JP3353962B2 - Ultrasonic probe manufacturing method - Google Patents

Ultrasonic probe manufacturing method

Info

Publication number
JP3353962B2
JP3353962B2 JP22793993A JP22793993A JP3353962B2 JP 3353962 B2 JP3353962 B2 JP 3353962B2 JP 22793993 A JP22793993 A JP 22793993A JP 22793993 A JP22793993 A JP 22793993A JP 3353962 B2 JP3353962 B2 JP 3353962B2
Authority
JP
Japan
Prior art keywords
polarization
ultrasonic probe
piezoelectric element
piezoelectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22793993A
Other languages
Japanese (ja)
Other versions
JPH0759767A (en
Inventor
勝裕 若林
之彦 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP22793993A priority Critical patent/JP3353962B2/en
Publication of JPH0759767A publication Critical patent/JPH0759767A/en
Application granted granted Critical
Publication of JP3353962B2 publication Critical patent/JP3353962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波エコーを利用す
る超音波探触子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic probe utilizing an ultrasonic echo.

【0002】[0002]

【従来の技術】超音波探触子は非破壊検査装置の他、医
療用の超音波診断装置として急速に利用が高まってい
る。例えば超音波内視鏡等の探触子は、超音波トランス
デューサから高周波の音響振動を生体中に放射し、反射
して戻ってきた超音波を超音波トランスデューサで受信
し、わずかな界面特性の違いによって異なる情報を処理
することにより、生体内部の断面像を得るものである。
超音波探触子のトランスデューサ部は、音響整合層、圧
電素子、背面負荷材が順に積層されることにより構成さ
れている。この超音波探触子はその表面に形成された電
極から圧電素子に高周波の電圧パルスを印加し、圧電素
子を共振させて急速に変形を起こし、この圧電素子が超
音波エコーを送受して組織の状態を得、これを画像処理
して観察するものである。このような超音波探触子の圧
電素子は、一般的には、一対の対向する電極を付与した
後、分極工程を経て作製される。
2. Description of the Related Art Ultrasonic probes are rapidly increasing in use as medical ultrasonic diagnostic equipment in addition to nondestructive inspection equipment. For example, a probe such as an ultrasonic endoscope radiates high-frequency acoustic vibration from the ultrasonic transducer into a living body, receives the reflected ultrasonic wave by the ultrasonic transducer, and detects a slight difference in interface characteristics. By processing different information, a cross-sectional image of the inside of a living body is obtained.
The transducer section of the ultrasonic probe is configured by sequentially stacking an acoustic matching layer, a piezoelectric element, and a back load material. This ultrasonic probe applies a high-frequency voltage pulse to the piezoelectric element from the electrode formed on its surface, causes the piezoelectric element to resonate and rapidly deforms, and this piezoelectric element transmits and receives ultrasonic echoes and Is obtained, and this is image-processed and observed. In general, such a piezoelectric element of an ultrasonic probe is manufactured through a polarization step after a pair of opposed electrodes are provided.

【0003】図21ないし図23は特開平2−1111
98号公報に記載された従来の超音波探触子に使用され
る圧電素子を示す。この圧電素子は圧電セラミックス1
00の両面に電極を形成するが、一方の面の電極は図2
2に示すように全面電極110となっており、他方の面
の電極は図23に示すように同心状に複数に分割した分
割電極120となっている。このような構造の圧電素子
は分割電極120直下の圧電セラミックス100の自発
分極の強さが図21の矢印で示すように中心部から外周
部に向かって段階的に小さくなっており、これによりメ
インローブ近傍のサイドローブを小さくすることができ
る。
FIG. 21 to FIG.
No. 98 discloses a piezoelectric element used for a conventional ultrasonic probe. This piezoelectric element is a piezoelectric ceramic 1
The electrodes are formed on both sides of FIG.
As shown in FIG. 2, the entire surface is an electrode 110, and the electrode on the other surface is a divided electrode 120 divided concentrically into a plurality as shown in FIG. In the piezoelectric element having such a structure, the intensity of spontaneous polarization of the piezoelectric ceramics 100 immediately below the split electrode 120 decreases stepwise from the center to the outer periphery as shown by arrows in FIG. Side lobes near the lobes can be reduced.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来技術
では、圧電素子の電極を同心状に複数に分割することが
必要なため、高電圧を印加する分極時に隣の電極にリー
クしないように、にじみ等がなく精度良く分割電極を作
製しなければならない。そのため、製造が面倒であると
共に、電極間が広くなるため特性のでない超音波探触子
となる問題があった。また、従来の超音波探触子の圧電
素子は分割電極を有するため、瞬時に高い電圧パルスが
繰り返し印加されることによって、電極境界部に応力が
作用して歪が蓄積される。このため圧電セラミックスの
疲労破壊を生じて超音波探触子の寿命が短かくなるとい
う問題もあった。
However, in the above prior art, since it is necessary to divide the electrode of the piezoelectric element concentrically into a plurality of electrodes, it is necessary to prevent leakage to an adjacent electrode during polarization when a high voltage is applied. A divided electrode must be manufactured with high precision without bleeding or the like. Therefore, there is a problem that the production becomes troublesome and an ultrasonic probe having no characteristic due to a wide gap between the electrodes. Further, since the piezoelectric element of the conventional ultrasonic probe has the divided electrodes, a high voltage pulse is repeatedly applied instantaneously, so that a stress acts on the electrode boundary and strain is accumulated. For this reason, there is also a problem that the fatigue destruction of the piezoelectric ceramic occurs and the life of the ultrasonic probe is shortened.

【0005】本発明は、上記事情を考慮してなされたも
のであり、分割電極を用いることなくその分極を行うこ
とができ、しかも電圧の印加によっても圧電セラミック
スの破壊のない圧電素子を用いた超音波探触子を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and uses a piezoelectric element which can be polarized without using a divided electrode and which does not break down the piezoelectric ceramics even when a voltage is applied. It is an object to provide an ultrasonic probe.

【0006】[0006]

【課題を解決するための手段および作用】 本発明の超
音波探触子の製造方法は、圧電セラミックスに導電ゴム
からなる電極を密着させ電圧を印加して分極を行う第1
の分極工程と、前記圧電セラミックスに前記電極と異な
る形状の導電ゴムからなる電極を密着させ電圧を印加し
て分極を行う第2の分極工程とを少なくとも含み、前記
圧電セラミックスの中心部から外周部に向かってその自
発分極が徐々に変化するように分極する分極工程と、前
記分極工程により分極された圧電セラミックスの両側に
全面電極を付着させて圧電素子を作製する工程と、前記
圧電素子の両側に背面負荷材及び音響整合層を積層し、
この積層体をハウジングに取り付ける工程とを備えてい
ることを特徴とする。
Means for Solving the Problems and Actions The method for manufacturing an ultrasonic probe according to the present invention comprises the steps of:
The first electrode which is made to adhere to the electrode made of
Polarization step, and the piezoelectric ceramic is different from the electrode
An electrode made of conductive rubber having a shape
At least a second polarization step of performing polarization by the
From the center of the piezoelectric ceramic toward the outer periphery,
A polarization process in which the polarization is gradually changed
On both sides of the piezoelectric ceramics polarized by the polarization process
A step of producing a piezoelectric element by attaching electrodes over the entire surface;
Laminate back load material and acoustic matching layer on both sides of the piezoelectric element,
Attaching the laminate to a housing.
It is characterized by that.

【0007】 このように、分極工程を複数回に分けて
行うことで、中心部から外周部に向かって自発分極が徐
々に変化した圧電素子が作製される。
As described above, the polarization step is divided into a plurality of times.
By doing so, the spontaneous polarization gradually decreases from the center to the outer periphery.
Variously changed piezoelectric elements are manufactured.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【実施例1】図1および図2は本発明の実施例1の超音
波探触子に使用される圧電素子1を示す。この圧電素子
1は円盤状の圧電セラミックス15の両面に全面電極
2,3が形成されることにより構成される。圧電セラミ
ックス15は全面電極2,3の形成以前に分極処理がな
されており、これにより自発分極が中心部から外周部に
向かって徐々に変化している。本実施例においては図1
の矢印で示すように、中心部の分極が最も強く、周辺部
に向かって徐々に弱くなっている。
Embodiment 1 FIGS. 1 and 2 show a piezoelectric element 1 used in an ultrasonic probe according to Embodiment 1 of the present invention. This piezoelectric element 1 is formed by forming full-surface electrodes 2 and 3 on both surfaces of a disk-shaped piezoelectric ceramic 15. The piezoelectric ceramic 15 has been subjected to a polarization treatment before the formation of the full-surface electrodes 2 and 3, whereby the spontaneous polarization gradually changes from the center to the outer periphery. In this embodiment, FIG.
As shown by the arrow, the polarization at the center is the strongest, and gradually becomes weaker toward the periphery.

【0011】図3ないし図6はこの圧電セラミックス1
5の分極処理工程を示す。圧電セラミックス15はチタ
ン酸ジルコン酸鉛(PZT)系のセラミックス材料を成
形、焼成した後、研削加工して、直径25mm、厚さ
0.5mmの円盤形成とし、#3000のラップ仕上げ
を行って作製する。このPZT系材料は、V1=0.7
kV/mmの直流電圧の印加により、結合係数Kt=3
0%が得られ、同様にV2=1.6kV/mmでは、結
合係数Kt=45%、そして、V3=3.5kV/mm
の直流電圧の印加で、結合係数Kt=62%という分極
特性を有する。
FIGS. 3 to 6 show this piezoelectric ceramic 1.
5 shows a polarization treatment step. The piezoelectric ceramics 15 is manufactured by forming and firing a lead zirconate titanate (PZT) -based ceramic material, and then grinding the disk to form a disk having a diameter of 25 mm and a thickness of 0.5 mm, followed by lapping of # 3000. I do. This PZT-based material has V1 = 0.7
By applying a DC voltage of kV / mm, the coupling coefficient Kt = 3
0%, and similarly for V2 = 1.6 kV / mm, the coupling coefficient Kt = 45% and V3 = 3.5 kV / mm
Has a polarization characteristic of a coupling coefficient Kt = 62%.

【0012】まず、図3に示すように電極形成前の圧電
セラミックス15の両面に導電ゴムからなる略同径の一
対の電極16,16を密着させて挟み込み、直流電源1
7からV1=0.7kV/mmの直流電圧を印加して第
1段の分極を行う。次いで、図4に示すように径を小さ
くした導電ゴムからなる電極16により圧電セラミック
ス15の外周部を除く部分を挟み、V=1.6kV/m
mの直流電圧を印加して、第2段の分極を行う。そし
て、図5に示すように、さらに径を小さくした導電ゴム
からなる電極16で圧電セラミックス15の内周部分を
挟み、V3=3.5kv/mmの直流電圧を印加して第
3段の分極を行う。この分極処理により圧電セラミック
ス15は中心部から外周部に向かって分極が徐々に小さ
くなる。この分極処理の後、圧電セラミックス15をス
パッタリングして図6に示すように、ニッケル等からな
る全面電極2,3を両面に設けて圧電素子1とする。図
6において、矢印4は分極の強さをベクトルで表わすも
のである。
First, as shown in FIG. 3, a pair of electrodes 16 of substantially the same diameter, made of conductive rubber, are tightly sandwiched between both surfaces of a piezoelectric ceramic 15 before the electrodes are formed.
7 to apply a DC voltage of V1 = 0.7 kV / mm to perform the first-stage polarization. Next, as shown in FIG. 4, an electrode 16 made of a conductive rubber having a reduced diameter sandwiches a portion of the piezoelectric ceramics 15 excluding an outer peripheral portion, and V = 1.6 kV / m.
The second-stage polarization is performed by applying a DC voltage of m. Then, as shown in FIG. 5, the inner peripheral portion of the piezoelectric ceramics 15 is sandwiched between electrodes 16 made of conductive rubber having a further reduced diameter, and a DC voltage of V3 = 3.5 kv / mm is applied to perform third-stage polarization. I do. By this polarization processing, the polarization of the piezoelectric ceramics 15 gradually decreases from the central portion toward the outer peripheral portion. After this polarization treatment, the piezoelectric ceramics 15 is sputtered, and as shown in FIG. In FIG. 6, an arrow 4 indicates the intensity of polarization by a vector.

【0013】図7はかかる圧電素子1を用いて構成され
る超音波探触子18を示す。圧電素子1の一方の電極と
同軸ケーブル13のプラスリード線9とを接続すると共
に、GND電極となる他方の電極と導電性金属からなる
ハウジング8とをワイヤ11で結線する。また、同軸ケ
ーブル13のGNDリード線10をハウジング8に結線
する。この状態で圧電素子を背面負荷材7に積層してハ
ウジング8内に封入し、音響整合層5a,5bを積層
し、接着する。この音響整合層5a,5bとしてはマシ
ナブルセラミックスとエポキシ樹脂を1/4λの厚みに
調整して用いることができる。
FIG. 7 shows an ultrasonic probe 18 using such a piezoelectric element 1. One electrode of the piezoelectric element 1 is connected to the positive lead wire 9 of the coaxial cable 13, and the other electrode serving as a GND electrode is connected to the housing 8 made of a conductive metal with a wire 11. Further, the GND lead wire 10 of the coaxial cable 13 is connected to the housing 8. In this state, the piezoelectric element is laminated on the back load member 7 and sealed in the housing 8, and the acoustic matching layers 5a and 5b are laminated and bonded. As the acoustic matching layers 5a and 5b, machinable ceramics and epoxy resin can be used after being adjusted to a thickness of λλ.

【0014】このような構成の超音波探触子18は、圧
電素子1の外周部に向かうのに従って圧電特性を弱くし
てあるため、外周部に向かうのに従って振幅が連続的に
小さくなる。このためにメインローブに対するサイドロ
ーブの割合の少ない超音波探触子18とすることができ
る。従って本実施例では圧電素子1の分極方法を変える
だけでメインローブに対するサイドローブの割合の少な
い超音波探触子18を容易に得ることができ、従来の組
立方法と同様にして作製できる。すなわち、角度方向の
分解能を向上させ、画像精度を向上させた超音波探触子
18を容易に作製できる。また、圧電素子1が分割電極
を有しないため、効率的で、疲労破壊が発生しにくい信
頼性が高い超音波探触子となる。なお、本実施例では圧
電セラミックスの分極は3段階で行ったが、2段階以上
であれば同様の効果が得られる。
In the ultrasonic probe 18 having such a configuration, the piezoelectric characteristics are weakened toward the outer peripheral portion of the piezoelectric element 1, so that the amplitude continuously decreases toward the outer peripheral portion. Therefore, the ultrasonic probe 18 having a small ratio of the side lobe to the main lobe can be obtained. Accordingly, in this embodiment, the ultrasonic probe 18 having a small ratio of the side lobe to the main lobe can be easily obtained only by changing the polarization method of the piezoelectric element 1, and can be manufactured in the same manner as the conventional assembling method. That is, the ultrasonic probe 18 with improved resolution in the angular direction and improved image accuracy can be easily manufactured. In addition, since the piezoelectric element 1 does not have the divided electrodes, an ultrasonic probe that is efficient and hardly causes fatigue failure and has high reliability is obtained. In this embodiment, the polarization of the piezoelectric ceramic is performed in three stages, but the same effect can be obtained if the polarization is performed in two or more stages.

【0015】[0015]

【実施例2】図8ないし図11は本発明の実施例2の超
音波探触子における圧電素子の分極処理を示し、実施例
1と同一の要素は同一の符号を付して対応させてある。
本実施例では、まず、図8に示すように、導電ゴムから
なる一対の電極16を圧電セラミックス15に密着させ
て第1段の分極を行う。次に図9に示すように、リング
状に形成された一対の電極16で圧電セラミックス15
の中央部を除く部分を挟んで第2段の分極を行う。そし
て、図10に示すように、リング状の電極16で圧電セ
ラミックス15の外周部分を挟んで第3段の分極を行
う。これらの分極は第1段から第3段となるのに従っ
て、分極電圧を徐々に大きくすることにより行う。これ
により中心部から外周部に向かうに従って分極が強くな
った圧電セラミックスを作製できる。この分極の後、図
11に示すように、圧電セラミックス15の両面に銀を
蒸着させて、全面電極2,3を形成する。同図における
矢印4は分極の強さを示すベクトルである。
Second Embodiment FIGS. 8 to 11 show the polarization processing of a piezoelectric element in an ultrasonic probe according to a second embodiment of the present invention. The same elements as those in the first embodiment are denoted by the same reference numerals and correspond to each other. is there.
In the present embodiment, first, as shown in FIG. 8, a pair of electrodes 16 made of conductive rubber are brought into close contact with the piezoelectric ceramics 15 to perform first-stage polarization. Next, as shown in FIG. 9, a pair of electrodes 16 formed in a ring shape
The second-stage polarization is performed with the portion excluding the central portion of the 挟. Then, as shown in FIG. 10, third-stage polarization is performed with the outer periphery of the piezoelectric ceramics 15 interposed between the ring-shaped electrodes 16. The polarization is performed by gradually increasing the polarization voltage from the first stage to the third stage. This makes it possible to produce a piezoelectric ceramic in which the polarization becomes stronger from the center toward the outer periphery. After this polarization, as shown in FIG. 11, silver is vapor-deposited on both surfaces of the piezoelectric ceramics 15 to form electrodes 2 and 3 on the entire surface. An arrow 4 in the figure is a vector indicating the intensity of polarization.

【0016】図12はこの圧電素子1の一方の面に背面
負荷材7を接合し、他方の面に音響整合層5を接合した
超音波探触子を示す。ここで、背面負荷材7としてはタ
ングステンフィラーが混入したエポキシ樹脂を使用で
き、音響整合層5としては1/4λの厚さのエポキシ樹
脂を使用できる。
FIG. 12 shows an ultrasonic probe in which a back load member 7 is joined to one surface of the piezoelectric element 1 and an acoustic matching layer 5 is joined to the other surface. Here, an epoxy resin mixed with a tungsten filler can be used as the back load member 7, and an epoxy resin having a thickness of 4λ can be used as the acoustic matching layer 5.

【0017】上記構成の本実施例の超音波探触子はパル
スを印加した瞬間に図13に示すように圧電素子1の外
周部は中心部と比較して変形が大きいところから、放射
される超音波ビーム14は僅かであるが集束させること
ができる。図14および図15は圧電素子全面を均一に
分極した圧電素子を使用した超音波探触子と、本実施例
の超音波探触子の超音波ビームの距離に対する強度(距
離と感度の関係)をハイドロホンを使用して測定した特
性図を示す。本実施例の超音波探触子は近距離場では図
14に示すように感度は若干劣るが、超音波ビームが発
散せず集束傾向となっているため遠距離場でも同様な感
度が得られるメリットがある。
In the ultrasonic probe according to the present embodiment having the above-described structure, the outer periphery of the piezoelectric element 1 is radiated at the moment when a pulse is applied, as shown in FIG. The ultrasound beam 14 may be slightly focused. FIGS. 14 and 15 show the intensity (relationship between distance and sensitivity) of an ultrasonic probe using a piezoelectric element in which the entire surface of the piezoelectric element is uniformly polarized, and the ultrasonic probe of this embodiment with respect to the distance of the ultrasonic beam. Is a characteristic diagram measured using a hydrophone. Although the sensitivity of the ultrasonic probe of this embodiment is slightly inferior in the near field as shown in FIG. 14, the same sensitivity can be obtained in the far field because the ultrasonic beam does not diverge and tends to focus. There are benefits.

【0018】このような本実施例の超音波探触子におい
ては、製造が難しい音響レンズの形成や圧電素子の球面
加工をしなくても、超音波ビームの発散を防ぎ角度方向
の分解能を非常に高くすることができる。また、音響整
合層5はどの部分でも透過効率の高い1/4λとできる
ため、超音波送受時の境界面での反射が少なく、全面均
一に分極した従来の圧電素子の超音波探触子の感度と、
近距離場で遜色なく、遠距離場に関しては従来より高感
度となる。
In the ultrasonic probe of this embodiment, the divergence of the ultrasonic beam can be prevented and the resolution in the angular direction can be greatly improved without forming an acoustic lens which is difficult to manufacture or performing spherical processing on the piezoelectric element. Can be higher. Further, since the acoustic matching layer 5 can have a high transmission efficiency of 1 / 4λ at any part, the reflection at the boundary surface during the transmission and reception of the ultrasonic waves is small, and the ultrasonic probe of the conventional piezoelectric element which is uniformly polarized over the entire surface. Sensitivity and
The sensitivity is as good as in the near field, and higher in the far field than before.

【0019】なお、分極時に用いる電極は、分極する範
囲を変えるだけなので、どちらか片方だけをリング状と
すれば、他方圧電セラミックスの全体と接触する形状で
もほぼ同等に分極することができ。
Since the electrodes used for polarization only change the range of polarization, if only one of them is formed in a ring shape, the other electrode can be polarized almost equally even in a shape in contact with the whole piezoelectric ceramic.

【0020】[0020]

【実施例3】図16は本発明の実施例3の超音波探触子
における圧電素子1の分極を示す。この実施例の電極1
6における一方の電極は導電ゴムの成形体16aと、こ
の成形体16aにおける圧電セラミックス15との対向
面に成形体と同一面となるように嵌め込まれた略かまぼ
こ形状のシリコンゴム等の絶縁体19とからなってい
る。この電極16を用いて圧電セラミックス15を分極
処理する場合においては、絶縁体19の厚さに応じて圧
電セラミックス15に印加される電圧が小さくなる。こ
のため分極処理後の圧電セラミックス15は図17の矢
印4で示すように自発分極が幅方向にのみ変化する。
Third Embodiment FIG. 16 shows the polarization of the piezoelectric element 1 in the ultrasonic probe according to the third embodiment of the present invention. Electrode 1 of this embodiment
One of the electrodes in 6 is a conductive rubber molded body 16a, and an insulator 19 such as a substantially semi-cylindrical silicon rubber fitted on the surface of the molded body 16a facing the piezoelectric ceramics 15 so as to be flush with the molded body. It consists of When the piezoelectric ceramics 15 is polarized using the electrodes 16, the voltage applied to the piezoelectric ceramics 15 decreases according to the thickness of the insulator 19. Therefore, the spontaneous polarization of the piezoelectric ceramics 15 after the polarization process changes only in the width direction as shown by the arrow 4 in FIG.

【0021】この分極した圧電セラミックス15に対し
て蒸着により銀の廻り込み電極22を消極しない120
℃で付着させて、図18に示す圧電素子1を作製する。
そしてこの方法で作製した圧電素子を用いて厚さ約20
0μm、共振周波数が12MHzの超音波探触子を作製
する。
The silver wraparound electrode 22 is not depolarized on the polarized piezoelectric ceramics 15 by vapor deposition.
The piezoelectric element 1 shown in FIG.
Then, using the piezoelectric element manufactured by this method, a thickness of about 20
An ultrasonic probe having 0 μm and a resonance frequency of 12 MHz is manufactured.

【0022】具体的には、音響整合層5として1/4λ
厚さのエポキシ樹脂と短絡防止のための絶縁樹脂層20
を付与したタングステンフィラー混入のエポキシ樹脂に
より作製した背面負荷材7とを嫌気性接着剤21によっ
て圧電素子1の両面に接着する。これにより、図19に
示すトランスデューサを作製する。これを、破線で示し
たような長さ方向に、精密裁断機を使用して裁断し超音
波探触子用のトランスデューサを作製する。
More specifically, 1 / 4λ is used as the acoustic matching layer 5.
Epoxy resin of thickness and insulating resin layer 20 for short circuit prevention
Is bonded to both surfaces of the piezoelectric element 1 with an anaerobic adhesive 21. Thus, the transducer shown in FIG. 19 is manufactured. This is cut in the length direction as shown by the broken line using a precision cutting machine to produce a transducer for an ultrasonic probe.

【0023】そして、このトランスデューサを金属パイ
プを加工して作製したハウジング8に実装し、図20に
示す超音波探触子を作製する。詳しくは、まずハウジン
グ8をフレキシブルシャフト25と銀ロウ24を用いて
ロウ付けする。そしてシャフト25に同軸ケーブル13
を通し、グランド側のリード線9とハウジング8とを導
電ペースト23を用いて結線すると共に、プラス側のリ
ード線10を導電ペースト23を用いて圧電素子1の電
極に直接に結線する。そして絶縁を確保するために、絶
縁性樹脂26により封止する。
Then, this transducer is mounted on a housing 8 produced by processing a metal pipe, and an ultrasonic probe shown in FIG. 20 is produced. Specifically, first, the housing 8 is soldered using the flexible shaft 25 and the silver solder 24. Then, the coaxial cable 13 is connected to the shaft 25.
Then, the ground side lead wire 9 and the housing 8 are connected using the conductive paste 23, and the positive side lead wire 10 is directly connected to the electrode of the piezoelectric element 1 using the conductive paste 23. Then, in order to secure insulation, sealing is performed with an insulating resin 26.

【0024】上記構成の超音波探触子は、パルスを印加
した瞬間には、圧電素子1は長さ方向において、端部に
向かう程中心部と比較して変形が大きく、放射される超
音波ビーム14を圧電素子の長さ方向に僅かであるが集
束させることができる。
In the ultrasonic probe having the above structure, at the moment when the pulse is applied, the piezoelectric element 1 is deformed more in the length direction toward the end than at the center, and the emitted ultrasonic wave is increased. The beam 14 can be slightly but focused along the length of the piezoelectric element.

【0025】このような本実施例では、生産性を考慮し
て、一方向のみに自発分極の強さの差を有するが、この
場合でも超音波ビームの発散を防ぎ角度方向の分解能を
高くできる。また、音響整合層はどの部分でも透過効率
の高い1/4λとすることができるため、超音波送受時
の境界面での反射が少なく、全面均一に分極した従来の
圧電素子の超音波探触子の感度と、近距離場で遜色な
く、遠距離場に関しては従来より高感度とすることがで
きる。なお、カマボコ状の絶縁物質と導電物質の組合わ
せでなく、段階状に絶縁材と導電物質を組合わせたもの
でも、同様な効果を得ることができる。
In this embodiment, in consideration of productivity, there is a difference in the intensity of spontaneous polarization in only one direction. In this case, too, the divergence of the ultrasonic beam can be prevented and the resolution in the angular direction can be increased. . In addition, since the acoustic matching layer can have a high transmission efficiency of 1 / 4λ in any portion, there is little reflection at the boundary surface when transmitting and receiving ultrasonic waves, and the ultrasonic probe of the conventional piezoelectric element uniformly polarized over the entire surface. The sensitivity in the near field is comparable to the sensitivity of the child, and the sensitivity in the far field can be made higher than before. Note that the same effect can be obtained by combining an insulating material and a conductive material in a stepwise manner, instead of using a combination of an insulated insulating material and a conductive material.

【0026】[0026]

【発明の効果】以上のとおり本発明によれば、圧電素子
として分割電極を有さずに、電極付与前に分極操作を行
うことにより同一素子内で自発分極の大きさに差を生じ
させたものを使用することによって、電極境界部に集中
的にかかっていた歪を分散させ、放電破壊、疲労破壊の
発生率が低い超音波探触子とすることができる。
As described above, according to the present invention, the size of the spontaneous polarization is generated in the same element by performing the polarization operation before applying the electrode without having the divided electrode as the piezoelectric element. By using such an ultrasonic probe, it is possible to disperse the strain intensively applied to the electrode boundary portion and to provide an ultrasonic probe having a low rate of occurrence of discharge breakdown and fatigue breakdown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における圧電素子の断面図。FIG. 1 is a cross-sectional view of a piezoelectric element according to a first embodiment of the present invention.

【図2】図1の正面図。FIG. 2 is a front view of FIG. 1;

【図3】圧電素子の分極処理を示す断面図。FIG. 3 is a cross-sectional view illustrating a polarization process of a piezoelectric element.

【図4】圧電素子の分極処理を示す断面図。FIG. 4 is a cross-sectional view showing the polarization processing of the piezoelectric element.

【図5】圧電素子の分極処理を示す断面図。FIG. 5 is a cross-sectional view showing the polarization processing of the piezoelectric element.

【図6】圧電素子の断面図。FIG. 6 is a sectional view of a piezoelectric element.

【図7】実施例1の超音波探触子の断面図。FIG. 7 is a cross-sectional view of the ultrasonic probe according to the first embodiment.

【図8】本発明の実施例2における分極処理を示す断面
図。
FIG. 8 is a cross-sectional view illustrating a polarization process according to the second embodiment of the present invention.

【図9】本発明の実施例2における分極処理を示す断面
図。
FIG. 9 is a cross-sectional view illustrating a polarization process according to the second embodiment of the present invention.

【図10】本発明の実施例2における分極処理を示す断
面図。
FIG. 10 is a cross-sectional view illustrating a polarization process according to the second embodiment of the present invention.

【図11】実施例2の圧電素子の断面図。FIG. 11 is a sectional view of a piezoelectric element according to a second embodiment.

【図12】実施例2の超音波探触子の断面図。FIG. 12 is a cross-sectional view of the ultrasonic probe according to the second embodiment.

【図13】超音波探触子の作動の断面図。FIG. 13 is a cross-sectional view of the operation of the ultrasonic probe.

【図14】超音波探触子の超音波ビームの強度を示す特
性図。
FIG. 14 is a characteristic diagram showing the intensity of the ultrasonic beam of the ultrasonic probe.

【図15】超音波探触子の超音波ビームの強度を示す特
性図。
FIG. 15 is a characteristic diagram showing the intensity of the ultrasonic beam of the ultrasonic probe.

【図16】実施例3の分極処理の斜視図。FIG. 16 is a perspective view of a polarization process according to the third embodiment.

【図17】実施例3の圧電素子の断面図。FIG. 17 is a sectional view of a piezoelectric element according to a third embodiment.

【図18】実施例3のトランスデューサの分解側面図。FIG. 18 is an exploded side view of the transducer according to the third embodiment.

【図19】実施例3のトランスデューサの斜視図。FIG. 19 is a perspective view of a transducer according to a third embodiment.

【図20】実施例3の超音波探触子の断面図。FIG. 20 is a cross-sectional view of the ultrasonic probe according to the third embodiment.

【図21】従来の超音波探触子に使用する圧電素子の断
面図。
FIG. 21 is a sectional view of a piezoelectric element used for a conventional ultrasonic probe.

【図22】図21の左側面図。FIG. 22 is a left side view of FIG. 21.

【図23】図21の右側面図。FIG. 23 is a right side view of FIG. 21.

【符号の説明】[Explanation of symbols]

1 圧電素子 2,3 全面電極 5a,5b 音響整合層 7 背面負荷材 8 ハウジング DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2, 3 Full surface electrode 5a, 5b Acoustic matching layer 7 Back load material 8 Housing

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 8/00 - 8/15 H04R 1/32 H04R 17/00 H01L 41/22 Continuation of the front page (58) Fields investigated (Int. Cl. 7 , DB name) A61B 8/00-8/15 H04R 1/32 H04R 17/00 H01L 41/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 背面負荷材、両面に全面電極を設けた圧
電素子及び音響整合層が順に積層された積層体と、この
積層体が取り付けられるハウジングとを備え、前記圧電
素子は中心部から外周部に向かって自発分極が徐々に変
化していることを特徴とする超音波探触子。
1. A laminated body in which a back load member, a piezoelectric element provided with full-surface electrodes on both sides, and an acoustic matching layer are sequentially laminated, and a housing to which the laminated body is attached. An ultrasonic probe characterized in that spontaneous polarization gradually changes toward a part.
JP22793993A 1993-08-20 1993-08-20 Ultrasonic probe manufacturing method Expired - Fee Related JP3353962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22793993A JP3353962B2 (en) 1993-08-20 1993-08-20 Ultrasonic probe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22793993A JP3353962B2 (en) 1993-08-20 1993-08-20 Ultrasonic probe manufacturing method

Publications (2)

Publication Number Publication Date
JPH0759767A JPH0759767A (en) 1995-03-07
JP3353962B2 true JP3353962B2 (en) 2002-12-09

Family

ID=16868657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22793993A Expired - Fee Related JP3353962B2 (en) 1993-08-20 1993-08-20 Ultrasonic probe manufacturing method

Country Status (1)

Country Link
JP (1) JP3353962B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776014B2 (en) * 2006-02-03 2011-09-21 東レエンジニアリング株式会社 Manufacturing method of needle type hydrophone

Also Published As

Publication number Publication date
JPH0759767A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US6996883B2 (en) Method of manufacturing a multi-piezoelectric layer ultrasonic transducer for medical imaging
US5764596A (en) Two-dimensional acoustic array and method for the manufacture thereof
US20100066207A1 (en) Ultrasound probe
US20010021807A1 (en) Ultrasonic probe
JP2002045357A (en) Ultrasonic diagnosis device
US11197655B2 (en) Ultrasound probe and method of manufacturing ultrasound probe
JPH08280098A (en) Piezoelectric element for ultrasonic probe
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
US5757727A (en) Two-dimensional acoustic array and method for the manufacture thereof
JP2007142555A (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP2000131298A (en) Ultrasonic probe
JPH04218765A (en) Ultrasonic probe
US5608692A (en) Multi-layer polymer electroacoustic transducer assembly
JP3353962B2 (en) Ultrasonic probe manufacturing method
JPH07136164A (en) Ultrasonic probe
JP2002359897A (en) Array-type ultrasonic wave probe
JP3327497B2 (en) Ultrasonic probe
JPS61253873A (en) Piezoelectric ceramic material
JPH07194517A (en) Ultrasonic probe
JPH07312799A (en) Ultrasonic wave probe and its manufacture
JP3495970B2 (en) Ultrasonic probe
US20190393405A1 (en) Ultrasonic probe and manufacturing method thereof
JP2935551B2 (en) Ultrasonic probe
JPH06225391A (en) Ultrasonic wave probe and manufacture thereof
JPS6341022B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees