JPH02272806A - Array antenna - Google Patents

Array antenna

Info

Publication number
JPH02272806A
JPH02272806A JP9379589A JP9379589A JPH02272806A JP H02272806 A JPH02272806 A JP H02272806A JP 9379589 A JP9379589 A JP 9379589A JP 9379589 A JP9379589 A JP 9379589A JP H02272806 A JPH02272806 A JP H02272806A
Authority
JP
Japan
Prior art keywords
axis
angle
directivity
peak
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9379589A
Other languages
Japanese (ja)
Inventor
Seiji Mano
真野 清司
Shinichi Sato
眞一 佐藤
Isamu Chiba
勇 千葉
Kenichi Hario
針生 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9379589A priority Critical patent/JPH02272806A/en
Publication of JPH02272806A publication Critical patent/JPH02272806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize an array antenna whose gin is high in the peak direction by permitting the directional peak direction of element antennas to face within a conical degree having an apex angle 50 deg. with the rotation symmetry axis direction of a surface body as a center. CONSTITUTION:Plural element antennas 1a-1n arranged on the surface body having a rotation symmetrical axis such as a cylinder have a radiation conductor 4, a dielectric 5, a ground conductor 6, through holes 7a-7n feeding points 8a and 8b, and the space of edges 9a and 9b is lambda/4 (lambda: wavelength in free space). If the exciting phase of the feeding point 8a is assumed to be -90 deg., and the exciting phase of the feeding point 8b to be 0 deg., the peak directions of the directivity 3b of respective antennas comes to face within the conical angle having the apex angle 50 deg. with the axis (z-axis) of a cylindrical face 2 as the center but not the broad side direction of the element antennas. Thus, the gain can be improved even if a main beam is faced within the conical angle with the apex angle 50 deg. (opening angle 50 deg.) by setting the direction of the z-axis as the center.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、航空機などの胴体に配列され、その機軸方
向に高い利得を持つアレーアンテナに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an array antenna that is arranged on the fuselage of an aircraft and has a high gain in the axial direction of the aircraft.

し従来の技術」 第5図は例えばIEEE  Trans、  AP−1
9,1,Jan、1971.pp131−134に示さ
れた従来のこの種のアレーアンテナの構成図であり1図
において、(la>、(lb)。
5 shows, for example, IEEE Trans, AP-1
9, 1, Jan, 1971. This is a configuration diagram of a conventional array antenna of this type shown in pp. 131-134, and in FIG. 1, (la>, (lb).

(lc)、・・・、(in>、・・・は素子アンテナ。(lc), ..., (in>, ... are element antennas.

(2)は円筒面、(3a>は素子アンテナ(1n)の指
向性であり、素子アンテナ(la>、(lb)(lc)
、・・・は同じ指向性を持っている。この従来の例では
素子アンテナは導波管開口である。
(2) is the cylindrical surface, (3a> is the directivity of the element antenna (1n), and the element antenna (la>, (lb) (lc)
,... have the same directivity. In this conventional example, the element antenna is a waveguide aperture.

次に動作について説明する。この従来の例では素子アン
テナは導波管の開口であり、その指向性(3a)のピー
ク方向は素子アンテナのブロードサイド方向にある。し
たがって、電力分配器により分配された電力の位相を移
相器で所望の値に設定することにより、各素子アンテナ
の励振位相を所望の値に設定でき、第5図のx−y面内
では高い利得の放射パターンが実現できる。しかし、第
5図の2軸方向に主ビームがくるように各素子アンテナ
の励振位相を設定すると、その方向の素子アンテナの指
向性(3a)のレベルは低いために。
Next, the operation will be explained. In this conventional example, the element antenna is an opening in a waveguide, and the peak direction of its directivity (3a) is in the broadside direction of the element antenna. Therefore, by setting the phase of the power distributed by the power divider to a desired value using a phase shifter, the excitation phase of each element antenna can be set to a desired value. A radiation pattern with high gain can be achieved. However, if the excitation phase of each element antenna is set so that the main beam is in the two-axis direction in FIG. 5, the level of directivity (3a) of the element antenna in that direction is low.

利得は低くなる。The gain will be lower.

[発明が解決しようとする課題] 従来のアレーアンテナは以上のように構成されているの
で、素子アンテナのブロードサイド方向からずれた方向
、極端にいえば、Z軸方向に主ビムを向けた場合、利得
は低くなるという問題点があった。
[Problems to be Solved by the Invention] Since the conventional array antenna is configured as described above, when the main beam is oriented in a direction deviated from the broadside direction of the element antenna, in extreme terms, in the Z-axis direction, However, there was a problem in that the gain was low.

この発明は上記のような問題点を解消するためになされ
たもので9円筒面の軸方向(第5図ではZ軸方向)を中
心として頂角50’(開き角50’)の円錐角度内に主
ビームを向けても利得を高くできるアレーアンテナを得
ることを目的とする。
This invention was made in order to solve the above-mentioned problems. 9.Within the cone angle of 50' apex angle (opening angle 50') centered on the axial direction (Z-axis direction in Fig. The purpose of this invention is to obtain an array antenna that can increase the gain even when the main beam is directed at

線 [問題点を解決するための手段〕 この発明に係るアレーアンテナは、素子アンテナの指向
性のピーク方向が素子アンテナのプロトサイド方向では
なく、第5図の2軸を中心とした頂角50の円錐角度内
にあるようにしたものである。
[Means for solving the problem] In the array antenna according to the present invention, the peak direction of the directivity of the element antenna is not in the protoside direction of the element antenna, but in the apex angle 50 around the two axes shown in FIG. The cone angle is within the cone angle of .

[作用] この発明におけるアレーアンテナは、素子アンテナの指
向性のピーク方向が曲面体の回転対称軸方向を中心とし
た頂角5♂の円錐角度内に向いていることにより、その
方向で利得が高いアレーアンテナが実現できる。
[Function] In the array antenna of the present invention, the peak direction of the directivity of the element antenna is oriented within a conical angle of 5♂ apex around the rotationally symmetrical axis direction of the curved surface, so that the gain can be increased in that direction. A high array antenna can be realized.

[発明の実施例] 以f、この発明の一実施例を図について説明する。[Embodiments of the invention] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの実施例の構成図であり1図において、(t
a>、(lb)、(lc>、−、(In>・・・、(2
)は上記従来のものと同一である。
FIG. 1 is a block diagram of this embodiment. In FIG. 1, (t
a>, (lb), (lc>, -, (In>..., (2
) is the same as the above conventional one.

(3b)は素子アンテナ(1n)の指向性であり。(3b) is the directivity of the element antenna (1n).

そのピーク方向は+2軸方向に向いている。各素子アン
テナの指向性を(3b)と同じものとすると、この実施
例で主ビーム方向を+Z軸方向にしたときその利得は高
い。
Its peak direction is in the +2 axis direction. Assuming that the directivity of each element antenna is the same as in (3b), the gain is high when the main beam direction is set in the +Z-axis direction in this embodiment.

第2図は、第1図の素子アンテナの指向性(3b)を実
現するための素子アンテナの実施例を示す。図において
、(4)は放射導体、(5)は誘電体、(6)は地導体
、(7a)、(7b)、・・・<7n”)、−・・はス
ルーホール、(8a>、(8b)は給電点、(9a>、
(9b)は放射導体(4)のエツジである。スルーホー
ル(7a>、(7b)・・・、(7n)、・・・は放射
導体(4)と地導体(6〉を短絡している。また、エツ
ジ(9a>。
FIG. 2 shows an embodiment of an element antenna for realizing the directivity (3b) of the element antenna in FIG. In the figure, (4) is a radiation conductor, (5) is a dielectric, (6) is a ground conductor, (7a), (7b), ...<7n''), -- is a through hole, (8a> , (8b) is the feeding point, (9a>,
(9b) is the edge of the radiation conductor (4). The through holes (7a>, (7b)..., (7n),... short-circuit the radiation conductor (4) and the ground conductor (6>). Also, the edge (9a>).

(9b)の間隔は入/4(入;自由空間での波長)であ
る。
The spacing of (9b) is in/4 (in; wavelength in free space).

この素子アンテナの実施例は以上のように構成されてい
るので、給電点(8a)の励振位相を一90a、給電点
(8b)の励振位相を0°とすると。
Since this embodiment of the element antenna is configured as described above, let us assume that the excitation phase of the feed point (8a) is -90a and the excitation phase of the feed point (8b) is 0°.

+2軸方向にピーク方向を持つ、いわゆる、力ジオイド
形の指向性が得られる。このときの指向性の計算結果を
第3図に示す。次に、この動作原理を第4図を用いて説
明する。
A so-called force geoid type directivity having a peak direction in the +2 axis direction is obtained. The calculation results of the directivity at this time are shown in FIG. Next, the principle of this operation will be explained using FIG. 4.

第4図は、第2図のx−z面でカットした断面図であり
、簡単のために給電点(8a>、(8b)は省略してい
る。第4図において、(4)〜(6)(7n)、(9a
)、<9b)は第2図のものと同じであり、(Loa>
、(10b)は電気力線である。この第4図はスルーホ
ール(7n >の両側の放射導体部分を同相で励振した
場合を示している。この場合には放射に寄与する電気力
線(10a)、(10b)は逆相になっている。いま、
放射導体(4)の工・ソジ(9b ) fllJの励振
位相を0″、エツジ(9a)側の励振位相を一90°と
すると、エツジ(9a)での電気力線の位相は+90″
になる。エツジ<9a>、(9b)の間隔がλ/4であ
るので、エツジ(9a)から放射された電波がエツジ(
9b)に至るとき、その電波の位相はエツジ(9b)か
ら放射される電波の位相と同じになる。すなわち、+Z
軸方向にピーク方向を持つ指向性が得られる。なお、こ
の例では地導体(6)の大きさは無限大にしているが、
実際には地導体(6)の大きさは有限であり、この有限
であるために主ビームの方向は+2軸より10゜〜20
程度上に跳ね上がる。この場合でも、この発明では素子
アンテナの指向性のピーク方向が回転対称軸方向を中心
として頂角50°の円錐角度内にあるので、この発明が
適用できる。
FIG. 4 is a cross-sectional view taken along the x-z plane in FIG. 2, and the feed points (8a>, (8b) are omitted for simplicity. In FIG. 6) (7n), (9a
), <9b) are the same as those in Figure 2, and (Loa>
, (10b) are electric lines of force. Figure 4 shows the case where the radiation conductor parts on both sides of the through hole (7n>) are excited in the same phase. In this case, the electric lines of force (10a) and (10b) that contribute to radiation are in opposite phase. Currently,
When the excitation phase of the radiating conductor (4) (9b) fllJ is 0'' and the excitation phase on the edge (9a) side is 190°, the phase of the electric line of force at the edge (9a) is +90''
become. Since the interval between edges <9a> and (9b) is λ/4, the radio waves emitted from edge (9a) are transmitted to edge (
9b), the phase of the radio wave becomes the same as the phase of the radio wave radiated from the edge (9b). That is, +Z
Directivity with a peak direction in the axial direction can be obtained. In this example, the size of the ground conductor (6) is set to infinity, but
In reality, the size of the ground conductor (6) is finite, and because of this finite size, the direction of the main beam is 10° to 20° from the +2 axis.
Jump up to a higher level. Even in this case, the present invention can be applied because the peak direction of the directivity of the element antenna is within a conical angle with an apex angle of 50° around the rotational symmetry axis direction.

実施例では、素子アンテナは方形の場合について説明し
たが1円形でもよい。また、スルーホルではなく、導体
板など放射導体と地導体を短絡できるものでよい。さら
に、送信の場合について説明したが、受信の場合に使用
してもよい。
In the embodiment, the case where the element antenna is rectangular has been described, but it may be circular. Moreover, instead of a through-hole, a conductor plate or other material that can short-circuit the radiation conductor and the ground conductor may be used. Furthermore, although the case of transmission has been described, it may also be used in the case of reception.

[発明の効果] 以上のように、この発明のアレーアンテナでは。[Effect of the invention] As described above, in the array antenna of this invention.

素子アンテナのブロードサイド方向よりずれた方向にピ
ークの指向性をもつ素子アンテナを航空機などの胴体に
配列し、その機軸方向に位相を合わせることにより、そ
の方向の利得が高くなり、これをレーダ用のアンテナと
して用いるとき、その効果は著しく大きい。
By arranging element antennas with peak directivity in a direction offset from the broadside direction of the element antenna on the fuselage of an aircraft, etc., and aligning the phase with the aircraft axis direction, the gain in that direction increases, and this can be used for radar purposes. When used as an antenna, the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の構成図、第2図は素子アン
テナの実施例を示す図、第3図は指向性を示す図、第4
図は素子アンテナの動作原理を示す図、第5図は従来の
構成図である。 図において、(la>、(lb)、・・・は素子アンテ
ナ、(2)は円筒面、(3a)、(3b)は素子アンテ
ナの指向性、(4)は放射導体、(5)は誘電体、(6
)は地導体、(7a>、(7b)。 ・・・はスルーホール、(8a>、(8b)は給電点。 (9a>、(9b)は放射導体のエツジ、(10a>、
(10b)は電気力線である。なお1図中。 同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a diagram showing an embodiment of an element antenna, Fig. 3 is a diagram showing directivity, and Fig. 4 is a diagram showing an embodiment of the element antenna.
The figure shows the operating principle of the element antenna, and FIG. 5 is a conventional configuration diagram. In the figure, (la>, (lb), ... are the element antennas, (2) is the cylindrical surface, (3a), (3b) are the directivity of the element antennas, (4) is the radiation conductor, and (5) is the Dielectric, (6
) is the ground conductor, (7a>, (7b). ... is the through hole, (8a>, (8b) is the feeding point. (9a>, (9b) is the edge of the radiation conductor, (10a>,
(10b) are electric lines of force. Also in Figure 1. The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 円筒、円錐、円錐台などの回転対称軸を持つ曲面体上に
配列した複数の素子アンテナと、各素子アンテナにつな
がれた移相器と、電力を分配する電力分配器とからなる
アレーアンテナにおいて、上記素子アンテナの指向性の
ピーク方向が上記回転対称軸方向を中心として、頂角5
0°以内の円錐角度内に向いていることを特徴とするア
レーアンテナ。
In an array antenna consisting of a plurality of element antennas arranged on a curved surface having an axis of rotational symmetry such as a cylinder, cone, or truncated cone, a phase shifter connected to each element antenna, and a power divider that distributes power, The peak direction of the directivity of the element antenna is centered at the rotational symmetry axis direction, and the apex angle is 5
An array antenna characterized in that it is oriented within a conical angle of less than 0°.
JP9379589A 1989-04-13 1989-04-13 Array antenna Pending JPH02272806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9379589A JPH02272806A (en) 1989-04-13 1989-04-13 Array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9379589A JPH02272806A (en) 1989-04-13 1989-04-13 Array antenna

Publications (1)

Publication Number Publication Date
JPH02272806A true JPH02272806A (en) 1990-11-07

Family

ID=14092354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9379589A Pending JPH02272806A (en) 1989-04-13 1989-04-13 Array antenna

Country Status (1)

Country Link
JP (1) JPH02272806A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226925A (en) * 1991-10-15 1993-09-03 Ball Corp Microstrip-antenna for mobile communication and manufacture thereof
JPH07321534A (en) * 1994-05-25 1995-12-08 Nec Corp Antenna system
JPH07321546A (en) * 1994-05-26 1995-12-08 Tech Res & Dev Inst Of Japan Def Agency Radar system
JP2011024159A (en) * 2009-07-21 2011-02-03 Ihi Aerospace Co Ltd Antenna apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226925A (en) * 1991-10-15 1993-09-03 Ball Corp Microstrip-antenna for mobile communication and manufacture thereof
JPH07321534A (en) * 1994-05-25 1995-12-08 Nec Corp Antenna system
JPH07321546A (en) * 1994-05-26 1995-12-08 Tech Res & Dev Inst Of Japan Def Agency Radar system
JP2011024159A (en) * 2009-07-21 2011-02-03 Ihi Aerospace Co Ltd Antenna apparatus

Similar Documents

Publication Publication Date Title
JP4362677B2 (en) Circular direction detection antenna
US7084815B2 (en) Differential-fed stacked patch antenna
US4213132A (en) Antenna system with multiple frequency inputs
JPH1028012A (en) Planar antenna
US3063049A (en) Linearly polarized monopulse lobing antenna having cancellation of crosspolarization components in the principal lobe
JP2005501453A (en) Conformal two-dimensional electronic scanning antenna with butler matrix and lens ESA
US5021796A (en) Broad band, polarization diversity monopulse antenna
JPH02272806A (en) Array antenna
JP4025499B2 (en) Circularly polarized antenna and circularly polarized array antenna
Das et al. Phase delay through slot-line beam switching microstrip patch array antenna design for sub-6 GHz 5G band applications.
JPS60217702A (en) Circularly polarized wave conical beam antenna
EP0291233B1 (en) Multimode omni antenna with flush mount
JP2981096B2 (en) Multi-beam antenna device
JPS617706A (en) Circularly polarized wave antenna
JP2882713B2 (en) Slot array antenna
JPH0964637A (en) Waveguide slop antenna
JPH0682972B2 (en) Circularly polarized microstrip antenna
JP2625861B2 (en) Antenna device
JP2565108B2 (en) Planar antenna
JPH02156706A (en) Antenna system
JPS60217703A (en) Circulary polarized wave antenna
JPH07193420A (en) Planar antenna
JP2653166B2 (en) Array antenna
JPH0294906A (en) Slot antenna
JP2002223120A (en) Circularly polarized wave type planar array antenna