JPH07321546A - Radar system - Google Patents

Radar system

Info

Publication number
JPH07321546A
JPH07321546A JP6112973A JP11297394A JPH07321546A JP H07321546 A JPH07321546 A JP H07321546A JP 6112973 A JP6112973 A JP 6112973A JP 11297394 A JP11297394 A JP 11297394A JP H07321546 A JPH07321546 A JP H07321546A
Authority
JP
Japan
Prior art keywords
array antenna
radar
antenna
sectional area
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6112973A
Other languages
Japanese (ja)
Other versions
JP3239016B2 (en
Inventor
Yohei Nishitani
洋平 西谷
Toshio Asai
登志夫 淺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP11297394A priority Critical patent/JP3239016B2/en
Publication of JPH07321546A publication Critical patent/JPH07321546A/en
Application granted granted Critical
Publication of JP3239016B2 publication Critical patent/JP3239016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To reduce a cross sectional area of a radar at a small offset angle by adopting a curved face for an array antenna so as to attain wide angle beam scanning. CONSTITUTION:In the radar system in which an array antenna 1 is offset by a prescribed angle theta with respect to an objective direction for the purpose of reducing a cross sectional area of the radar, a curves face is adopted for the array antenna 1. An exciting receiver 5 generates a transmission signal, the signal is sent from elements 3 arranged along a structural base 2 of the array antenna 1 and reflected on an object, the reflected wave is received by the array antenna 1 with a beam directivity based on phase information given by a beam controller 4 and a signal processing unit 6 provides an output of an object signal via the exciting receiver 5. Then wide angle beam scanning of + or -60 deg. or over is attained by adopting the curved face for the array antenna 1. Moreover, the radar cross sectional area when viewed from an object resident in a device axis direction at a small offset angle is reduced to a desired area in comparison with the case with a plane antenna.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば、航空機搭載用
のレーダ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radar device mounted on an aircraft, for example.

【0002】[0002]

【従来の技術】図11(a)は従来のレーダ装置のアン
テナ斜視図で図11(b)はレーダ装置構成図である。
図11において1は平面で構成され、レーダ断面積低減
の目的で目標方向に対して一定角度θ[度]だけオフセ
ットしたアレイアンテナ、2は構造用基体、31 〜3n
は上記構造用基体に沿って配列されたn個の素子、4は
ビーム制御器、5は励振受信機、6は信号処理器であ
る。
2. Description of the Related Art FIG. 11 (a) is a perspective view of an antenna of a conventional radar device, and FIG. 11 (b) is a radar device configuration diagram.
1 in FIG. 11 is a plane, the radar cross section reduction purposes constant angle theta [deg] offset by an array antenna with respect to the target direction, the 2 structural base, 3 1 to 3 n
Is an n number of elements arranged along the structural substrate, 4 is a beam controller, 5 is an excitation receiver, and 6 is a signal processor.

【0003】次に動作について説明する。励振受信機5
にて発生した送信信号はアレイアンテナ1の構造用基体
2に沿って配列された素子31 〜3n より送信され、目
標により反射した信号が、同アレイアンテナによりビー
ム制御器4により指示されたビーム指向性にて受信さ
れ、励振受信機5を経て、信号処理器6より目標信号等
を出力する。
Next, the operation will be described. Excitation receiver 5
The transmission signal generated in 1 is transmitted from the elements 3 1 to 3 n arranged along the structural substrate 2 of the array antenna 1, and the signal reflected by the target is directed by the beam controller 4 by the array antenna. The signal is received in the beam directivity, and the target signal and the like are output from the signal processor 6 through the excitation receiver 5.

【0004】フェーズドアレイレーダではビーム走査す
ることによりアンテナ利得が低下するので、ここではレ
ーダ装置のビーム走査範囲をアンテナ利得が正面方向走
査時に対して1/2になるまでの角度範囲と定義する。
アンテナ利得はビーム走査方向に垂直な面へのアンテナ
アレイ面の投影面積に比例するので、平面アレイアンテ
ナでは、ビーム走査角をφ[度]とするとアンテナ利得
はcosφに比例し、図2に示すように±60[度]ま
でビーム走査可能であることになる。
In the phased array radar, since the antenna gain is lowered by beam scanning, the beam scanning range of the radar device is defined here as an angular range until the antenna gain becomes 1/2 of that in the front scanning.
Since the antenna gain is proportional to the projected area of the antenna array surface on the plane perpendicular to the beam scanning direction, the antenna gain is proportional to cosφ when the beam scanning angle is φ [degrees] in the planar array antenna, as shown in FIG. Thus, the beam scanning is possible up to ± 60 [degrees].

【0005】図3(a)に示すような矩形平面アンテナ
のオフセット角θ[度]とレーダ断面積σ[m2 ]の関
係は、
The relationship between the offset angle θ [degree] and the radar cross-sectional area σ [m 2 ] of the rectangular planar antenna as shown in FIG.

【0006】[0006]

【数1】 [Equation 1]

【0007】で表される。図4は、アンテナ高さa=1
[m],アンテナ幅b=1[m],周波数10[GH
z]の場合の試算結果である。この例では、破線で示す
ように平板状のアレイアンテナのオフセット角θ=10
[度]以上にすれば、自機の機軸方向にいる相手レーダ
装置から見たレーダ断面積をσ=10[m2 ]以下にで
きることがわかる。
It is represented by FIG. 4 shows the antenna height a = 1.
[M], antenna width b = 1 [m], frequency 10 [GH
z] is a result of trial calculation. In this example, the offset angle θ of the flat array antenna is 10 as shown by the broken line.
It can be seen that if the angle is set to [degrees] or more, the radar cross-sectional area viewed from the partner radar device in the axial direction of the own device can be set to σ = 10 [m 2 ] or less.

【0008】[0008]

【発明が解決しようとする課題】従来のレーダ装置は以
上のようにアレイアンテナが平面で構成されているため
に、図2の破線に示すように±60[度]以上の広角ビ
ーム走査時にアンテナ利得が著しく低下し、また図4の
破線に示すようにアレイアンテナのオフセット角を大き
くとるほどレーダ断面積を低減することはできるが、そ
れに応じてアンテナ利得が低下してしまうという問題点
があった。
In the conventional radar device, since the array antenna is constructed in a plane as described above, the antenna is used for wide-angle beam scanning of ± 60 [degrees] or more as shown by the broken line in FIG. The gain is significantly reduced, and the radar cross section can be reduced as the offset angle of the array antenna is increased as shown by the broken line in FIG. 4, but there is a problem that the antenna gain is reduced accordingly. It was

【0009】図5は曲面形状のアレイアンテナのビーム
走査による交差偏波の発生概念図である。図5(a)に
示すように、半球面状アレイアンテナを正面方向(φ=
0[度])にて各素子の偏波方向を合わせても、ビーム
走査時(φ=45[度]、90[度])には図5(b)
及び図5(c)に示すような交差偏波成分が発生する。
一般的に、目標をモノパスル測角処理にて追尾をする際
には交差偏波対主偏波比が約−30[dB]以下である
ことが要求されるが、従来のレーダ装置では上記交差偏
波成分の発生によりその要求を満足できず、モノパルス
測角ができないという問題点があった。
FIG. 5 is a conceptual diagram of generation of cross polarization by beam scanning of a curved array antenna. As shown in FIG. 5A, the hemispherical array antenna is moved in the front direction (φ =
Even if the polarization directions of the respective elements are aligned at 0 [degrees], the beam scanning is performed (φ = 45 [degrees], 90 [degrees]) as illustrated in FIG.
And a cross polarization component as shown in FIG. 5C is generated.
Generally, when the target is tracked by the monopulse angle measuring process, the cross polarization-to-main polarization ratio is required to be about −30 [dB] or less. There is a problem that the requirement cannot be satisfied due to the generation of the polarized component, and the monopulse angle measurement cannot be performed.

【0010】この発明は上記のような問題点を解消する
ためになされたもので、アレイアンテナを曲面形状にす
ることにより±60[度]以上の広角ビーム走査を可能
にし、平面アレイアンテナ時に比べて小さなオフセット
角にてアンテナ利得を大きく低下させずにレーダ断面積
を低減することのできるレーダ装置を得ることを目的と
する。
The present invention has been made in order to solve the above-mentioned problems. By making the array antenna into a curved surface shape, wide-angle beam scanning of ± 60 [degrees] or more is possible, and compared with a planar array antenna. It is an object of the present invention to provide a radar device capable of reducing the radar cross-sectional area without significantly reducing the antenna gain with a small offset angle.

【0011】また、上記曲面形状のアレイアンテナを備
えたレーダ装置において、アレイアンテナ正面方向(φ
=0[度])で偏波を合わせた場合、ビーム走査した際
に問題となる、交差偏波特性の劣化を防ぐことにより、
所望のビーム走査角においてモノパルス測角の可能な低
レーダ断面積のレーダ装置を得ることを目的とする。
Further, in the radar device provided with the curved array antenna, the array antenna front direction (φ
= 0 [degrees]), the cross polarization characteristics are prevented from deteriorating, which is a problem when beam scanning is performed.
An object of the present invention is to obtain a radar device having a low radar cross-sectional area that enables monopulse angle measurement at a desired beam scanning angle.

【0012】[0012]

【課題を解決するための手段】この発明に係わるレーダ
装置は、レーダ断面積低減の目的でアレイアンテナを目
標方向に対して一定角度θ[度]だけオフセットさせる
レーダ装置において、アレイアンテナを曲面形状にて構
成したものである。
A radar device according to the present invention is a radar device for offsetting an array antenna by a constant angle θ [degree] with respect to a target direction for the purpose of reducing a radar cross-sectional area. It is composed of.

【0013】また、上記レーダ装置において、アレイア
ンテナを円柱形状または円柱の一部により構成される構
造基体と、その側面に沿って配列された複数個の素子と
で構成し、偏波方向を円柱の軸方向に合わせたものであ
る。
Further, in the above radar apparatus, the array antenna is composed of a structural base formed of a cylindrical shape or a part of the cylindrical shape, and a plurality of elements arranged along the side surface thereof, and the polarization direction is cylindrical. It is aligned with the axial direction of.

【0014】また、上記レーダ装置のアレイアンテナ
を、開口長D[m]、曲率半径R[m]の球面形状また
は球面形状の一部により構成される構造用基体と、その
球面に沿って配列された複数個の素子とで構成し、アレ
イアンテナの曲率半径をD/R≦0.45となるように
選んだものである。
Further, the array antenna of the above radar device is arranged along the spherical surface with a structural base formed by a spherical shape or a part of the spherical shape having an aperture length D [m] and a radius of curvature R [m]. And a radius of curvature of the array antenna is selected so that D / R ≦ 0.45.

【0015】[0015]

【作用】この発明におけるレーダ装置は、アレイアンテ
ナを曲面形状にしたことにより、±60[度]以上の広
角ビーム走査が可能になる。また、平面アンテナに比べ
て小さなオフセット角で機軸方向にいる目標から見たレ
ーダ断面積を所望の値に低減させることが出来る。
In the radar apparatus according to the present invention, the array antenna is formed into a curved shape, so that wide-angle beam scanning of ± 60 [degrees] or more becomes possible. Further, it is possible to reduce the radar cross-sectional area viewed from the target in the axial direction to a desired value with a smaller offset angle than that of the planar antenna.

【0016】また、この発明におけるレーダ装置は円柱
の軸方向に偏波方向を合わせることにより、アンテナを
曲面にした際に問題となるビーム走査時の交差偏波特性
の劣化を防ぐことができる。
Further, in the radar device according to the present invention, the polarization direction is aligned with the axial direction of the cylinder, so that the deterioration of the cross polarization characteristic at the time of beam scanning, which is a problem when the antenna is curved, can be prevented. .

【0017】さらに、この発明におけるレーダ装置は、
アレイアンテナを球面または球面の一部の形状にした際
に、アンテナ開口径とアンテナ曲率の比をD/R≦0.
45となるように選ぶことによって、φ=60[度]ビ
ーム走査時でも、一般的にモノパルス測角処理をするた
めに必要な交差偏波対主偏波比、約−30[dB]以下
を満足することができる。
Further, the radar device according to the present invention comprises:
When the array antenna has a spherical surface or a part of a spherical surface, the ratio of the antenna aperture diameter to the antenna curvature is D / R ≦ 0.
By selecting so as to be 45, even when φ = 60 [degree] beam scanning, the cross polarization-to-main polarization ratio, which is generally required to perform the monopulse angle measurement processing, is about −30 [dB] or less. Can be satisfied.

【0018】[0018]

【実施例】【Example】

実施例1.以下、この発明の第1の実施例を図1につい
て説明する。図1(a)は航空機搭載用レーダのアンテ
ナ斜視図、図1(b)はレーダ装置構成図であり、1は
半円柱で構成されたアレイアンテナで、図1に示すよう
に低レーダ断面積化の目的で目標方向に対して一定角度
θ[度]だけオフセットしている。2は構造用基体、3
1 〜3n は上記構造用基体に沿って配列されたn個の素
子、4はビーム制御器、5は励振受信機、6は信号処理
器である。
Example 1. A first embodiment of the present invention will be described below with reference to FIG. 1 (a) is a perspective view of an antenna for an aircraft-mounted radar, FIG. 1 (b) is a radar device configuration diagram, and 1 is an array antenna formed of a semi-cylindrical column, and has a low radar cross-sectional area as shown in FIG. For the purpose of optimization, it is offset by a constant angle θ [degree] with respect to the target direction. 2 is a structural substrate, 3
1 to 3 n are n elements arranged along the structural substrate, 4 is a beam controller, 5 is an excitation receiver, and 6 is a signal processor.

【0019】次に動作について説明する。送信信号は励
振受信機にて発生し、アレイアンテナ1の構造用基体2
に沿って配列された素子31 〜3n により送信され、目
標にて反射し、アレイアンテナにてビーム制御器4によ
り与えられた位相情報に基づくビーム指向性にて受信さ
れ、励振受信機5を経て、信号処理器6より目標信号を
出力する。
Next, the operation will be described. The transmitted signal is generated by the excitation receiver, and the structural substrate 2 of the array antenna 1
Are transmitted by the elements 3 1 to 3 n arranged along the line, are reflected by the target, are received by the array antenna in the beam directivity based on the phase information given by the beam controller 4, and the excitation receiver 5 Then, the target signal is output from the signal processor 6.

【0020】レーダ装置のビーム走査範囲をアンテナ利
得が正面方向(φ=0[度])走査時に対して1/2に
なるまでの角度範囲と定義すると、アンテナ利得はビー
ム走査方向に垂直な面へのアンテナアレイ面の投影面積
に比例するので、ビーム走査角をφ[度]とすると(1
+cosφ)/2に比例し、図2の実線に示すように、
半円柱アレイアンテナでは±90[度]までビーム走査
可能であることがわかる。
If the beam scanning range of the radar device is defined as an angular range until the antenna gain becomes 1/2 with respect to the front direction (φ = 0 [degree]) scanning, the antenna gain is a plane perpendicular to the beam scanning direction. Since it is proportional to the projected area of the antenna array surface onto, the beam scanning angle is φ [degrees] (1
+ Cos φ) / 2, as shown by the solid line in FIG.
It can be seen that the semi-cylindrical array antenna can perform beam scanning up to ± 90 [degrees].

【0021】図3(b)に示すような円柱形状アンテナ
側面のオフセット角θ[度]に対するレーダ断面積σ
[m2 ]は、
The radar cross section σ with respect to the offset angle θ [degree] on the side surface of the cylindrical antenna as shown in FIG. 3B.
[M 2 ] is

【0022】[0022]

【数2】 [Equation 2]

【0023】で表される。円柱の半径0.5[m]、円
柱の高さ1[m]、周波数[10GHz]の場合につい
て試算した結果を図4に示す。円柱形状のアレイアンテ
ナを目標方向に対してθ=10[度]オフセットさせた
場合、図4の実線で示すようにレーダ断面積はσ=0.
1m2 以下になり、同一オフセット角で同一投影面積の
平面アレイアンテナの場合と比較してレーダ断面積を著
しく低下させることが可能である。従ってアレイアンテ
ナを曲面形状にて構成することにより、アンテナ利得の
劣化が少ない低レーダ断面積のレーダ装置を得ることが
できる。
It is represented by FIG. 4 shows the result of trial calculation in the case where the radius of the cylinder is 0.5 [m], the height of the cylinder is 1 [m], and the frequency is [10 GHz]. When the columnar array antenna is offset by θ = 10 [degrees] with respect to the target direction, the radar cross-sectional area is σ = 0.0 as shown by the solid line in FIG.
It becomes 1 m 2 or less, and it is possible to significantly reduce the radar cross-sectional area as compared with the case of a planar array antenna having the same offset angle and the same projection area. Therefore, by configuring the array antenna in a curved shape, it is possible to obtain a radar device having a low radar cross-sectional area with little deterioration in antenna gain.

【0024】なお、上記実施例は航空機搭載用のレーダ
装置を用いたが、これに限定したものではなく、艦船、
ミサイル、陸上用車両、衛星、地上レーダサイト、その
他の建築物等の構造物の外側であっても良いし、形状に
ついても球面、円錐等の一部またはこれらを複合した形
状の曲面の一部または複数箇所であってもよい。
Although the above-mentioned embodiment uses the radar device mounted on the aircraft, the present invention is not limited to this.
It may be outside of structures such as missiles, land vehicles, satellites, ground radar sites, and other buildings, and the shape may be part of a spherical surface, a cone, etc., or a part of a curved surface that combines these. Alternatively, there may be multiple locations.

【0025】実施例2.図6(a)はアレイアンテナを
円柱形状または円柱の一部により構成される構造用基体
と、その側面に沿って配列された複数個の素子とで構成
し、正面方向にて円柱の軸方向に偏波方向を合わせた第
2の実施例のアンテナ斜視図で図6(b)はレーダ装置
構成図であり、1は円柱形状または円柱形状の一部で構
成されたアレイアンテナで、図6(b)に示すように、
レーダ断面積低減の目的で目標方向に対して一定角度θ
[度]だけオフセットしている。2は構造用基体、31
〜3n は上記構造用基体に沿って配列されたn個の素
子、4はビーム制御器、5は励振受信機、6は信号処理
器である。
Example 2. FIG. 6 (a) shows an array antenna composed of a structural base formed by a cylindrical shape or a part of a cylindrical shape and a plurality of elements arranged along the side surface thereof, and the axial direction of the cylindrical shape in the front direction. 6B is a perspective view of the antenna of the second embodiment in which the polarization directions are aligned with each other. FIG. 6B is a radar device configuration diagram, and 1 is an array antenna formed by a cylindrical shape or a part of the cylindrical shape. As shown in (b),
A fixed angle θ with respect to the target direction for the purpose of reducing the radar cross section
Offset by [degree]. 2 is a structural substrate, 3 1
˜3 n are n elements arranged along the structural substrate, 4 is a beam controller, 5 is an excitation receiver, and 6 is a signal processor.

【0026】次に動作について説明する。送信信号は励
振受信機にて発生し、アレイアンテナ1の構造用基体2
に沿って配列された素子31 〜3n により送信され、目
標にて反射し、アレイアンテナにてビーム制御器4によ
り与えられた位相情報に基づくビーム指向性にて受信さ
れ、励振受信機5を経て、信号処理器6より目標信号を
出力する。
Next, the operation will be described. The transmitted signal is generated by the excitation receiver, and the structural substrate 2 of the array antenna 1
Are transmitted by the elements 3 1 to 3 n arranged along the line, are reflected by the target, are received by the array antenna in the beam directivity based on the phase information given by the beam controller 4, and the excitation receiver 5 Then, the target signal is output from the signal processor 6.

【0027】図7は円柱形状のアレイアンテナにおいて
偏波方向を円柱の軸方向に合わせなかった場合のビーム
走査の概念図で、図7(a)に示すようにφ=0[度]
方向で偏波を円柱の軸方向に合わせないと、図7(b)
及び図7(c)に示すようにビーム走査することにより
交差偏波成分が現れることがわかる。図8はφ=0(図
8(a))で円柱の軸方向に偏波を合わせた場合の概念
図で、図8(b)及び図8(c)に示すように、この場
合はφ方向へのビーム走査による交差偏波成分は発生し
ないことがわかる。
FIG. 7 is a conceptual diagram of beam scanning when the polarization direction is not aligned with the axial direction of the cylinder in the cylindrical array antenna. As shown in FIG. 7A, φ = 0 [degree]
If the polarization is not aligned with the axial direction of the cylinder in the direction shown in Fig. 7 (b)
And, as shown in FIG. 7C, it can be seen that cross-polarization components appear by beam scanning. FIG. 8 is a conceptual diagram when polarized waves are aligned in the axial direction of the cylinder with φ = 0 (FIG. 8 (a)). As shown in FIGS. 8 (b) and 8 (c), in this case φ It can be seen that cross-polarization components due to beam scanning in the direction do not occur.

【0028】なお、上記実施例は航空機搭載用の球面形
状のアレイアンテナを使用したがこれに限定したもので
はなく、艦船、ミサイル、陸上用車両、衛星、地上レー
ダサイト、その他の建築物等の構造物の外側であっても
良い。
Although the above embodiment uses the spherical array antenna for mounting on an aircraft, the present invention is not limited to this, and it is not limited to this, and can be applied to ships, missiles, land vehicles, satellites, ground radar sites, and other buildings. It may be outside the structure.

【0029】実施例3.図9(a)はアレイアンテナ
を、開口長D[m]、曲率半径R[m]の球面形状また
は球面形状の一部により構成される構造基体と、その側
面に沿って配列された複数個の素子とで構成し、アレイ
面の曲率をD/R≦0.45となるようにした第3の実
施例のアンテナ斜視図で図9(b)はレーダ装置の構成
図であり、1はアレイ面の曲率をD/R≦0.45とな
るようにした曲面形状で構成されたアレイアンテナで、
図9(b)に示すようにレーダ断面積低減の目的で目標
方向に対して一定角度θ[度]だけオフセットしてい
る。2は構造用基体、31 〜3n は上記構造用基体に沿
って配列されたn個の素子、4はビーム制御器、5は励
振受信機、6は信号処理器である。
Example 3. FIG. 9A shows an array antenna, which is a structural base formed by a spherical shape or a part of the spherical shape having an aperture length D [m] and a radius of curvature R [m], and a plurality of array bases arranged along the side surface thereof. 9 is a perspective view of the antenna of the third embodiment in which the curvature of the array surface is D / R ≦ 0.45, and FIG. An array antenna having a curved surface shape such that the curvature of the array surface is D / R ≦ 0.45,
As shown in FIG. 9B, the angle is offset by a constant angle θ [degree] with respect to the target direction for the purpose of reducing the radar cross-sectional area. Reference numeral 2 is a structural substrate, 3 1 to 3 n are n elements arranged along the structural substrate, 4 is a beam controller, 5 is an excitation receiver, and 6 is a signal processor.

【0030】次に動作について説明する。送信信号は励
振受信機にて発生し、アレイアンテナ1の構造用基体2
に沿って配列された素子31 〜3n により送信され、目
標にて反射し、アレイアンテナにてビーム制御器4によ
り与えられた位相情報に基づくビーム指向性にて受信さ
れ、励振受信機5を経て、信号処理器6より目標信号を
出力する。
Next, the operation will be described. The transmitted signal is generated by the excitation receiver, and the structural substrate 2 of the array antenna 1
Are transmitted by the elements 3 1 to 3 n arranged along the line, are reflected by the target, are received by the array antenna in the beam directivity based on the phase information given by the beam controller 4, and the excitation receiver 5 Then, the target signal is output from the signal processor 6.

【0031】図10はアンテナ開口径対アンテナ曲率比
D/Rと交差偏波成分のピーク値の関係を試算したもの
である。図10からわかるようにビーム走査範囲を±6
0[度]としたとき交差偏波成分のピーク値を−30
[dB]以下にするために必要なアンテナ径対アンテナ
曲率比はD/R≦0.45ということになる。ただし、
D/Rが小さくなるほど平面形状に近くなりビーム走査
範囲が狭くなるので、±60[度]以上の広域ビーム走
査時にモノパルス測角を行うためにはD/R=0.45
にすることが望ましい。
FIG. 10 shows a trial calculation of the relationship between the antenna aperture diameter-antenna curvature ratio D / R and the peak value of the cross polarization component. As can be seen from FIG. 10, the beam scanning range is ± 6
The peak value of the cross polarization component is −30 when 0 degree is set.
The antenna diameter-to-antenna curvature ratio required to be [dB] or less is D / R ≦ 0.45. However,
As the D / R becomes smaller, the beam shape becomes closer to the planar shape and the beam scanning range becomes narrower. Therefore, in order to perform the monopulse angle measurement in the wide beam scanning of ± 60 [degrees] or more, D / R = 0.45.
Is desirable.

【0032】なお、上記実施例は航空機搭載用の球面形
状のアレイアンテナを使用したがこれに限定したもので
はなく、艦船、ミサイル、陸上用車両、衛星、地上レー
ダサイト、その他の建築物等の構造物の外側であっても
良い。
Although the above-described embodiment uses the spherical array antenna for mounting on an aircraft, the present invention is not limited to this. For example, ships, missiles, land vehicles, satellites, ground radar sites, other buildings, etc. It may be outside the structure.

【0033】[0033]

【発明の効果】以上のように、この発明によれば、レー
ダ断面積低減の目的でアレイアンテナを目標方向に対し
て一定角度θ[度]だけオフセットさせる際に、アレイ
面を曲面形状することにより、背面アレイアンテナに比
べて小さなオフセット角にて所望のレーダ断面積に低減
することができ、また±60[度]以上の広角ビーム走
査の可能な低レーダ断面積のレーダ装置を得ることが可
能である。
As described above, according to the present invention, when the array antenna is offset by a constant angle θ [degree] with respect to the target direction for the purpose of reducing the radar cross-sectional area, the array surface is curved. As a result, it is possible to obtain a radar apparatus having a low radar cross-sectional area which can be reduced to a desired radar cross-sectional area with a smaller offset angle than a rear array antenna and which can scan a wide-angle beam of ± 60 [degrees] or more. It is possible.

【0034】また、上記レーダ装置においてアレイアン
テナを曲面状にした際に問題となる交差偏波特性の劣化
を防ぎ、モノパルス側角の可能な低レーダ断面積のレー
ダ装置を得ることが可能である。
Further, it is possible to prevent the deterioration of the cross polarization characteristic, which is a problem when the array antenna is formed into a curved surface in the above radar apparatus, and to obtain a radar apparatus having a low radar cross-sectional area capable of a monopulse side angle. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例によるレーダ装置のア
ンテナ斜視図およびレーダ装置構成図である。
FIG. 1 is an antenna perspective view and a radar device configuration diagram of a radar device according to a first embodiment of the present invention.

【図2】平板アンテナと半円柱アンテナのビーム走査範
囲の比較図である。
FIG. 2 is a comparison diagram of beam scanning ranges of a flat plate antenna and a semi-cylindrical antenna.

【図3】平板アンテナと円柱形状アンテナの外観図であ
る。
FIG. 3 is an external view of a flat plate antenna and a cylindrical antenna.

【図4】平板アンテナと円柱形状アンテナのレーダ断面
積σ計算値の比較図である。
FIG. 4 is a comparison diagram of radar cross-sectional area σ calculation values of a flat plate antenna and a cylindrical antenna.

【図5】アレイ面を曲面形状にした際の交差偏波発生概
念図である。
FIG. 5 is a conceptual diagram of cross polarization generation when the array surface is curved.

【図6】この発明の第2の実施例によるレーダ装置のア
ンテナ斜視図およびレーダ装置の構成図である。
FIG. 6 is an antenna perspective view of a radar device and a configuration diagram of the radar device according to a second embodiment of the present invention.

【図7】円柱形状のアレイアンテナにおいて、円柱の軸
方向に偏波を合わせなかった際の交差偏波発生概念図で
ある。
FIG. 7 is a conceptual diagram of cross polarization generation when the polarization is not aligned in the axial direction of the cylinder in the cylinder array antenna.

【図8】円柱形状のアレイアンテナにおいて、円柱の軸
方向に偏波を合わせた際の概念図である。
FIG. 8 is a conceptual diagram when the polarized waves are aligned in the axial direction of the cylinder in the cylindrical array antenna.

【図9】この発明の第3の実施例によるレーダ装置のア
ンテナ斜視図およびレーダ装置の構成図である。
FIG. 9 is a perspective view of an antenna of a radar device and a configuration diagram of the radar device according to a third embodiment of the present invention.

【図10】アンテナ開口径と曲率半径の比(D/R)と
交差偏波成分のピーク値の関係を示す図である。
FIG. 10 is a diagram showing a relationship between a ratio (D / R) of an antenna aperture diameter to a radius of curvature and a peak value of a cross polarization component.

【図11】従来のレーダ装置のアンテナ斜視図およびレ
ーダ装置の構成図である。
FIG. 11 is a perspective view of an antenna of a conventional radar device and a configuration diagram of the radar device.

【符号の説明】[Explanation of symbols]

1 アレイアンテナ 2 構造用基体 31 〜3n 素子 4 ビーム制御器 5 励振受信機 6 信号処理器1 Array Antenna 2 Structural Substrate 3 1 to 3 n Element 4 Beam Controller 5 Excitation Receiver 6 Signal Processor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数個の素子が構造用基体に配列され、
レーダ断面積低減の目的で目標方向に対して一定角度オ
フセットさせたアレイアンテナと、送信信号を発生し、
受信信号を処理する励振受信機と、上記受信信号から目
標信号を検出する信号処理器と、アレイアンテナが所望
の指向性を持つように各素子に位相情報を与えるビーム
制御器により構成され、アレイ面を曲面形状にすること
を特徴とするレーダ装置。
1. A plurality of elements are arranged on a structural substrate,
An array antenna that is offset by a certain angle with respect to the target direction for the purpose of reducing the radar cross-sectional area and a transmission signal are generated.
The array is composed of an excitation receiver that processes a received signal, a signal processor that detects a target signal from the received signal, and a beam controller that gives phase information to each element so that the array antenna has a desired directivity. A radar device having a curved surface.
【請求項2】 レーダ断面積低減の目的でアレイ面を円
柱形状または円柱形状の一部で構成し、偏波方向を円柱
の軸方向に合わせることを特徴とする請求項1記載のレ
ーダ装置。
2. The radar device according to claim 1, wherein the array surface is formed into a cylindrical shape or a part of a cylindrical shape for the purpose of reducing the radar cross-sectional area, and the polarization direction is aligned with the axial direction of the cylinder.
【請求項3】 レーダ断面積低減の目的でアレイ面をア
ンテナ開口長D[m]、アレイ面の曲率半径R[m]の
球面形状または球面形状の一部により構成し、アンテナ
開口長とアレイ面の曲率半径の比をD/R≦0.45に
選んだことを特徴とする請求項1記載のレーダ装置。
3. The array surface is formed by a spherical shape or a part of a spherical shape having an antenna aperture length D [m] and a curvature radius R [m] of the array surface for the purpose of reducing the radar cross-sectional area. 2. The radar device according to claim 1, wherein the ratio of the radius of curvature of the surface is selected to be D / R ≦ 0.45.
JP11297394A 1994-05-26 1994-05-26 Radar equipment Expired - Lifetime JP3239016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11297394A JP3239016B2 (en) 1994-05-26 1994-05-26 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11297394A JP3239016B2 (en) 1994-05-26 1994-05-26 Radar equipment

Publications (2)

Publication Number Publication Date
JPH07321546A true JPH07321546A (en) 1995-12-08
JP3239016B2 JP3239016B2 (en) 2001-12-17

Family

ID=14600203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11297394A Expired - Lifetime JP3239016B2 (en) 1994-05-26 1994-05-26 Radar equipment

Country Status (1)

Country Link
JP (1) JP3239016B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177983A (en) * 2009-01-29 2010-08-12 Japan Radio Co Ltd Patch array antenna
JP2013238462A (en) * 2012-05-15 2013-11-28 Toshiba Corp Antenna device
JP2022174706A (en) * 2021-05-11 2022-11-24 中国气象局气象探測中心 Spherical dual-polarization phased array weather radar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132405A (en) * 1981-02-10 1982-08-16 Mitsubishi Electric Corp Array antenna
JPH02272806A (en) * 1989-04-13 1990-11-07 Mitsubishi Electric Corp Array antenna
JPH0370301A (en) * 1989-08-10 1991-03-26 Mitsubishi Electric Corp Array antenna exciting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132405A (en) * 1981-02-10 1982-08-16 Mitsubishi Electric Corp Array antenna
JPH02272806A (en) * 1989-04-13 1990-11-07 Mitsubishi Electric Corp Array antenna
JPH0370301A (en) * 1989-08-10 1991-03-26 Mitsubishi Electric Corp Array antenna exciting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177983A (en) * 2009-01-29 2010-08-12 Japan Radio Co Ltd Patch array antenna
JP2013238462A (en) * 2012-05-15 2013-11-28 Toshiba Corp Antenna device
JP2022174706A (en) * 2021-05-11 2022-11-24 中国气象局气象探測中心 Spherical dual-polarization phased array weather radar

Also Published As

Publication number Publication date
JP3239016B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US7385552B2 (en) Real-time, cross-correlating millimeter wave imaging system using dual pill-box antennas
US5838284A (en) Spiral-shaped array for broadband imaging
US4864308A (en) Frequency-scanning radiometer
EP1050925B1 (en) Multi-primary radiator, down converter and multibeam antenna
Kinsey An edge-slotted waveguide array with dual-plane monopulse
JP3923431B2 (en) Antenna device
US5021796A (en) Broad band, polarization diversity monopulse antenna
JPH07321546A (en) Radar system
WO2019202789A1 (en) Antenna device, antenna control method, and program
JP3283589B2 (en) Planar antenna device for SNG
US5767805A (en) Method for the broadening of a volume antenna beam
JPH11183607A (en) Synthetic aperture radar apparatus
US4591864A (en) Frequency independent twisted wave front constant beamwidth lens antenna
JPH09214241A (en) Plane antenna for mobile sng
JPS6376504A (en) Antenna system
JP2923930B2 (en) Radar antenna equipment
CN114361814B (en) Phased array antenna containing sidelobe suppression wave beam, system and use method thereof
JPH0720107A (en) Ultrasonic signal processor
CN111211404B (en) Low-profile scannable planar reflective array antenna system with rotary sub-reflecting surface and scanning method
KR20190116865A (en) Apparatus and method for compensation for Beam Squint
TWI710785B (en) High resolution spatial angle scanning radar system and its design method
US11764469B2 (en) Tetrahedral array for constant gain hemispherical coverage
JP2630570B2 (en) Radar equipment
JPH08105955A (en) Radar device
JPH07307617A (en) Array antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term