JPH0732138B2 - Vapor phase growth method of phosphorus-containing compound semiconductor - Google Patents
Vapor phase growth method of phosphorus-containing compound semiconductorInfo
- Publication number
- JPH0732138B2 JPH0732138B2 JP63223108A JP22310888A JPH0732138B2 JP H0732138 B2 JPH0732138 B2 JP H0732138B2 JP 63223108 A JP63223108 A JP 63223108A JP 22310888 A JP22310888 A JP 22310888A JP H0732138 B2 JPH0732138 B2 JP H0732138B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- reaction chamber
- gas
- compound semiconductor
- vapor phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、りんを含む化合物半導体を、化学的気相成
長,特に有機金属化学的気相成長(以下MOCVDと記す)
により基板上に成膜するりんを含む化合物半導体の気相
成長方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to chemical vapor deposition of a phosphorus-containing compound semiconductor, particularly metalorganic chemical vapor deposition (hereinafter referred to as MOCVD).
The present invention relates to a vapor phase growth method of a compound semiconductor containing phosphorus, which is formed on a substrate by means of.
この種のりんを含む化合物半導体の気相成長は、例えば
次のような方法で行われる。インジウムリン(以下InP
と記す)の薄膜を気相成長する場合には、インジウムの
源となるトリメチルインジウム(以下TMIと記す)のガ
スあるいはトリエチルインジウム(TEI)のガスとりん
の源となるフォスフィン(以下PH3と記す)とを、イン
ジウムとりんとが1対1で結合する量だけそれぞれ流
し、さらにこれらのガスをそれぞれキャリアガスである
水素ガスによって数十倍(例えば30倍)に希釈し、希釈
されたガスを混合した上で反応室に供給する。そして反
応室内において、加熱手段により成膜に適した高温(例
えば600℃乃至700℃)に保持された基板上に、InPを結
晶成長させる。成膜が終了したら基板をほぼ常温にまで
冷却し、その後基板を反応室から取り出す。The vapor phase growth of this kind of phosphorus-containing compound semiconductor is performed, for example, by the following method. Indium phosphide (hereinafter InP
When a thin film of () is vapor-deposited, a gas of trimethylindium (hereinafter referred to as TMI) that is a source of indium or a gas of triethylindium (TEI) and phosphine (hereinafter referred to as PH 3 ) that is a source of phosphorus are described. ) And indium and phosphorus in an amount of 1: 1 to bond with each other, and these gases are diluted several tens of times (for example, 30 times) with hydrogen gas as a carrier gas, and the diluted gas is mixed. After that, it is supplied to the reaction chamber. Then, InP is crystal-grown in the reaction chamber on the substrate kept at a high temperature (for example, 600 ° C. to 700 ° C.) suitable for film formation by the heating means. When the film formation is completed, the substrate is cooled to almost room temperature, and then the substrate is taken out of the reaction chamber.
従来のこの種のりんを含む化合物半導体の気相成長方法
における問題点は次のとおりである。The problems in the conventional vapor phase growth method of the compound semiconductor containing phosphorus of this kind are as follows.
前記の方法により基板上にはInPが成膜されるが、InPは
基板以外の反応室内の高温部分に触れると熱分解し、反
応室内あるいは廃ガス系の配管などの部分に、単体のり
んが析出する。Although InP is deposited on the substrate by the above method, InP is thermally decomposed when it contacts a high temperature portion in the reaction chamber other than the substrate, and a single phosphorus is deposited in the reaction chamber or a portion such as a waste gas pipe. To deposit.
このような状態において基板を反応室から取り出すと、
反応室あるいは廃ガス系の配管などが空気にさらされ
る。するとりんの析出物はその析出状態や量によっては
空気中の酸素と結合して急激に燃焼し、場合によっては
爆発的に燃焼し、非常に危険な状態になるという問題が
あった。When the substrate is taken out of the reaction chamber in such a state,
The reaction chamber or waste gas piping is exposed to air. Then, there is a problem in that the phosphorus precipitate is combined with oxygen in the air and burns rapidly depending on the deposition state and amount, and in some cases, explosively burns, resulting in a very dangerous state.
従来この問題点を解決するために、反応室と大気との間
に、プリチャンバ,仕切弁,真空ポンプなどからなる周
知のロードロック機構を設け、反応室および廃ガス系の
配管などに空気を侵入させることなく基板を取り出す方
法が採用されていた。この場合には前記した問題を一応
回避することができるが、反応室内あるいは廃ガス系の
配管などの部分に析出しているりんを除去することは不
可能であり、定期的に分解,清掃などを行う必要性が生
じる。その結果、この分解,清掃の際に、前記した危険
性が再び問題となる。Conventionally, in order to solve this problem, a well-known load lock mechanism including a pre-chamber, a sluice valve, a vacuum pump, etc., is provided between the reaction chamber and the atmosphere, and air is allowed to enter the reaction chamber and the exhaust gas system piping. A method has been adopted in which the substrate is taken out without causing it. In this case, the above-mentioned problem can be avoided for the time being, but it is impossible to remove the phosphorus that has precipitated in the reaction chamber or the portion of the waste gas system such as pipes, and it is necessary to disassemble or clean it regularly. The need arises. As a result, during the disassembly and cleaning, the above-mentioned danger becomes a problem again.
また、特開昭62-42516号公報に開示されているように、
りんの析出物の上に砒素あるいは砒素化合物の析出物を
被覆させることにより、りんの析出物の燃焼,爆発を防
止するものがある。しかしながらその場合には、砒素あ
るいは砒素化合物の析出物を生成させるために装置の構
造が複雑になるだけでなく、有毒性の極めて強い砒素あ
るいは砒素化合物をわざと析出させねばならず、作業者
の安全を保つ上で大きな問題があった。Further, as disclosed in JP-A-62-42516,
There is one that prevents burning and explosion of the phosphorus deposit by coating the phosphorus deposit with the deposit of arsenic or an arsenic compound. However, in that case, not only the structure of the apparatus becomes complicated because precipitates of arsenic or arsenic compound are generated, but also highly toxic arsenic or arsenic compound has to be intentionally deposited, which is safe for workers. There was a big problem in keeping.
本発明の目的は、りんの析出物が急激に燃焼したり爆発
的に燃焼したりすることがなく、かつ作業者の安全を確
実に保つことのできるりんを含む化合物半導体の気相成
長方法を提供することにある。An object of the present invention is to provide a vapor phase growth method for a phosphorus-containing compound semiconductor that does not cause rapid or explosive burning of phosphorus precipitates and that can ensure worker safety. To provide.
上記目的を達成するために、本発明によれば、りんを含
む化合物半導体を、反応室内において基板上に成膜後、
成膜時に前記反応室内などに生成されたりんを含む析出
物を緩酸化するように、前記反応室内に不活性ガスによ
り体積比で空気中酸素ガス濃度未満の濃度に希釈された
酸素ガスを供給することとする。In order to achieve the above object, according to the present invention, a compound semiconductor containing phosphorus is formed on a substrate in a reaction chamber,
Oxygen gas diluted to a concentration less than the oxygen gas concentration in air by an inert gas is supplied into the reaction chamber so as to slowly oxidize the phosphorus-containing precipitate generated in the reaction chamber during film formation. I decided to.
上記の方法を採用した場合、反応室あるいは廃ガス系の
配管などに析出したりんが希釈された酸素ガスにさらさ
れた際に酸化されて発熱することは従来の方法と同じで
あるが、酸素ガスの濃度をあらかじめ空気中の酸素ガス
濃度(体積比で20.968%)よりも低く設定しているの
で、酸化反応は緩慢となり、単位時間当りの発熱量は小
さくなる。よって従来方法における直接大気にさらした
場合のような爆発などの危険を伴うことなく、りんの析
出物を空気に触れても安全上問題のない酸化物である五
酸化リン(以下P2O5と記す)に変換することができる。When the above method is adopted, it is the same as the conventional method that the phosphorus precipitated in the reaction chamber or the pipe of the waste gas system is oxidized and generates heat when exposed to the diluted oxygen gas. Since the gas concentration is set lower than the oxygen gas concentration in air (20.968% by volume), the oxidation reaction becomes slow and the calorific value per unit time becomes small. Therefore, phosphorus pentoxide (hereinafter referred to as P 2 O 5 ) is an oxide that does not pose a safety problem even if the precipitate of phosphorus is exposed to air without the risk of explosion when exposed to air in the conventional method. Can be converted to.
第1図に、本発明のりんを含む化合物半導体の気相成長
方法を適用する一実施例であるMOCVD装置のガス系統図
を示す。まずこのガス系統について説明する。FIG. 1 shows a gas system diagram of a MOCVD apparatus which is an embodiment to which the vapor phase growth method of a compound semiconductor containing phosphorus of the present invention is applied. First, this gas system will be described.
キャリアガスである水素ガスによって希釈されたPH3を
供給する配管1と同じく水素ガスにて希釈されたTMIを
供給する配管2とは、それぞれ弁3,4を介して結合さ
れ、両方のガスは混合されてから反応室5内に供給され
る。反応室5は、図示しない基板載置台,基板,および
その加熱手段を備えるものである。A pipe 1 for supplying PH 3 diluted with hydrogen gas as a carrier gas and a pipe 2 for supplying TMI diluted with hydrogen gas are connected via valves 3 and 4, respectively, and both gases are connected. After being mixed, they are supplied into the reaction chamber 5. The reaction chamber 5 includes a substrate mounting table (not shown), a substrate, and heating means for the substrate.
反応室5にはさらに、窒素ガス配管6,酸素ガス配管7か
ら供給されたガスが、それぞれマスフローコントローラ
8,9によって計測されて一定の比率で混合された後、弁1
0を介して供給される。The gas supplied from the nitrogen gas pipe 6 and the oxygen gas pipe 7 is further supplied to the reaction chamber 5 by a mass flow controller.
Valve 1 after being mixed by a certain ratio, measured by 8,9
Supplied via 0.
反応室5からの廃ガスは、弁11,フィルタ12,反応室5内
の反応圧力を調整するための可変コンダクタンスバルブ
13を通り、真空ポンプ14によって廃ガス処理装置15に送
られ、ここで無害化された後に大気中に放出される。Waste gas from the reaction chamber 5 is a valve 11, a filter 12, a variable conductance valve for adjusting the reaction pressure in the reaction chamber 5.
After passing through 13, it is sent to a waste gas treatment device 15 by a vacuum pump 14, where it is rendered harmless and then released into the atmosphere.
このようなガス系統を有する装置における本発明のりん
を含む化合物半導体の気相成長方法の実施例につき、以
下に説明する。An example of the vapor phase growth method for a phosphorus-containing compound semiconductor of the present invention in an apparatus having such a gas system will be described below.
成膜時においては、弁3,弁4を開とし、弁10を閉とし、
反応室5内に水素ガスで希釈されたPH3およびTMIを供給
して基板上に成膜を行う。この際、未反応ガスおよびPH
3,TMIのキャリアガスとして供給された水素ガスなど
は、弁11,フィルタ12,可変コンダクタンスバルブ13,真
空ポンプ14,廃ガス領域装置15を通して、処理,排出さ
れる。この際、前記したように、反応室5内およびその
下流に位置する配管および各機器類には、りんが膜状,
微粉末状,あるいはフレーク状となって析出する。During film formation, valves 3 and 4 are opened and valve 10 is closed,
PH 3 and TMI diluted with hydrogen gas are supplied into the reaction chamber 5 to form a film on the substrate. At this time, unreacted gas and PH
3 , hydrogen gas supplied as a carrier gas for TMI is treated and discharged through a valve 11, a filter 12, a variable conductance valve 13, a vacuum pump 14, and a waste gas region device 15. At this time, as described above, phosphorus is in the form of a film in the piping and each device located in the reaction chamber 5 and downstream thereof.
Precipitates in the form of fine powder or flakes.
成膜が終了すると、基板の冷却を行うが、この冷却時に
おいては通常反応室5内の図示しない加熱手段による加
熱を停止するとともに、弁3,弁4よりも上流側に位置す
る図示しない弁を閉にすることによりPH3およびTMIの供
給を停止し、キャリアガスである水素ガスのみを成膜時
とほぼ同じ流量で反応室5に供給する。When the film formation is completed, the substrate is cooled. At this time, the heating by the heating means (not shown) in the reaction chamber 5 is usually stopped, and the valve (not shown) located upstream of the valves 3 and 4 is also used. The supply of PH 3 and TMI is stopped by closing, and only hydrogen gas, which is a carrier gas, is supplied to the reaction chamber 5 at a flow rate almost the same as that during film formation.
冷却が終了し反応室5およびその内部の基板などがほぼ
常温に達した後、弁3,弁4を閉とし水素ガスの供給を停
止すると同時に弁10を開とし、窒素ガスによって体積比
で例えば5%の濃度に希釈された酸素ガスを反応室内に
供給する。この操作によって、反応室内およびその下流
に位置する配管および各機器類に析出していたりんは、
急激な発熱などの反応を伴うことなく緩酸化され、空気
に触れても安全な物質であるP2O5に変換される。酸素ガ
ス濃度は、りんの析出物の析出状態や量によって適宜設
定されるべきものであるが、体積比で1%乃至5%程度
が適当と考えられる。あまり濃度が高いと緩酸化を行う
ことが不可能となるし、あまり濃度が低いとタクトタイ
ムが長くなりすぎ好ましくない。なおこの緩酸化によっ
て、基板上の薄膜の品質が低下したり汚損が増加するこ
とは、原理的にあり得ない。After the cooling is completed and the temperature of the reaction chamber 5 and the substrate inside the chamber have reached almost room temperature, the valves 3 and 4 are closed to stop the supply of hydrogen gas and at the same time the valve 10 is opened, and the volume ratio of nitrogen gas is set to, for example, Oxygen gas diluted to a concentration of 5% is supplied into the reaction chamber. By this operation, phosphorus deposited in the reaction chamber and the pipes and equipment located downstream thereof is
It is slowly oxidized without any reaction such as sudden heat generation, and is converted into P 2 O 5 which is a substance that is safe even when it comes into contact with air. The oxygen gas concentration should be appropriately set depending on the deposition state and amount of phosphorus deposits, and it is considered that about 1% to 5% by volume is appropriate. If the concentration is too high, it becomes impossible to perform slow oxidation, and if the concentration is too low, the takt time becomes too long, which is not preferable. In principle, it is impossible for the mild oxidation to deteriorate the quality of the thin film on the substrate or increase the contamination.
なお、本実施例においては、酸素ガスの濃度が所定濃度
になるように、窒素ガス配管より供給される窒素ガス
と、酸素ガス配管より供給される酸素ガスとを、マスフ
ローコントローラを介して混合することとしたが、あら
かじめ、酸素濃度が所定の濃度である不活性ガスと酸素
ガスとを混合したガスをボンベに充填し、そのボンベか
ら該ガスを反応室に供給しても良い。また、本実施例に
おいては、緩酸化するべき対象物質として、りん単体の
析出物を取り上げたが、りん化合物のようなやはり急激
な燃焼を起こし易い物質も対象とされることは明らかで
ある。また酸素ガスを希釈する不活性ガスも、窒素ガス
に限定されるものではない。さらに基板に成膜するりん
を含む化合物半導体も、InPに限るものではない。In this embodiment, the nitrogen gas supplied from the nitrogen gas pipe and the oxygen gas supplied from the oxygen gas pipe are mixed via the mass flow controller so that the oxygen gas has a predetermined concentration. However, a gas in which an inert gas having a predetermined oxygen concentration and an oxygen gas are mixed may be filled in a cylinder in advance, and the gas may be supplied to the reaction chamber from the cylinder. In addition, in the present embodiment, the target substance to be slowly oxidized is a precipitate of simple substance of phosphorus, but it is obvious that a substance such as a phosphorus compound which is likely to cause rapid combustion is also targeted. Further, the inert gas that dilutes the oxygen gas is not limited to nitrogen gas. Further, the compound semiconductor containing phosphorus formed on the substrate is not limited to InP.
以上に述べたように、本発明によれば、りんを含む化合
物半導体を、反応室内において基板上に成膜後、成膜時
に前記反応室内などに生成されたりんを含む析出物を緩
酸化するように、前記反応室内に不活性ガスにより体積
比で空気中酸素ガス濃度未満の濃度に希釈された酸素ガ
スを供給することとしたので、成膜時に不可避的に析出
するりんを、空気にさらしても安全なP2O5に変換するこ
とができる。よって析出物が空気に触れた際に爆発など
する可能性を皆無とでき、プロセス時やメンテナンス時
の安全を確実に保つことができるという大きな効果を奏
する。As described above, according to the present invention, after depositing a phosphorus-containing compound semiconductor on a substrate in a reaction chamber, the phosphorus-containing precipitate generated in the reaction chamber during film formation is slowly oxidized. As described above, since oxygen gas diluted to a concentration lower than the oxygen gas concentration in air by an inert gas in volume ratio is supplied to the reaction chamber, phosphorus that is unavoidably deposited during film formation is exposed to air. Even safe to convert to P 2 O 5 . Therefore, it is possible to eliminate the possibility that the precipitate will explode when it comes into contact with air, and it is possible to reliably maintain the safety during the process and maintenance.
第1図は、本発明のりんを含む化合物半導体の気相成長
方法を適用する一実施例であるMOCVD装置のガス系統図
である。 5:反応室、6:窒素ガス配管、7:酸素ガス配管、8,9:マス
フローコントローラ、10:弁。FIG. 1 is a gas system diagram of an MOCVD apparatus which is an embodiment to which the vapor phase growth method for a compound semiconductor containing phosphorus of the present invention is applied. 5: Reaction chamber, 6: Nitrogen gas pipe, 7: Oxygen gas pipe, 8, 9: Mass flow controller, 10: Valve.
Claims (1)
いて基板上に成膜後、成膜時に前記反応室内などに生成
されたりんを含む析出物を緩酸化するように、前記反応
室内に不活性ガスにより体積比で空気中酸素ガス濃度未
満の濃度に希釈された酸素ガスを供給することを特徴と
したりんを含む化合物半導体の気相成長方法。1. After forming a phosphorus-containing compound semiconductor on a substrate in a reaction chamber, a phosphorous-containing compound semiconductor is formed in the reaction chamber so as to slowly oxidize the phosphorus-containing precipitate formed in the reaction chamber. A vapor phase growth method for a compound semiconductor containing phosphorus, characterized in that oxygen gas diluted to a concentration less than oxygen gas concentration in air by an active gas is supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63223108A JPH0732138B2 (en) | 1988-09-06 | 1988-09-06 | Vapor phase growth method of phosphorus-containing compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63223108A JPH0732138B2 (en) | 1988-09-06 | 1988-09-06 | Vapor phase growth method of phosphorus-containing compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0271512A JPH0271512A (en) | 1990-03-12 |
JPH0732138B2 true JPH0732138B2 (en) | 1995-04-10 |
Family
ID=16792951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63223108A Expired - Lifetime JPH0732138B2 (en) | 1988-09-06 | 1988-09-06 | Vapor phase growth method of phosphorus-containing compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732138B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116889785A (en) * | 2023-07-13 | 2023-10-17 | 江苏宜兴德融科技有限公司 | Semiconductor manufacturing equipment tail gas treatment system and tail gas treatment method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296520A (en) * | 1986-06-17 | 1987-12-23 | Matsushita Electronics Corp | Cleaning method for semiconductor manufacture apparatus |
-
1988
- 1988-09-06 JP JP63223108A patent/JPH0732138B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0271512A (en) | 1990-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5250092A (en) | Exhaust apparatus for epitaxial growth system | |
US20160002777A1 (en) | Apparatus and methods for safely providing hazardous reactants | |
JPH0487245A (en) | Ozone beam generator | |
JPH0732138B2 (en) | Vapor phase growth method of phosphorus-containing compound semiconductor | |
JPS62152517A (en) | Contamination preventing apparatus for removing noxious gas and its use | |
JP3651140B2 (en) | Trap system and semiconductor growth apparatus using the same | |
JPH03183693A (en) | Method and apparatus for cleaning vapor growth device | |
CN115948723A (en) | MOCVD (Metal organic chemical vapor deposition) exhaust system and cleaning method | |
JP5416602B2 (en) | MOCVD equipment | |
CN116889785A (en) | Semiconductor manufacturing equipment tail gas treatment system and tail gas treatment method | |
CN220770823U (en) | Gas pipeline | |
JP2785745B2 (en) | CVD equipment | |
JPH0715131Y2 (en) | Metalorganic vapor phase growth equipment | |
JPH01312833A (en) | Vapor phase growth device | |
JPH04127642U (en) | Metal-organic vapor phase epitaxy equipment | |
JP4304354B2 (en) | Semiconductor device processing method | |
JP2571127B2 (en) | Semiconductor thin film forming apparatus and semiconductor multilayer film forming method | |
JP2005109367A (en) | Method for maintaining phosphorus trap | |
JPH02102194A (en) | Vapor phase growth apparatus | |
JPH0497985A (en) | Vapor growth device for semiconductor thin film | |
JP2005353791A (en) | Semiconductor production device | |
JPH01297817A (en) | Iii-v compound semiconductor vapor growth method | |
JP2001189277A (en) | Piping cleaning method and apparatus | |
JPH06124672A (en) | Material evaporating apparatus | |
JPH0265125A (en) | Reaction pipe of mocvd crystal growth device |