JPH07321385A - Piezoelectric element actuator having strain gauge sensor - Google Patents

Piezoelectric element actuator having strain gauge sensor

Info

Publication number
JPH07321385A
JPH07321385A JP6112864A JP11286494A JPH07321385A JP H07321385 A JPH07321385 A JP H07321385A JP 6112864 A JP6112864 A JP 6112864A JP 11286494 A JP11286494 A JP 11286494A JP H07321385 A JPH07321385 A JP H07321385A
Authority
JP
Japan
Prior art keywords
strain
piezoelectric element
strain gauge
gauges
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6112864A
Other languages
Japanese (ja)
Other versions
JP3362963B2 (en
Inventor
Asao Uenodai
浅雄 上野台
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11286494A priority Critical patent/JP3362963B2/en
Publication of JPH07321385A publication Critical patent/JPH07321385A/en
Application granted granted Critical
Publication of JP3362963B2 publication Critical patent/JP3362963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To cancel a strain due to a bend or a change in temperature by adhering first and second strain gauges in an expansion/contraction direction on the same straight line on one side surface and in a normal direction to the expansion/contraction direction and adhering third and fourth strain gauges on a surface facing this side surface on a piezoelectric element, and a bridge circuit is formed with the first and fourth strain gauges, thereby canceling a strain due to bend or change in temperature. CONSTITUTION:A tension strain measured by a strain gauge 12 is canceled by a compression strain measured by a strain gauge 16, and a strain of a strain gauge 14 is canceled by the strain of a strain gauge 18. Also, an apparent strain epsilont due to a change in temperature can be canceled, from the equation, by a strain due to a change in temperature of the strain gauges 12 and 16 which is canceled by a strain due to a change in temperature of strain gauges 14 and 18. That is, if the strains detected by the strain gauges 12, 14, 16 and 18 are epsilon 12, epsilon 14, epsilon 16 and epsilon 18 and Poisson's ratio is nu, then the strain measured by the bridge circuit becomes epsilon 0 expressed by the equation and cancels the bend strain epsilon B and temperature strain epsilon t.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば顕微鏡や測定器
等に於いて高精度に位置決めを行う際に必要な微動を提
供するために利用される圧電アクチュエータに係り、特
に、その微動量を測定するための歪みゲージセンサを有
する圧電アクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric actuator used for providing fine movement required for highly accurate positioning in, for example, a microscope or a measuring instrument, and more particularly, to a fine movement amount thereof. A piezoelectric actuator having a strain gauge sensor for measuring.

【0002】[0002]

【従来の技術】従来より、例えばPZT(ジルコンチタ
ン酸鉛)は、200V当たり10-4程度の電歪効果があ
るが、この薄板を積層して100μm程度までの電気的
に制御できる変位アクチュエータが得られることが知ら
れている。
2. Description of the Related Art Conventionally, for example, PZT (lead zircon titanate) has an electrostrictive effect of about 10 −4 per 200 V, but a displacement actuator that can be electrically controlled up to about 100 μm by laminating these thin plates has been proposed. It is known to be obtained.

【0003】このような圧電アクチュエータの変位量を
検出するための変位検出センサとしては、ミクロン,サ
ブミクロンオーダの変位が検出できる安価で取扱いの簡
単な歪みゲージが使用されるのが一般的である。
As a displacement detecting sensor for detecting the displacement amount of such a piezoelectric actuator, an inexpensive and easy-to-handle strain gauge which can detect displacements of the order of microns and submicrons is generally used. .

【0004】しかし、歪みゲージは、温度変化により測
定誤差が発生する。この温度変化による測定誤差を減少
するための装置として、例えば、特開平3−23500
1号公報に開示されているものがある。これは、ダミー
ゲージを用いた温度補償用歪みゲージ付圧電素子であ
り、図4の(B)に示すように、圧電素子の伸びを検出
する歪みゲージであるアクティブゲージ100、圧電素
子の伸びを検出しない歪みゲージであるダミーゲージ1
02、固定抵抗104,106でブリッジ回路を構成し
てなる。ここで、例えば、温度変化が起こったときのブ
リッジ回路で測定される歪みをε0 、アクティブゲージ
100で検出される歪みをεA 、ダミーゲージ102で
検出される歪みをεD 、圧電素子の圧電逆効果による歪
みをεP 、温度変化による歪みをεt とすると、 ε0 =εA −εD =(εP +εt )−(εt ) =εP …(1) 従って、温度変化による歪みがキャンセルされ、ブリッ
ジ回路の出力が単純に圧電素子の圧電逆効果による歪み
εP だけとなるなので測定誤差が生じない。
However, in the strain gauge, a measurement error occurs due to a temperature change. As an apparatus for reducing the measurement error due to this temperature change, for example, Japanese Patent Laid-Open No. 3-23500.
There is one disclosed in Japanese Patent Publication No. This is a piezoelectric element with a strain gauge for temperature compensation that uses a dummy gauge. As shown in FIG. 4B, the active gauge 100, which is a strain gauge for detecting the extension of the piezoelectric element, and the extension of the piezoelectric element Dummy gauge 1 which is a strain gauge that does not detect
02 and the fixed resistors 104 and 106 form a bridge circuit. Here, for example, the strain measured by the bridge circuit when a temperature change occurs is ε 0 , the strain detected by the active gauge 100 is ε A , the strain detected by the dummy gauge 102 is ε D , and the strain of the piezoelectric element is Letting ε P be the strain due to the inverse piezoelectric effect and ε t be the strain due to temperature change, then ε 0 = ε A −ε D = (ε P + ε t ) − (ε t ) = ε P (1) Since the distortion due to is canceled and the output of the bridge circuit is simply the distortion due to the piezoelectric inverse effect of the piezoelectric element ε P, no measurement error occurs.

【0005】また、特開昭63−283180号公報
は、圧電素子を容器に収納し、その容器に歪みゲージを
形成し、接着剤の影響無しに変位量を計測する手法を開
示している。
Further, Japanese Patent Application Laid-Open No. 63-283180 discloses a method of accommodating a piezoelectric element in a container, forming a strain gauge in the container, and measuring a displacement amount without the influence of an adhesive.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
開平3−235001号公報に開示の手法では、圧電素
子にベンディングフォースが加わった時に、アクチュエ
ータが曲がり、歪みゲージがその曲げ方向の歪みをも検
出して、それが伸縮方向の歪みの一部として検出されて
しまう。即ち、上記(1)式に於いて、曲げ歪みをεB
とすると、 ε0 =εA −ε =(ε +εt +εB )−(εt ) =εP +εB となり、ブリッジ回路の出力に曲げ歪みεB が含まれ、
区別できないため、測定誤差となる。
However, according to the method disclosed in Japanese Patent Laid-Open No. 3-235001, the actuator bends when the bending force is applied to the piezoelectric element, and the strain gauge detects the strain in the bending direction. Then, it is detected as a part of the strain in the expansion / contraction direction. That is, in the above formula (1), the bending strain is ε B
Then, ε 0 = ε A −ε D = (ε P + ε t + ε B ) − (ε t ) = ε P + ε B , and the output of the bridge circuit includes bending strain ε B.
Since it cannot be distinguished, it causes a measurement error.

【0007】また、上記特開昭63−283180号公
報に開示された手法では、圧電素子を連続的に動作させ
た場合に、圧電素子が発熱して、容器と圧電素子の間に
温度差が生じ、線膨張係数の違いによって測定誤差が生
じてしまう。
Further, in the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 63-283180, when the piezoelectric element is continuously operated, the piezoelectric element generates heat and a temperature difference occurs between the container and the piezoelectric element. The measurement error occurs due to the difference in linear expansion coefficient.

【0008】本発明は、上記の点に鑑みてなされたもの
で、曲げ歪みをキャンセルして測定誤差を排除し、また
圧電素子と容器との間の線膨張係数の違いによる測定誤
差を減少し、以って高精度な1軸の変位測定を可能にす
る歪みゲージセンサ付圧電素子アクチュエータを提供す
ることを目的とする。
The present invention has been made in view of the above points, and cancels the bending strain to eliminate the measurement error and reduces the measurement error due to the difference in the linear expansion coefficient between the piezoelectric element and the container. Therefore, it is an object of the present invention to provide a piezoelectric element actuator with a strain gauge sensor that enables highly accurate uniaxial displacement measurement.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明による歪みゲージセンサ付圧電素子アクチ
ュエータは、一側面の同一直線上に伸縮方向及びその伸
縮方向と90°傾いた方向に第1及び第2の歪みゲージ
を接着し、上記一側面と対局する面に、上記第1及び第
2の歪みゲージと同様の構成の第3及び第4の歪みゲー
ジを接着してなる圧電素子と、上記第1乃至第4の歪み
ゲージで構成されたブリッジ回路とを備えることを特徴
とする。
In order to achieve the above-mentioned object, a piezoelectric element actuator with a strain gauge sensor according to the present invention has an extension direction in a straight line on one side and a direction inclined by 90 ° with respect to the extension direction. Piezoelectric element obtained by adhering first and second strain gauges, and adhering third and fourth strain gauges having the same configuration as the first and second strain gauges to a surface that faces the one side surface. And a bridge circuit composed of the first to fourth strain gauges.

【0010】[0010]

【作用】即ち、本発明の歪みゲージセンサ付圧電素子ア
クチュエータによれば、圧電素子の伸びを検出する歪み
ゲージであるアクティブゲージとしての第1及び第3の
歪みゲージを対向配置することにより、第1の歪みゲー
ジで計測されるテンション歪みは、第3の歪みゲージで
計測されるコンプレッション歪みによりキャンセルされ
るので、ベンディングフォースによる曲げ歪みをキャン
セルすることができ、また、上記第1及び第3の歪みゲ
ージと圧電素子の伸びを検出しない歪みゲージであるダ
ミーゲージとしての第2及び第4の歪みゲージでブリッ
ジ回路を構成することにより、温度変化による見かけの
歪みをキャンセルすることができる。
That is, according to the piezoelectric element actuator with strain gauge sensor of the present invention, the first and third strain gauges as the active gauges which are the strain gauges for detecting the extension of the piezoelectric element are arranged to face each other. Since the tension strain measured by the strain gauge No. 1 is canceled by the compression strain measured by the third strain gauge, the bending strain due to the bending force can be canceled, and the first and third strain gauges can be canceled. By configuring the bridge circuit with the strain gauge and the second and fourth strain gauges that are dummy gauges that are strain gauges that do not detect the expansion of the piezoelectric element, it is possible to cancel the apparent strain due to the temperature change.

【0011】さらに、第1乃至第4の歪みゲージを直
接、圧電素子に接着することにより、圧電素子と容器と
の間の線膨張係数の違いによる測定誤差を減少すること
が可能となる。
Further, by directly bonding the first to fourth strain gauges to the piezoelectric element, it is possible to reduce the measurement error due to the difference in linear expansion coefficient between the piezoelectric element and the container.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照して説明
する。まず、図1の(A)及び(B)により本発明の第
1実施例の構成を説明する。本実施例の積層型圧電素子
アクチュエータ10には、同図の(A)に示すように、
合計4枚の歪みゲージ12〜18が接着されている。こ
の場合、一方の面に、Z方向の変位を検出するための歪
みゲージ12と、それと90°ずれたX方向の変位を検
出する歪みゲージ14とが同一直線上に接着されてい
る。また、それと同様な構成の歪みゲージ16,18
が、上記歪みゲージ12,14の接着された面と対局す
る面に接着されている。即ち、歪みゲージ12,16は
圧電素子の伸縮を検出する歪みゲージであるアクティブ
ゲージとして機能し、歪みゲージ14,18は圧電素子
の伸びを検出しない歪みゲージであるダミーゲージとし
て機能する。
Embodiments of the present invention will be described below with reference to the drawings. First, the configuration of the first embodiment of the present invention will be described with reference to FIGS. In the laminated piezoelectric element actuator 10 of the present embodiment, as shown in FIG.
A total of four strain gauges 12 to 18 are bonded. In this case, the strain gauge 12 for detecting the displacement in the Z direction and the strain gauge 14 for detecting the displacement in the X direction which is deviated by 90 ° from the strain gauge 12 are bonded to one surface on the same straight line. In addition, strain gauges 16 and 18 having the same configuration as that
Are bonded to the surfaces of the strain gauges 12 and 14 that face the surfaces to which they are bonded. That is, the strain gauges 12 and 16 function as active gauges that are strain gauges that detect expansion and contraction of the piezoelectric element, and the strain gauges 14 and 18 function as dummy gauges that are strain gauges that do not detect expansion of the piezoelectric element.

【0013】そして、これら歪みゲージ12〜18を用
いて、同図の(B)に示すようにブリッジ回路を構成す
る。同図に於いて、歪みゲージ12と歪みゲージ16が
対局に配置され、歪みゲージ14と歪みゲージ18が対
局に配置される。なお、同図中の参照符号Vsoは電源電
圧を、Vstは出力電圧をそれぞれ示している。
The strain gauges 12 to 18 are used to form a bridge circuit as shown in FIG. In the figure, the strain gauges 12 and 16 are arranged in a game, and the strain gauges 14 and 18 are arranged in a game. In the figure, reference symbol V so indicates a power supply voltage, and V st indicates an output voltage.

【0014】このような構成の歪みゲージセンサ付積層
型圧電素子アクチュエータ10は、例えば、図2の
(A)及び(B)に示すように、倒立型顕微鏡20に組
み込まれて使用される。即ち、圧電アクチュエータ10
が、てこ22の一端に連結されており、てこ22のもう
一端が可動部24に連結していて、可動部24が準焦部
26に接続されている。ここで、圧電素子の変位量を測
定することにより、準焦部26の変位量が判る。例え
ば、これがレーザスキャニング顕微鏡に使われた場合に
は、準焦部の変位量が正確に判ることにより、スライス
像の3次元構築画像がより鮮明になる。
The laminated piezoelectric element actuator 10 with a strain gauge sensor having such a configuration is used by being incorporated in an inverted microscope 20 as shown in FIGS. 2A and 2B, for example. That is, the piezoelectric actuator 10
Is connected to one end of the lever 22, the other end of the lever 22 is connected to the movable portion 24, and the movable portion 24 is connected to the focusing unit 26. Here, by measuring the displacement amount of the piezoelectric element, the displacement amount of the focusing part 26 can be known. For example, when this is used in a laser scanning microscope, the displacement amount of the quasi-focal part can be accurately known, so that the three-dimensional construction image of the slice image becomes clearer.

【0015】次に、歪みゲージの動作について説明す
る。即ち、上記構成の積層型圧電素子アクチュエータ1
0を使用する場合、図3の(A)に示すような、てこ2
8を用いた拡大機構により、その微動量を増大すること
ができるが、てこ28によりモーメントMが発生し、圧
電アクチュエータ10にベンディングフォースが加わ
る。このベンディングフォースが圧電素子に加わった時
に、圧電素子は同図の(B)に波線で示すように曲が
る。即ち、歪みゲージ12,14が接着された面ではテ
ンションが加わり圧電素子が延び、他面ではコンプレッ
ションが加わり圧電素子が縮む。
Next, the operation of the strain gauge will be described. That is, the laminated piezoelectric element actuator 1 having the above configuration
When 0 is used, the lever 2 as shown in FIG.
Although the amount of fine movement can be increased by the magnifying mechanism using 8, the moment M is generated by the lever 28, and the bending force is applied to the piezoelectric actuator 10. When this bending force is applied to the piezoelectric element, the piezoelectric element bends as shown by the broken line in FIG. That is, tension is applied to the surface where the strain gauges 12 and 14 are bonded and the piezoelectric element extends, and compression is applied to the other surface and the piezoelectric element contracts.

【0016】このような場合、図1の(B)に示したよ
うなブリッジ回路では、歪みゲージ12で計測されるテ
ンション歪みは、歪みゲージ16で計測されるコンプレ
ッション歪みによりキャンセルされ、同様に、歪みゲー
ジ14の歪みは、歪みゲージ18の歪みによりキャンセ
ルされる。また、温度変化による見かけの歪みは、
(2)式から歪みゲージ12の温度変化による歪みが歪
みゲージ14の温度変化による歪みでキャンセルされ、
歪みゲージ16の温度変化による歪みは歪みゲージ18
の温度変化による歪みでキャンセルされる。
In such a case, in the bridge circuit as shown in FIG. 1B, the tension strain measured by the strain gauge 12 is canceled by the compression strain measured by the strain gauge 16, and similarly, The strain of the strain gauge 14 is canceled by the strain of the strain gauge 18. Also, the apparent distortion due to temperature change is
From the equation (2), the strain due to the temperature change of the strain gauge 12 is canceled by the strain due to the temperature change of the strain gauge 14,
The strain due to the temperature change of the strain gauge 16 is the strain gauge 18
It is canceled by the distortion caused by the temperature change.

【0017】即ち、曲げ歪みεB 及び温度変化による見
かけの歪みεt が発生したとき、歪みゲージ12,1
4,16,18で検出される歪みをε12,ε14,ε16
ε18とし、ポアソン比をνとすると、ブリッジ回路で測
定される歪みε0 は、 ε0 =ε12−ε14+ε16−ε18 =(εP +εt +εB )−(−νεP +εt −νεB ) +(εP +εt −εB )−(−νεP +εt +νεB ) …(2) =2εP (1+ν) となり、曲げ歪みεB 及び温度変化による歪みεt がキ
ャンセルされ、ブリッジ回路の出力が圧電逆効果による
歪みだけになり、測定誤差がなくなる。しかもその出力
は、特開平3−235001号公報に開示された1ゲー
ジ法の出力よりも2(1+ν)倍になる作用もある。
That is, when the bending strain ε B and the apparent strain ε t due to temperature change occur, the strain gauges 12, 1
The strains detected at 4 , 16 , 18 are ε 12 , ε 14 , ε 16 ,
If ε 18 and Poisson's ratio are ν, the strain ε 0 measured in the bridge circuit is ε 0 = ε 12 −ε 14 + ε 16 −ε 18 = (ε P + ε t + ε B ) − (− νε P + ε t −νε B ) + (ε P + ε t −ε B ) − (− νε P + ε t + νε B ) ... (2) = 2ε P (1 + ν), and the bending strain ε B and the strain ε t due to temperature change are canceled. Therefore, the output of the bridge circuit becomes only distortion due to the piezoelectric inverse effect, and the measurement error is eliminated. Moreover, the output thereof has a function of being 2 (1 + ν) times as large as the output of the 1-gauge method disclosed in Japanese Patent Laid-Open No. 3-235001.

【0018】加えて、歪みゲージと圧電素子の間の接着
層によるクリープ現象が、温度変化による歪みがキャン
セルされる原理と同じようにキャンセルされる。即ち、
クリープによる歪みをεC とすると、ブリッジ回路で測
定される歪みε0 は、 ε0 =ε12−ε14+ε16−ε18 =εC −εC +εC −εC =0 となり、接着層のクリープによる歪みがキャンセルさ
れ、測定誤差がなくなる。
In addition, the creep phenomenon due to the adhesive layer between the strain gauge and the piezoelectric element is canceled in the same manner as the principle of canceling the strain due to temperature change. That is,
When the strain due to creep is ε C , the strain ε 0 measured in the bridge circuit is ε 0 = ε 12 −ε 14 + ε 16 −ε 18 = ε C −ε C + ε C −ε C = 0, and the adhesive layer Distortion due to creep is canceled and measurement error is eliminated.

【0019】さらに、歪みゲージ12〜18を直接圧電
素子に接着することにより、圧電素子と容器との間の線
膨張係数の違いによる測定誤差を減少する作用がある。
従って、上記構成によれば、曲げ方向の歪み及び温度変
化による見かけの歪みが発生しても、伸縮方向の変位量
測定には影響がなくなり、高精度の1軸の位置決めが可
能になる。
Further, by directly bonding the strain gauges 12 to 18 to the piezoelectric element, there is an effect of reducing a measurement error due to a difference in linear expansion coefficient between the piezoelectric element and the container.
Therefore, according to the above configuration, even if the strain in the bending direction and the apparent strain due to the temperature change occur, the measurement of the displacement amount in the expansion / contraction direction is not affected, and the uniaxial positioning can be performed with high accuracy.

【0020】次に、本発明の第2実施例を説明する。図
4の(A)はその構成を示す図で、第1実施例の図1の
(A)に於ける1軸タイプの歪みゲージ12,14の代
わりに、2軸90°歪みゲージ30を使用し、且つ歪み
ゲージ16,18の代わりに、2軸90°歪みゲージ3
2を使用したものである。
Next, a second embodiment of the present invention will be described. FIG. 4A is a diagram showing the structure thereof, and a biaxial 90 ° strain gauge 30 is used in place of the uniaxial type strain gauges 12 and 14 in FIG. 1A of the first embodiment. And, instead of the strain gauges 16 and 18, biaxial 90 ° strain gauge 3
2 is used.

【0021】このような構成としても、前述の第1実施
例と同様の作用効果を奏することができる。以上のよう
に、曲げ歪みの影響及び温度変化の影響に左右されるこ
となく、高精度の1軸の位置決めが行うことができるよ
うになる。なお、圧電素子が長い場合には、歪みゲージ
の数を増やし、圧電素子全体の歪みを平均化して検出す
るのが好ましい。
Even with such a structure, the same operational effects as those of the above-described first embodiment can be obtained. As described above, highly accurate uniaxial positioning can be performed without being influenced by bending strain and temperature change. When the piezoelectric element is long, it is preferable to increase the number of strain gauges and average and detect the strain of the entire piezoelectric element.

【0022】[0022]

【発明の効果】以上詳述したように、本発明によれば、
曲げ歪みをキャンセルして測定誤差を排除し、また圧電
素子と容器との間の線膨張係数の違いによる測定誤差を
減少し、以って高精度な1軸の変位測定を可能にする歪
みゲージセンサ付圧電素子アクチュエータを提供するこ
とができる。
As described in detail above, according to the present invention,
Strain gauge that cancels bending strain to eliminate measurement error and reduces measurement error due to the difference in linear expansion coefficient between the piezoelectric element and the container, thus enabling highly accurate uniaxial displacement measurement. A piezoelectric element actuator with a sensor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)及び(B)は本発明の第1実施例の歪み
ゲージセンサ付積層型圧電素子アクチュエータの構成を
説明するための斜視図及び変位量測定用ブリッジ回路の
回路構成図である。
1A and 1B are a perspective view and a circuit configuration diagram of a displacement amount measuring bridge circuit for explaining a configuration of a laminated piezoelectric element actuator with a strain gauge sensor according to a first embodiment of the present invention. is there.

【図2】(A)及び(B)は第1実施例の歪みゲージセ
ンサ付積層型圧電素子アクチュエータを使用した倒立型
顕微鏡の正面断面図及び側面図である。
2A and 2B are a front sectional view and a side view of an inverted microscope using the laminated piezoelectric element actuator with a strain gauge sensor of the first embodiment.

【図3】(A)は拡大機構を示す図であり、(B)は圧
電素子の曲がりを示す図である。
3A is a diagram showing an enlarging mechanism, and FIG. 3B is a diagram showing bending of a piezoelectric element.

【図4】(A)は本発明の第2実施例の歪みゲージセン
サ付積層型圧電素子アクチュエータの構成を説明するた
めの斜視図であり、(B)は従来のダミーゲージを用い
た温度補償用歪みゲージ付圧電素子の変位量測定用ブリ
ッジ回路の回路構成図である。
FIG. 4A is a perspective view for explaining a structure of a laminated piezoelectric element actuator with a strain gauge sensor according to a second embodiment of the present invention, and FIG. 4B is a temperature compensation using a conventional dummy gauge. FIG. 3 is a circuit configuration diagram of a displacement amount measuring bridge circuit of a piezoelectric element with a strain gauge for use in measurement.

【符号の説明】[Explanation of symbols]

10…積層型圧電素子アクチュエータ 12〜18…歪みゲージ 20…倒立型顕微鏡 22,28…てこ 24…可動部 26…準焦部 30,32…2軸90°歪みゲージ DESCRIPTION OF SYMBOLS 10 ... Multilayer piezoelectric element actuator 12-18 ... Strain gauge 20 ... Inverted microscope 22, 28 ... Lever 24 ... Movable part 26 ... Semi-focusing part 30, 32 ... Biaxial 90 ° strain gauge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一側面の同一直線上に伸縮方向及びその
伸縮方向と90°傾いた方向に第1及び第2の歪みゲー
ジを接着し、前記一側面と対局する面に、前記第1及び
第2の歪みゲージと同様の構成の第3及び第4の歪みゲ
ージを接着してなる圧電素子と、 前記第1乃至第4の歪みゲージで構成されたブリッジ回
路と、 を具備することを特徴とする歪みゲージセンサ付圧電素
子アクチュエータ。
1. The first and second strain gauges are adhered on the same straight line on one side surface in a direction of expansion and contraction and in a direction inclined by 90 ° with respect to the direction of expansion and contraction, and the first and second strain gauges are provided on the surface facing the side surface. A piezoelectric element formed by adhering third and fourth strain gauges having the same configuration as the second strain gauge; and a bridge circuit constituted by the first to fourth strain gauges. Piezoelectric element actuator with strain gauge sensor.
【請求項2】 前記第1及び第2の歪みゲージとして第
1の2軸90°歪みゲージを用い、且つ、前記第3及び
第4の歪みゲージとして第2の2軸90°歪みゲージを
用いることを特徴とする請求項1に記載の歪みゲージセ
ンサ付圧電素子アクチュエータ。
2. A first biaxial 90 ° strain gauge is used as the first and second strain gauges, and a second biaxial 90 ° strain gauge is used as the third and fourth strain gauges. The piezoelectric element actuator with a strain gauge sensor according to claim 1.
【請求項3】 前記ブリッジ回路が、同じ方向に貼られ
た歪みゲージどうしが対局するように構成されたことを
特徴とする請求項1又は2に記載の歪みゲージセンサ付
圧電素子アクチュエータ。
3. The piezoelectric element actuator with strain gauge sensor according to claim 1, wherein the bridge circuit is configured such that strain gauges attached in the same direction face each other.
JP11286494A 1994-05-26 1994-05-26 Piezoelectric actuator with strain gauge sensor Expired - Fee Related JP3362963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11286494A JP3362963B2 (en) 1994-05-26 1994-05-26 Piezoelectric actuator with strain gauge sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11286494A JP3362963B2 (en) 1994-05-26 1994-05-26 Piezoelectric actuator with strain gauge sensor

Publications (2)

Publication Number Publication Date
JPH07321385A true JPH07321385A (en) 1995-12-08
JP3362963B2 JP3362963B2 (en) 2003-01-07

Family

ID=14597445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11286494A Expired - Fee Related JP3362963B2 (en) 1994-05-26 1994-05-26 Piezoelectric actuator with strain gauge sensor

Country Status (1)

Country Link
JP (1) JP3362963B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152557A (en) * 2007-11-26 2009-07-09 Sii Nanotechnology Inc Piezoelectric actuator with displacement meter and piezoelectric element, and positioning apparatus using the same
US10145486B2 (en) 2016-02-04 2018-12-04 Konica Minolta, Inc. Drive device, method of controlling strain and computer readable medium storing program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152557A (en) * 2007-11-26 2009-07-09 Sii Nanotechnology Inc Piezoelectric actuator with displacement meter and piezoelectric element, and positioning apparatus using the same
US10145486B2 (en) 2016-02-04 2018-12-04 Konica Minolta, Inc. Drive device, method of controlling strain and computer readable medium storing program

Also Published As

Publication number Publication date
JP3362963B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US5365140A (en) Piezoelectric actuator having strain gage
Kon et al. Piezoresistive and piezoelectric MEMS strain sensors for vibration detection
US7075700B2 (en) Mirror actuator position sensor systems and methods
US8497672B2 (en) Acceleration sensor
US8115367B2 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
JP4898551B2 (en) Piezoelectric actuator and scanning probe microscope using the same
JP3362963B2 (en) Piezoelectric actuator with strain gauge sensor
Mansour et al. Piezoelectric bimorph actuator with integrated strain sensing electrodes
JP4901533B2 (en) Force sensor, load detection device, and shape measurement device
JP2007064786A (en) Force sensor
JP3727133B2 (en) Load measuring method and load measuring apparatus
JP3400578B2 (en) Piezoelectric actuator
JP3239709B2 (en) Acceleration sensor
JPH085656A (en) Acceleration converter
JP2021018294A (en) Microelectromechanical system mirror
EP3865881B1 (en) Multilayer excitation ring
JPH0152911B2 (en)
JP7316926B2 (en) Piezoelectric MEMS device, manufacturing method and driving method
JP7316927B2 (en) Piezoelectric MEMS device, manufacturing method and driving method
Lynch Strain measurement
JP2001153735A (en) Load cell
JPH06249667A (en) Angular velocity sensor
Bergander et al. Integrated sensors for PZT actuators based on thick-film resistors
JP5022164B2 (en) Angular velocity sensor
KR20150076086A (en) Precision return actuator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees