る。FIG. 2 (ab) is a transmission / reception characteristic diagram for explaining the operation of the ultrasonic probe according to the present embodiment, in which the horizontal axis represents the frequency f (MHz) and the vertical axis represents the reception voltage with respect to the transmission voltage. The ratio (dB) has a maximum value of 0 dB. However, FIG. 2A is a diagram when the solder has a flat surface, and FIG. 2B is a diagram when the solder surface is a rough surface. As is apparent from these figures, when the solder has a flat surface, "FIG. 2 (a)" shows the bimodal characteristics as described above. That is,
Acoustic impedance Z 1 of solder is 24 × 10 6 Kg / m 2
・ In s, the above-mentioned optimum impedance (4.25 × 10
6 Kg / m 2 · s), the center frequency f
The bandwidth f w1 in the 0 to 6 dB attenuation range has a wide bimodal characteristic.
【0012】これに対し、半田表面を荒して粗面とした
場合には「第2図(b)」、双峰特性の山谷が消失し、
最適インピーダンスZsのときよりも、広い帯域幅fw2
を維持した単峰特性となる。この例では、厚みt(λ/
4)に対して面粗さを約±λ/8としたとき、23MH
z帯域幅fw2が得られた。なお、シミュレーションの結
果では、帯域幅fw2は、面粗さに応じて大きくなること
が確認された。On the other hand, when the surface of the solder is roughened to make it rough, as shown in FIG. 2 (b), the peaks and valleys of the bimodal characteristics disappear,
Wider bandwidth f w2 than at optimum impedance Z s
It is a single peak characteristic that maintains. In this example, the thickness t (λ /
When the surface roughness is about ± λ / 8 with respect to 4), 23 MH
A z bandwidth f w2 was obtained. In addition, as a result of the simulation, it was confirmed that the bandwidth f w2 increases according to the surface roughness.
【0013】 本実施例での結果を概
略的に考察すると、次のようになる。すなわち、半田が
平坦面の場合には、その音響インピーダンスZ1が最適
インピーダンスZsよりも大きく、次式(1)の反射係
数が負となる。したがって、λ/4に相当する超音波は
全反射して谷を作り、前述したように双峰特性となる。 γ=(Z0−Z1)/(Z0+Z1)・・・・・(1) これに対し、本実施例では、第3図の拡大断面図に示し
たように、音響整合層2(半田)の厚みは、全体的に各
部分で、面粗さΔtの範囲で変化する。すなわち、これ
らの厚みλ/4±Δt/2に相当する超音波周波数も変
化する。したがって、これらの範囲内にある超音波も全
反射する。このようなことから、単峰特性の先端部Aを
除去した特性となり(第4図)、帯域幅fwが広くなる
と推測される。A summary of the results of this example is as follows. That is, when the solder has a flat surface, its acoustic impedance Z 1 is larger than the optimum impedance Z s , and the reflection coefficient of the following expression (1) is negative. Therefore, the ultrasonic wave corresponding to λ / 4 is totally reflected to form a valley, and has a bimodal characteristic as described above. γ = (Z0−Z1) / (Z0 + Z1) (1) On the other hand, in this embodiment, as shown in the enlarged sectional view of FIG. 3, the thickness of the acoustic matching layer 2 (solder) Changes in the range of the surface roughness Δt in each part as a whole. That is, the ultrasonic frequency corresponding to these thicknesses λ / 4 ± Δt / 2 also changes. Therefore, the ultrasonic waves within these ranges are also totally reflected. From such a fact, it is presumed that the characteristic is obtained by removing the front end portion A of the unimodal characteristic (FIG. 4) and the bandwidth f w becomes wider.
【0014】このように本実施例では、音響整合層2の
音響インピーダンスZ1が、最適インピーダンスZsより
も大きな半田として、その表面を面荒しすることによ
り、帯域幅を従来よりも広くした単峰特性を得ることを
見いだした。したがって、このようなものでは、帯域の
広い良好な送受波特性を得た上で、音響整合層2を半田
としたことにより、これ自身の摩耗や、圧電素子1の強
度を補って機械的強度を高め、その破損を防止する。As described above, in the present embodiment, the acoustic impedance Z 1 of the acoustic matching layer 2 is made larger than the optimum impedance Z s , and the surface is roughened to make the bandwidth wider than that of the conventional one. It was found that the peak characteristics were obtained. Therefore, in such a structure, the acoustic matching layer 2 is soldered after obtaining a good transmission / reception characteristic with a wide band, so that the acoustic matching layer 2 is mechanically supplemented by its own wear and the strength of the piezoelectric element 1. Strengthen and prevent its damage.
【0015】[0015]
【他の事項】上記実施例では、音響整合層2を半田とし
てその溶融による接合としたが、例えばAlの熱圧着で
も、これら金属の接着剤による貼着でもよく、基本的に
は最適インピーダンスよりも大きな値の金属であれはよ
く、その形成方法にも制限はない。但し、金属の溶融等
による場合は、圧電素子の圧電作用が損なわれるキュー
リー点温度以下の金属にすることが望ましい。また、音
響整合層5の厚みはλ/4としたが、概ね整数(n)倍
であれはよい。また、面粗さは±λ/8としたとき、2
3MHzの帯域幅fw2を得られるとしたが、逆に言え
ば、面粗さは帯域幅や音響整合層のインピーダンス等に
関係し、必ずしもこの面粗さに限定されるものではな
く、必要に応じて決定される。また、一例としてその電
極導出や保持構造までを示したが、本発明の趣旨から明
かなように、その構造等には限定されることもなく、自
在に構成できる。また、超音波探触子はシングル型とし
たが、リニアあるいはセクタ駆動される配列型やその他
の場合であっても同様に適用できることはいうまでもな
い。要するに、本発明では、音響整合層5を最適インピ
ーダンスより大きな金属として、その表面を粗面にする
ことにより、単峰特性を得ることができる点に眼目があ
り、このようなものは基本的に本発明の技術的範囲に属
する。但し、完全な単峰特性である必要はなく、実用実
用上差し支えない程度の6dB以内の谷があってもよい
ことは勿論で、これを排除するものではない。[Other Matters] In the above embodiments, the acoustic matching layer 2 is soldered and joined by melting. However, for example, thermocompression bonding of Al or sticking with an adhesive of these metals may be used. Is preferably a metal having a large value, and the method for forming the same is not limited. However, when the metal is melted or the like, it is desirable to use a metal having a Curie point temperature or lower at which the piezoelectric action of the piezoelectric element is impaired. Although the thickness of the acoustic matching layer 5 is set to λ / 4, it may be approximately an integer (n) times. When the surface roughness is ± λ / 8, 2
Although it has been stated that a bandwidth f w2 of 3 MHz can be obtained, conversely, the surface roughness is related to the bandwidth, the impedance of the acoustic matching layer, etc., and is not necessarily limited to this surface roughness. It is decided accordingly. Although the electrode lead-out and holding structure is shown as an example, the structure and the like are not limited and can be freely configured as is clear from the gist of the present invention. Further, although the ultrasonic probe is a single type, it goes without saying that the same can be applied to linear or sector driven array type and other cases. In short, in the present invention, the acoustic matching layer 5 is made of a metal larger than the optimum impedance and the surface thereof is made rough so that the unimodal characteristic can be obtained. It belongs to the technical scope of the present invention. However, it is not necessary to have a perfect unimodal characteristic, and it is needless to say that there may be a valley within 6 dB, which is not a problem in practical use.
【0016】[0016]
【発明の効果】本発明は、音響整合層を金属として、し
かも該金属表面を全体的に凹凸を有する粗面としたの
で、超音波の送受波特性を良好にし、機械的強度が大き
な、高周波化及び高帯域化に適した超音波探触子の提供
できる。According to the present invention, since the acoustic matching layer is made of metal and the metal surface is a rough surface having irregularities as a whole, ultrasonic wave transmitting / receiving characteristics are improved and mechanical strength is high. It is possible to provide an ultrasonic probe suitable for high frequency and high band.
【第1図】本発明の一実施例を説明する超音波探触子の
断面図である。FIG. 1 is a sectional view of an ultrasonic probe for explaining an embodiment of the present invention.
【第2図】本発明の一実施例の作用を説明する送受波特
性図で、同図(a)は従来の場合、同図(b)は本実施
例の場合である。FIG. 2 is a wave transmission / reception characteristic diagram for explaining the operation of one embodiment of the present invention. FIG. 2 (a) shows the conventional case and FIG. 2 (b) shows the case of the present embodiment.
【第3図】本発明の一実施例の作用を説明する図で、音
響整合層の一部拡大断面図である。FIG. 3 is a view for explaining the operation of one embodiment of the present invention and is a partially enlarged cross-sectional view of an acoustic matching layer.
【第4図】本発明の一実施例の作用を説明する送受波特
性図である。FIG. 4 is a wave transmission / reception characteristic diagram for explaining the operation of one embodiment of the present invention.
【第5図】従来例を説明する超音波探触子の断面図であ
る。FIG. 5 is a sectional view of an ultrasonic probe for explaining a conventional example.
【第6図】従来例を説明する送受波特性図である。FIG. 6 is a wave transmission / reception characteristic diagram for explaining a conventional example.
1 圧電素子、2、5 音響整合層、3 音響媒質、4
バッキング材、6金属容器、7 接着剤、8 導電性
接着剤、9 保護膜、10 リード線.1 piezoelectric element, 2, 5 acoustic matching layer, 3 acoustic medium, 4
Backing material, 6 metal container, 7 adhesive, 8 conductive adhesive, 9 protective film, 10 lead wire.
Claims (3)
子において、前記音響整合層を金属から形成し、該金属
表面を全体的に凹凸を有する粗面としたことを特徴とす
る超音波探触子。1. An ultrasonic probe in which an acoustic matching layer is provided on a piezoelectric element, wherein the acoustic matching layer is made of metal, and the metal surface is a rough surface having irregularities as a whole. Ultrasonic probe.
のキューリ点温度以下である第1項記載の超音波探触
子。2. The ultrasonic probe according to claim 1, wherein the melting point temperature of the metal is equal to or lower than the Curie point temperature of the piezoelectric element.
形成した第1項記載の超音波探触子。3. The ultrasonic probe according to claim 1, wherein a protective film made of resin is formed on the front surface of the metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13655194A JP3327497B2 (en) | 1994-05-26 | 1994-05-26 | Ultrasonic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13655194A JP3327497B2 (en) | 1994-05-26 | 1994-05-26 | Ultrasonic probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07322393A true JPH07322393A (en) | 1995-12-08 |
JP3327497B2 JP3327497B2 (en) | 2002-09-24 |
Family
ID=15177870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13655194A Expired - Fee Related JP3327497B2 (en) | 1994-05-26 | 1994-05-26 | Ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3327497B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000006309A3 (en) * | 1998-07-31 | 2000-05-04 | Boston Scient Ltd | Off-aperture electrical connection for ultrasonic transducer |
US6406433B1 (en) | 1999-07-21 | 2002-06-18 | Scimed Life Systems, Inc. | Off-aperture electrical connect transducer and methods of making |
KR20030080883A (en) * | 2002-04-11 | 2003-10-17 | 주식회사 이지메딕스 | Pile method of ultrasonic probe using metching layer film |
JP2009528784A (en) * | 2006-03-02 | 2009-08-06 | ビジュアルソニックス インコーポレイテッド | Ultrasonic matching layer and transducer |
WO2012011243A1 (en) | 2010-07-22 | 2012-01-26 | Canon Kabushiki Kaisha | Acoustic wave detector and acoustic wave measurement apparatus |
US9211106B2 (en) | 2010-04-29 | 2015-12-15 | Neorad As | Coupling an ultrasound probe to the skin |
-
1994
- 1994-05-26 JP JP13655194A patent/JP3327497B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000006309A3 (en) * | 1998-07-31 | 2000-05-04 | Boston Scient Ltd | Off-aperture electrical connection for ultrasonic transducer |
US6113546A (en) * | 1998-07-31 | 2000-09-05 | Scimed Life Systems, Inc. | Off-aperture electrical connection for ultrasonic transducer |
JP2002521163A (en) * | 1998-07-31 | 2002-07-16 | ボストン・サイアンティフィック・リミテッド | Off-aperture electrical connection for ultrasonic transducers |
US6733456B1 (en) | 1998-07-31 | 2004-05-11 | Scimed Life Systems, Inc. | Off-aperture electrical connection for ultrasonic transducer |
US6406433B1 (en) | 1999-07-21 | 2002-06-18 | Scimed Life Systems, Inc. | Off-aperture electrical connect transducer and methods of making |
KR20030080883A (en) * | 2002-04-11 | 2003-10-17 | 주식회사 이지메딕스 | Pile method of ultrasonic probe using metching layer film |
JP2009528784A (en) * | 2006-03-02 | 2009-08-06 | ビジュアルソニックス インコーポレイテッド | Ultrasonic matching layer and transducer |
US9211106B2 (en) | 2010-04-29 | 2015-12-15 | Neorad As | Coupling an ultrasound probe to the skin |
WO2012011243A1 (en) | 2010-07-22 | 2012-01-26 | Canon Kabushiki Kaisha | Acoustic wave detector and acoustic wave measurement apparatus |
JP2012040361A (en) * | 2010-07-22 | 2012-03-01 | Canon Inc | Acoustic wave detector and acoustic wave measurement apparatus |
US9261483B2 (en) | 2010-07-22 | 2016-02-16 | Canon Kabushiki Kaisha | Acoustic wave detector and acoustic wave measurement apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3327497B2 (en) | 2002-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5511296A (en) | Method for making integrated matching layer for ultrasonic transducers | |
US6014898A (en) | Ultrasonic transducer array incorporating an array of slotted transducer elements | |
JPH0239251B2 (en) | ||
EP0142215A2 (en) | Ultrasound transducer with improved vibrational modes | |
JP2002045357A (en) | Ultrasonic diagnosis device | |
JP3327497B2 (en) | Ultrasonic probe | |
CA2184273C (en) | A low profile transducer for intravascular ultrasound imaging and method for mounting | |
WO1995000948A1 (en) | High frequency focused transcucer and method of making same | |
JPH07194517A (en) | Ultrasonic probe | |
JP3281719B2 (en) | Ultrasonic probe and manufacturing method thereof | |
JP3003489B2 (en) | Ultrasonic probe | |
JP3353962B2 (en) | Ultrasonic probe manufacturing method | |
JPH05200026A (en) | Manufacture of ultrasonic probe used in coelom | |
JPH08275944A (en) | Arrangement type ultrasonic probe | |
JP3559497B2 (en) | Ultrasonic probe | |
JP3749192B2 (en) | Ultrasonic transducer | |
JPH10285694A (en) | Ultrasonic wave probe | |
JPH0746694A (en) | Ultrasonic transducer | |
JPH01236900A (en) | Array type ultrasonic probe | |
JPH07274294A (en) | Array type ultrasonic probe | |
Olbrish et al. | Physical apodization of ultrasonic arrays | |
JPH0117320B2 (en) | ||
JPS6117671Y2 (en) | ||
JPH07303299A (en) | Ultrasonic probe | |
JP2000125393A (en) | Ultrasonic wave transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080712 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080712 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090712 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090712 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090712 |
|
LAPS | Cancellation because of no payment of annual fees |