JP2009152557A - Piezoelectric actuator with displacement meter and piezoelectric element, and positioning apparatus using the same - Google Patents

Piezoelectric actuator with displacement meter and piezoelectric element, and positioning apparatus using the same Download PDF

Info

Publication number
JP2009152557A
JP2009152557A JP2008278548A JP2008278548A JP2009152557A JP 2009152557 A JP2009152557 A JP 2009152557A JP 2008278548 A JP2008278548 A JP 2008278548A JP 2008278548 A JP2008278548 A JP 2008278548A JP 2009152557 A JP2009152557 A JP 2009152557A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
resistor
peripheral surface
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278548A
Other languages
Japanese (ja)
Other versions
JP5339851B2 (en
Inventor
Masato Iyogi
誠人 伊與木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2008278548A priority Critical patent/JP5339851B2/en
Priority to US12/276,740 priority patent/US8115367B2/en
Publication of JP2009152557A publication Critical patent/JP2009152557A/en
Application granted granted Critical
Publication of JP5339851B2 publication Critical patent/JP5339851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric actuator with a displacement meter, which allows distortion of a piezoelectric element to be accurately measured by a resistor attached to the piezoelectric element without being affected by a capacitance component and is free from faults due to short circuit to thereby have a high reliability, and to provide a piezoelectric element and a positioning apparatus using the same. <P>SOLUTION: The piezoelectric actuator comprises: the piezoelectric element 1 which is formed into an optional shape and has internal ions subjected to polarization processing in an optional direction and is provided with electrodes 2a, 2b, 3b, 4b and 5b in at least two surfaces facing each other in a thickness direction; driving power sources 9, 10 and 11 which apply voltages between electrodes to generate distortion on the piezoelectric element 1; resistors Rz3, Rx1, Rx2 and Ry2 provided on an electrode 7 through an insulator; and displacement detectors 12, 13 and 14 which are connected to the resistors and detect the amount of distortion of the piezoelectric element 1 by applying optional voltages to the resistors to detect resistance value changes. The electrode 7 on the piezoelectric element 1, where the resistors are provided, is connected to a ground potential. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、精密機器の位置決め装置などに使用される圧電アクチュエータに関するものであり、例えば、走査型プローブ顕微鏡用のスキャナなどに適用される。   The present invention relates to a piezoelectric actuator used for a positioning device of a precision instrument, and is applied to, for example, a scanner for a scanning probe microscope.

従来から、圧電アクチュエータはサブナノメータから数百マイクロメータオーダの精密位置決め装置として計測装置を初めとするさまざまな精密機器に使用されている。
ここで、圧電アクチュエータを使用した位置決め装置を、走査型プローブ顕微鏡を例にとり説明する(特許文献1参照)。
Conventionally, piezoelectric actuators are used in various precision instruments such as measuring devices as precision positioning devices on the order of sub-nanometers to several hundreds of micrometers.
Here, a positioning device using a piezoelectric actuator will be described by taking a scanning probe microscope as an example (see Patent Document 1).

図22は従来の走査型プローブ顕微鏡の構成図である。従来の走査型プローブ顕微鏡では、先端に探針213を有するカンチレバー214と、探針213と対向する位置に設置されサンプル212が載置されるサンプルホルダ211と、前記探針213をサンプル面内に移動させる水平方向微動機構とサンプル表面と垂直な方向に移動させる垂直方向微動機構からなる三軸微動機構215と、カンチレバー214のたわみを検出するための変位検出機構219から構成される。   FIG. 22 is a block diagram of a conventional scanning probe microscope. In a conventional scanning probe microscope, a cantilever 214 having a probe 213 at the tip, a sample holder 211 placed at a position facing the probe 213 and on which a sample 212 is placed, and the probe 213 within the sample plane It comprises a three-axis fine movement mechanism 215 comprising a horizontal fine movement mechanism to be moved, a vertical fine movement mechanism to be moved in a direction perpendicular to the sample surface, and a displacement detection mechanism 219 for detecting the deflection of the cantilever 214.

図22の従来技術では、三軸微動機構215は円筒型圧電素子を用いた圧電アクチュエータが使用される。円筒型圧電素子は内部の結晶が内周面から外周面方向にかけて円筒の中心軸と直交する方向に一様な方向になるように分極処理が施されている。円筒型圧電素子の内周面には単一の共通電極232が形成され、外周面には、円周に沿って設けられた帯状電極部235と、円周に対して4分割され中心軸と平行な方向に4分割電極部233、234が設けられる。帯状電極部235が設けられる側を先端とし、4分割電極部233、234が設けられる側を末端とすると、先端にはカンチレバー214が取り付けられて、末端はベース(図示せず)に固定される。   In the prior art of FIG. 22, the triaxial fine movement mechanism 215 uses a piezoelectric actuator using a cylindrical piezoelectric element. The cylindrical piezoelectric element is subjected to polarization treatment so that the inner crystal is in a uniform direction from the inner peripheral surface to the outer peripheral surface in a direction perpendicular to the central axis of the cylinder. A single common electrode 232 is formed on the inner peripheral surface of the cylindrical piezoelectric element, a strip electrode portion 235 provided along the circumference on the outer peripheral surface, and a central axis divided into four with respect to the circumference. Quadrant electrode portions 233 and 234 are provided in parallel directions. If the side on which the strip electrode part 235 is provided is the tip and the side on which the quadrant electrode parts 233 and 234 are provided is the end, a cantilever 214 is attached to the end and the end is fixed to a base (not shown). .

円筒型圧電アクチュエータは4分割電極部233、234が水平方向微動機構として作用し、帯状電極部235が垂直方向微動機構として作用する。円筒型圧電アクチュエータを駆動する場合には、内周面の共通電極232をグランド電位に接続し、4分割電極部233、234の中心軸に対して対向する2つの電極間にそれぞれ逆相の電圧を印加する。このとき、一方の電極側が中心軸と平行な方向に伸び、もう一方の電極側が縮み、その結果、円筒型圧電素子にたわみが生じて先端が円弧運動を行う。ここで、円弧運動の移動量は微小であるため、サンプル212の面内に対して概ね平行に探針213を動かすことが可能となる。もう一方の対向する2つの電極間も同様な動作をさせることで、探針213をサンプル212面内で2次元に移動させることができる。   In the cylindrical piezoelectric actuator, the four divided electrode portions 233 and 234 act as a horizontal fine movement mechanism, and the strip electrode portion 235 acts as a vertical fine movement mechanism. When driving the cylindrical piezoelectric actuator, the common electrode 232 on the inner peripheral surface is connected to the ground potential, and the voltages of opposite phases are respectively applied between the two electrodes facing the central axis of the four-divided electrode portions 233 and 234. Is applied. At this time, one electrode side extends in a direction parallel to the central axis, and the other electrode side contracts. As a result, deflection occurs in the cylindrical piezoelectric element, and the tip performs an arc motion. Here, since the amount of movement of the arc motion is very small, the probe 213 can be moved substantially parallel to the surface of the sample 212. By performing the same operation between the other two opposing electrodes, the probe 213 can be moved two-dimensionally within the surface of the sample 212.

また、外周面の帯状電極部235に電圧を印加すると、直径方向に歪みが発生し、その結果、中心軸と平行な方向にも歪みが生じて、探針213をサンプル212と直交する方向に移動させることが可能となる。   In addition, when a voltage is applied to the strip-shaped electrode portion 235 on the outer peripheral surface, distortion occurs in the diameter direction, and as a result, distortion occurs in a direction parallel to the central axis, and the probe 213 is moved in a direction orthogonal to the sample 212. It can be moved.

カンチレバー214の変位検出機構は一般に光てこ法が用いられる。変位検出機構219は、半導体レーザ216と集光レンズ217、フォトディテクタ218から構成される。半導体レーザ216の光を集光レンズ217でカンチレバー214の背面に集光し、カンチレバー214の背面で反射してきた光をフォトディテクタ218で検出する。カンチレバー214にたわみが生じた場合には、フォトディテクタ218上のスポットの位置が変化するので、この変化量を検出することでカンチレバー214のたわみを検出することが可能である。   As a displacement detection mechanism of the cantilever 214, an optical lever method is generally used. The displacement detection mechanism 219 includes a semiconductor laser 216, a condenser lens 217, and a photodetector 218. The light of the semiconductor laser 216 is condensed on the back surface of the cantilever 214 by the condenser lens 217, and the light reflected by the back surface of the cantilever 214 is detected by the photodetector 218. When the deflection of the cantilever 214 occurs, the position of the spot on the photodetector 218 changes, so that the deflection of the cantilever 214 can be detected by detecting the amount of change.

このように構成された走査型プローブ顕微鏡で、探針213とサンプル212を近接させていくと、原子間力または接触力が作用し、カンチレバー214にたわみが生じる。このときたわみ量は探針213とサンプル212間の距離に依存するため、カンチレバー214の変位検出機構219によりたわみ量を検出し、たわみ量が一定となるように、制御回路221により垂直方向微動機構を動作させて、探針213とサンプル212間の距離が一定となるようにフィードバック制御を行いながら、走査回路222により水平方向微動機構をラスタスキャンさせることで、サンプル表面の凹凸像を測定することができる。なお、カンチレバー214の静的なたわみを検出するコンタクト方式の他にも、カンチレバー214を共振周波数近傍で振動させながら、原子間力や間欠的な接触力による振幅や位相あるいは周波数の変化量により探針213とサンプル212の距離制御が行われる振動方式で測定を行う場合もある。   When the probe 213 and the sample 212 are brought close to each other in the scanning probe microscope configured as described above, an interatomic force or a contact force acts, and the cantilever 214 is bent. At this time, since the deflection amount depends on the distance between the probe 213 and the sample 212, the deflection amount is detected by the displacement detection mechanism 219 of the cantilever 214, and the vertical fine movement mechanism is controlled by the control circuit 221 so that the deflection amount becomes constant. , And by performing a feedback control so that the distance between the probe 213 and the sample 212 is constant, the scanning circuit 222 performs raster scanning of the fine movement mechanism in the horizontal direction, thereby measuring the concavo-convex image on the sample surface. Can do. In addition to the contact method for detecting the static deflection of the cantilever 214, the cantilever 214 is oscillated in the vicinity of the resonance frequency, and the amplitude, phase, or frequency change due to the atomic force or intermittent contact force is searched. In some cases, measurement is performed by a vibration method in which the distance between the needle 213 and the sample 212 is controlled.

ここで、走査型プローブ顕微鏡の位置決め装置として用いられている3微動機構215は圧電素子で構成されているため、ヒステリシスやクリープが生じる。ヒステリシスは、圧電素子に電圧を印加した場合に電圧に対して変位が完全に線形にはならず、2次曲線に近似されるような動作を行う現象である。また、クリープは、ある電圧を圧電素子に印加した場合に、すぐに目標の移動量には達せず、時間的に少しずつ微小移動を行ってしまう現象である。   Here, since the three fine movement mechanism 215 used as a positioning device of the scanning probe microscope is composed of a piezoelectric element, hysteresis and creep occur. Hysteresis is a phenomenon in which when a voltage is applied to a piezoelectric element, the displacement does not become completely linear with respect to the voltage, but an operation that approximates a quadratic curve. Creep is a phenomenon in which, when a certain voltage is applied to the piezoelectric element, the target movement amount is not reached immediately, and the minute movement is performed little by little over time.

これらのヒステリシスやクリープが発生した場合には、正確な位置決めを行うことが困難となるため、より精密な位置決め手段として、圧電素子の変位を検出するための変位検出装置を用いて位置決め装置の変位の検出を行いヒステリシスやクリープを補償する方式が行われている。   When these hysteresis and creep occur, it becomes difficult to perform accurate positioning. Therefore, the displacement of the positioning device is detected by using a displacement detection device for detecting the displacement of the piezoelectric element as a more precise positioning means. A method of detecting hysteresis and compensating for hysteresis and creep is used.

圧電素子の変位検出装置には光学式センサや静電容量センサ、磁気式センサなどさまざまな方式が用いられているが、最もスペースをとらず、安価で、簡便な方法として、歪みゲージによる検出が有効である。   Various methods such as an optical sensor, a capacitance sensor, and a magnetic sensor are used for the displacement detection device of the piezoelectric element. However, it uses a strain gauge as an inexpensive and simple method that takes up the least space. It is valid.

図23に従来技術の走査型プローブ顕微鏡の三軸微動機構の変位を歪みゲージにより検出する変位計付圧電アクチュエータを示す。この従来技術では、円筒型圧電素子215の外周面の4分割電極部233、234には各電極に1枚ずつ歪みゲージ201a、201b、202a、202bが接着されている。また、帯状電極部235には2枚の歪みゲージ203a、203bが中心軸に対して平行に接着されている。歪みゲージは一般に市販されている歪みゲージであり、円筒型圧電素子の中心軸に平行な方向に歪みが発生したときに大きな出力が得られる方向に接着される。一般的な歪みゲージでは、ベース材にポリイミド樹脂や紙、フェノール樹脂、エポキシ樹脂、フェノール/エポキシ混合樹脂など絶縁材料が使用され、ベース材上には銅ニッケル合金やニクロム系合金などの金属材料や、シリコン単結晶などの半導体から構成される抵抗体が設けられており、同じくベース材上に形成されるニッケルなどの電極パターンを介して外部の検出装置に電気的に接続される。   FIG. 23 shows a piezoelectric actuator with a displacement meter that detects the displacement of the triaxial fine movement mechanism of a scanning probe microscope of the prior art using a strain gauge. In this prior art, strain gauges 201 a, 201 b, 202 a, 202 b are bonded to the four divided electrode portions 233, 234 on the outer peripheral surface of the cylindrical piezoelectric element 215 one by one for each electrode. In addition, two strain gauges 203a and 203b are bonded to the strip electrode portion 235 in parallel to the central axis. The strain gauge is generally a strain gauge that is commercially available, and is bonded in a direction in which a large output can be obtained when strain occurs in a direction parallel to the central axis of the cylindrical piezoelectric element. In general strain gauges, insulating materials such as polyimide resin, paper, phenol resin, epoxy resin, and phenol / epoxy mixed resin are used for the base material, and metal materials such as copper nickel alloys and nichrome alloys are used on the base material. A resistor composed of a semiconductor such as silicon single crystal is provided, and is electrically connected to an external detection device via an electrode pattern such as nickel formed on the base material.

水平方向微動機構では対向する2つの電極233、234に貼られた各2枚の歪みゲージ201a、201b、202a、202bと、2つの固定抵抗241、242により図24に示すようなブリッジ回路が組まれ、ブリッジ回路にブリッジ電圧e0を印加し、出力電圧e1を測定する。圧電素子に歪みが生じた場合には、歪みゲージ201a、201b、202a、202bの抵抗値が変化し出力電圧e1の値が変化する。この出力電圧e1を検出することで圧電素子の歪み量を測定することが可能となる。なお、この従来技術では各軸2枚のゲージ201a、201b、202a、202bが中心軸に対して対向する電極233、234に接着されているため、水平方向微動機構が中心軸に対してたわむことで各々の歪みの方向が逆となるため、各歪みゲージの検出信号の符号も逆となり、1枚の電極のみに歪みゲージを貼り付けた場合に比べて2倍の出力電圧を得ることができノイズに対する信号強度が増加する。さらに温度変化に伴う抵抗値変化分は相殺されて温度補償も行われる。   In the horizontal fine movement mechanism, a bridge circuit as shown in FIG. 24 is formed by two strain gauges 201a, 201b, 202a, 202b attached to two opposing electrodes 233, 234 and two fixed resistors 241,242. In rare cases, the bridge voltage e0 is applied to the bridge circuit, and the output voltage e1 is measured. When distortion occurs in the piezoelectric element, the resistance values of the strain gauges 201a, 201b, 202a, and 202b change, and the value of the output voltage e1 changes. By detecting this output voltage e1, the amount of distortion of the piezoelectric element can be measured. In this prior art, since the two gauges 201a, 201b, 202a, 202b are bonded to the electrodes 233, 234 facing the central axis, the horizontal fine movement mechanism bends with respect to the central axis. Since the direction of each strain is reversed, the sign of the detection signal of each strain gauge is also reversed, and an output voltage twice that obtained when a strain gauge is attached to only one electrode can be obtained. The signal strength against noise increases. Further, the resistance value change accompanying the temperature change is canceled out, and the temperature compensation is also performed.

また垂直方向微動機構の場合には、2枚の歪みゲージ203a、203bと2つの固定抵抗241、242により、図25のようにブリッジ回路を組み、ブリッジ回路にブリッジ電圧e0を印加し、出力電圧e1を測定する。圧電素子に歪みが生じた場合には、歪みゲージの抵抗値が変化し出力電圧e1の値が変化する。この出力電圧e1を検出することで圧電素子の歪み量を測定することが可能となる。この場合も、1枚のケージの場合に比べて2倍の出力電圧を得ることができる。ただし、この回路では、温度変化に伴う抵抗値変化分の補償は行われない。   In the case of the vertical fine movement mechanism, a bridge circuit is assembled as shown in FIG. 25 by using two strain gauges 203a and 203b and two fixed resistors 241 and 242, and a bridge voltage e0 is applied to the bridge circuit. Measure e1. When distortion occurs in the piezoelectric element, the resistance value of the strain gauge changes and the value of the output voltage e1 changes. By detecting this output voltage e1, the amount of distortion of the piezoelectric element can be measured. Also in this case, it is possible to obtain an output voltage twice that of a single cage. However, this circuit does not compensate for the resistance value change accompanying the temperature change.

歪みゲージの出力は、あらかじめ変位が校正されている別の変位計や、この三軸微動機構を用いた走査型プローブ顕微鏡により校正用サンプルを測定したときのデータから変位と出力電圧e1の校正が行われており、得られる出力電圧e1から変位量を測定することができる。   The output of the strain gauge is obtained by calibrating the displacement and the output voltage e1 from data obtained by measuring a calibration sample with another displacement meter whose displacement is calibrated in advance or a scanning probe microscope using this triaxial fine movement mechanism. The displacement amount can be measured from the output voltage e1 obtained.

このように歪みゲージの出力電圧から随時測定される変位情報から印加電圧に対して三軸微動機構が線形動作するようにフィードバック制御が行われる。なお、走査型プローブ顕微鏡では必ずしも垂直方向は電圧に対して線形動作する必要はなく歪みゲージの出力信号から得られる高さ情報をそのまま表示する場合もある。
特開平9−89913号公報
Thus, feedback control is performed so that the three-axis fine movement mechanism linearly operates with respect to the applied voltage from the displacement information measured as needed from the output voltage of the strain gauge. In the scanning probe microscope, it is not always necessary to perform a linear operation with respect to the voltage in the vertical direction, and the height information obtained from the output signal of the strain gauge may be displayed as it is.
JP-A-9-89913

しかしながら、このように構成された従来の圧電アクチュエータでは、圧電素子の駆動電圧が印加される電極面に絶縁体を介して直接歪みゲージが接着されているため、圧電素子の電極面と歪みゲージの抵抗体や抵抗体に接続される抵抗体接続用電極で絶縁体が挟まれた構造となる。ベース材は誘電体として作用するため、歪みゲージ貼り付け部分があたかもコンデンサのように作用して静電容量成分が発生し、この静電容量成分の影響で歪みゲージの検出信号が正確に測定できなくなってしまう。   However, in the conventional piezoelectric actuator configured as described above, since the strain gauge is directly bonded to the electrode surface to which the drive voltage of the piezoelectric element is applied via an insulator, the electrode surface of the piezoelectric element and the strain gauge are The insulator is sandwiched between the resistor and the resistor connecting electrode connected to the resistor. Since the base material acts as a dielectric, the portion where the strain gauge is attached acts as if it were a capacitor, generating a capacitance component, and the strain gauge detection signal can be accurately measured due to the influence of this capacitance component. It will disappear.

また、圧電素子の電極面には圧電素子駆動用の高圧の電圧が印加されているため、歪みゲージにつながるリード線の圧電素子に付随する電極への接触や、経時変化により歪みゲージのベース材内部を介して歪みゲージの電極や抵抗体と、圧電素子の電極がつながってしまい、歪みゲージや歪みゲージにつながる変位検出装置に高電圧がかかりこれらの装置を破損してしまうことがあった。またベース材の絶縁抵抗が低い場合にはリーク電流により歪みゲージの検出信号が正確に測定できない場合もあった。
したがって、本発明の目的は、圧電素子の歪みを圧電素子に取り付けた抵抗体により静電容量成分やリーク電流の影響を受けず高精度に測定可能で、さらにショートによる故障が発生せず信頼性の高い変位計付圧電アクチュエータおよび圧電素子とそれを用いた位置決め装置を提供することである。
In addition, since a high voltage for driving the piezoelectric element is applied to the electrode surface of the piezoelectric element, the lead wire connected to the strain gauge contacts the electrode associated with the piezoelectric element, or the strain gauge base material changes over time. A strain gauge electrode or resistor and a piezoelectric element electrode are connected to each other through the inside, and a high voltage is applied to the displacement detection device connected to the strain gauge or the strain gauge, which may damage these devices. In addition, when the insulation resistance of the base material is low, the strain gauge detection signal may not be accurately measured due to the leakage current.
Therefore, the object of the present invention is to measure the distortion of the piezoelectric element with high accuracy without being affected by the capacitance component and the leakage current by the resistor attached to the piezoelectric element, and further, without causing a failure due to a short circuit, reliability. It is to provide a piezoelectric actuator with a high displacement meter, a piezoelectric element, and a positioning device using the same.

本発明は、前記課題を解決するために以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

本発明では、任意の形状に形成され、内部の結晶が任意の方向に分極処理を施され、少なくとも厚み方向の対向する2面にそれぞれ電極が設けられた圧電素子と、前記電極間に電圧を印加し前記圧電素子に歪みを発生させるための駆動電源と、前記電極上に絶縁体を介して設けられた抵抗体と、前記抵抗体に接続され、前記抵抗体に任意の電圧を印加し、抵抗値変化を検出することで前記圧電素子の歪み量を検出する変位検出装置により構成される変位計付き圧電アクチュエータにおいて、抵抗体が設けられる圧電素子上の電極をグランド電位に接続した。   In the present invention, a piezoelectric element is formed in an arbitrary shape, the inner crystal is polarized in an arbitrary direction, and electrodes are provided on at least two opposing surfaces in the thickness direction, and a voltage is applied between the electrodes. A driving power source for applying distortion to the piezoelectric element, a resistor provided on the electrode via an insulator, connected to the resistor, and applying an arbitrary voltage to the resistor, In a piezoelectric actuator with a displacement meter configured by a displacement detection device that detects the amount of strain of the piezoelectric element by detecting a change in resistance value, an electrode on the piezoelectric element provided with a resistor is connected to a ground potential.

また、本発明では、前記変位計付圧電アクチュエータの抵抗体が設けられる圧電素子上の電極の電位を前記抵抗体に印加される電位と等しくした。   In the present invention, the potential of the electrode on the piezoelectric element provided with the resistor of the piezoelectric actuator with a displacement meter is made equal to the potential applied to the resistor.

また、本発明の変位計付圧電アクチュエータで使用される圧電素子は、圧電素子を円筒型に形成し、円筒型の圧電素子の内周面と外周面の双方に電極を設け、外周面の電極に絶縁体を介して抵抗体を設けた構成とした。この円筒型圧電素子は、内周面の電極が複数に分割され、外周面の電極が外周に添って設けられる単一の帯状電極、または内周面に接続される折返し電極と単一の帯状電極で構成され、前記外周面の帯状電極に絶縁体を介して抵抗体を設けた構造とした。
また、円筒型の圧電素子の内周面に少なくとも2箇所以上の電極を設け、圧電体を介して前記内周面の電極に対向する外周面側にも電極を設け、前記内周面電極の少なくとも1つの電極はひずみを生じさせないダミー電極とし、他の電極は電圧を印加することにより圧電素子にひずみを生ずるアクティブ電極とし、前記アクティブ電極の外側電極に1箇所または2箇所の抵抗体を設け、前記ダミー電極の外側電極に1箇所または2箇所の抵抗体を設け、少なくとも前記抵抗体が設けられる電極が同電位になるように構成されてグランド電位に接続され、前記アクティブ電極の外周面側に設けられた抵抗体によりひずみ検出を行う際に、ダミー電極の外周面側に設けられた抵抗体により温度補償を行うようにアクティブ電極とダミー電極間の各抵抗体を接続してブリッジ回路を構成した。
さらに、前記ダミー電極を有する圧電素子と、前記アクティブ電極を有する圧電素子が同一の圧電体の材料を用いて別体により構成した。
また、円筒型の圧電素子は圧電体の表面に電極を設けた後、機械加工により電極の一部を除去すること工程を含む方法により外周面または/および内周面の電極を作製した。
さらに、圧電体の表面にマスキングを行う工程とマスキング以外の部分に電極を設ける工程と前記マスクを除去する工程とを含む方法により外周面または/および内周面の電極を作製した。
In addition, the piezoelectric element used in the piezoelectric actuator with a displacement meter of the present invention is formed in a cylindrical shape, and electrodes are provided on both the inner peripheral surface and the outer peripheral surface of the cylindrical piezoelectric element. In this configuration, a resistor is provided via an insulator. This cylindrical piezoelectric element has a single band-shaped electrode in which the electrode on the inner peripheral surface is divided into a plurality and the electrode on the outer peripheral surface is provided along the outer periphery, or a folded electrode connected to the inner peripheral surface and a single band-shaped It was constituted by an electrode, and a resistor was provided on the belt-like electrode on the outer peripheral surface via an insulator.
In addition, at least two electrodes are provided on the inner peripheral surface of the cylindrical piezoelectric element, and an electrode is also provided on the outer peripheral surface facing the inner peripheral electrode via the piezoelectric body. At least one electrode is a dummy electrode that does not cause distortion, and the other electrode is an active electrode that causes distortion in the piezoelectric element by applying a voltage, and one or two resistors are provided on the outer electrode of the active electrode. The outer electrode of the dummy electrode is provided with one or two resistors, and at least the electrode provided with the resistor is configured to have the same potential and connected to the ground potential, and the outer peripheral surface side of the active electrode When the strain detection is performed by the resistor provided on the outer surface of the dummy electrode, the temperature compensation is performed by the resistor provided on the outer peripheral surface side of the dummy electrode. To constitute a bridge circuit by connecting the antibody.
Further, the piezoelectric element having the dummy electrode and the piezoelectric element having the active electrode are separately formed using the same piezoelectric material.
In addition, after forming an electrode on the surface of the piezoelectric body of the cylindrical piezoelectric element, an electrode on the outer peripheral surface and / or the inner peripheral surface was produced by a method including a step of removing a part of the electrode by machining.
Furthermore, an electrode on the outer peripheral surface and / or the inner peripheral surface was produced by a method including a step of masking the surface of the piezoelectric body, a step of providing an electrode in a portion other than the masking, and a step of removing the mask.

さらに、本発明の変位計付圧電アクチュエータで使用される圧電素子は、任意の板状弾性体の上面および/または下面に、板状の圧電素子を固着し、前記圧電素子の表面および弾性体との界面側にそれぞれ電極を設け、前記圧電素子の表面側電極に絶縁体を介して抵抗体を設けたバイモルフ型またはユニモルフ型の構造とした。   Furthermore, the piezoelectric element used in the piezoelectric actuator with a displacement meter according to the present invention has a plate-like piezoelectric element fixed to the upper surface and / or the lower surface of an arbitrary plate-like elastic body. An electrode is provided on each of the interfaces, and a bimorph type or unimorph type structure in which a resistor is provided on the surface side electrode of the piezoelectric element via an insulator.

さらに、本発明の変位計付圧電アクチュエータで使用される圧電素子は、複数枚の膜状圧電素子と電極を交互に積層して積層型の圧電素子を形成し、前記膜状圧電素子に挟まれた電極に交互に接続される2つの電極を前記積層型圧電素子の側面に形成し、前記側面電極の一方の電極に絶縁体を介して抵抗体を設けた積層型の構造とした。   Furthermore, the piezoelectric element used in the piezoelectric actuator with a displacement meter according to the present invention forms a laminated piezoelectric element by alternately laminating a plurality of film-shaped piezoelectric elements and electrodes, and is sandwiched between the film-shaped piezoelectric elements. Two electrodes that are alternately connected to the stacked electrodes are formed on the side surface of the multilayer piezoelectric element, and a multilayer structure is provided in which a resistor is provided on one electrode of the side electrode via an insulator.

また、本発明では、任意の形状に形成され、内部の結晶が任意の方向に分極処理を施され、少なくとも厚み方向の対向する2面にそれぞれ電極が設けられた圧電素子と、前記電極間に電圧を印加し前記圧電素子に歪みを発生させるための駆動電源と、前記圧電素子上に設けられた抵抗体と、前記抵抗体に接続され、抵抗値変化を検出することで前記圧電体の歪み量を検出する変位検出装置により構成される変位計付き圧電アクチュエータにおいて、前記抵抗体が設けられる部分は圧電素子上に電極を設けないようにした。   In the present invention, the piezoelectric element is formed in an arbitrary shape, the inner crystal is polarized in an arbitrary direction, and electrodes are provided on at least two opposing surfaces in the thickness direction, and between the electrodes. A drive power supply for applying a voltage to generate distortion in the piezoelectric element, a resistor provided on the piezoelectric element, and a distortion of the piezoelectric body connected to the resistor and detecting a change in resistance value In a piezoelectric actuator with a displacement meter constituted by a displacement detection device that detects the amount, an electrode is not provided on the piezoelectric element in the portion where the resistor is provided.

また、本発明の変位計付圧電アクチュエータに使用される抵抗体は半導体を使用した。   Moreover, the resistor used for the piezoelectric actuator with a displacement meter of this invention used the semiconductor.

本発明では、以上のように構成される変位計付圧電アクチュエータを使用して位置決め装置を構成した。   In the present invention, the positioning device is configured using the piezoelectric actuator with a displacement meter configured as described above.

抵抗体が設けられる圧電素子上の電極部分がグランド電極に接続されているか、抵抗体に印加される電圧と同電位となっているため、絶縁体のベースシート上に構成された抵抗体でも、圧電素子の電極面と抵抗体や抵抗体に接続される抵抗体接続用電極間での電位差がほとんど発生しないので、圧電素子に高電圧を印加して駆動した場合でも静電容量成分がほとんど発生せず、抵抗値変化の検出信号が静電容量の影響を受けない。また、ベース材の絶縁抵抗が低い場合でもリーク電流はほとんど流れない。そのため、圧電体の歪み量を正確に測定することが可能となり、圧電アクチュエータの変位の検出精度が大幅に向上する。その結果、その圧電アクチュエータを使用した位置決め装置の移動精度も大幅に向上する。   Since the electrode portion on the piezoelectric element provided with the resistor is connected to the ground electrode or has the same potential as the voltage applied to the resistor, even the resistor configured on the base sheet of the insulator, Since there is almost no potential difference between the electrode surface of the piezoelectric element and the resistor or the resistor connecting electrode connected to the resistor, almost no capacitance component is generated even when the piezoelectric element is driven by applying a high voltage. In other words, the resistance change detection signal is not affected by the capacitance. Further, even when the insulation resistance of the base material is low, almost no leakage current flows. Therefore, it becomes possible to accurately measure the distortion amount of the piezoelectric body, and the detection accuracy of the displacement of the piezoelectric actuator is greatly improved. As a result, the movement accuracy of the positioning device using the piezoelectric actuator is greatly improved.

さらに、抵抗体や抵抗体に接続されるリード線の圧電素子に付随する電極への接触や、経時変化により抵抗体が設けられる絶縁体内部を介して抵抗体に接続される絶縁体上の抵抗体接続用電極や抵抗体と、圧電素子の電極がつながってしまう現象(マイグレーション)が発生しなくなり、ショートにより抵抗体や検出装置が破損することを防止することができ信頼性や耐久性が向上する。   Furthermore, the resistance on the insulator connected to the resistor through the contact of the resistor and the electrode attached to the piezoelectric element of the lead wire connected to the resistor, or the inside of the insulator provided with the resistor due to change over time The phenomenon (migration) that the electrode for the body connection or the resistor and the electrode of the piezoelectric element are not connected (migration) does not occur, and it is possible to prevent the resistor and the detection device from being damaged by the short circuit, and the reliability and durability are improved. To do.

以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。     Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1〜図3に本発明の第一実施例に係る変位計付圧電アクチュエータを示す。図1は変位計付圧電アクチュエータの概観図であり、図2(a)は図1で使用される円筒型圧電素子の内周面の展開図、図2(b)は外周面の展開図である。   1 to 3 show a piezoelectric actuator with a displacement meter according to a first embodiment of the present invention. FIG. 1 is an overview of a piezoelectric actuator with a displacement meter, FIG. 2 (a) is a development view of the inner peripheral surface of the cylindrical piezoelectric element used in FIG. 1, and FIG. 2 (b) is a development view of the outer peripheral surface. is there.

本実施例では、図1に示すような円筒型圧電素子が用いられる。円筒型圧電素子1は、図2(a)に示されるように内周面の上部には円周に沿って一様に帯状電極2aが設けられ、下半分は、円周に沿って4分割され円筒の中心軸と平行な方向に形成された4分割電極部(3a、4a、5a、6a)が設けられている。また、図2(b)に示されるように外周面の上端部には内周面の帯状電極部2aにつながる折返し電極部2bが、下端部には内周面の4分割電極部(3a、4a、5a、6a)につながる折返し電極部(3b、4b、5b、6b)が設けられ、折返し電極以外の部分には円周に沿って単一の帯状電極7が形成される。   In this embodiment, a cylindrical piezoelectric element as shown in FIG. 1 is used. As shown in FIG. 2A, the cylindrical piezoelectric element 1 is provided with a strip-like electrode 2a uniformly along the circumference at the upper part of the inner peripheral surface, and the lower half is divided into four along the circumference. There are provided four-divided electrode portions (3a, 4a, 5a, 6a) formed in a direction parallel to the central axis of the cylinder. Further, as shown in FIG. 2 (b), a folded electrode portion 2b connected to the belt-like electrode portion 2a on the inner peripheral surface is provided at the upper end portion of the outer peripheral surface, and a four-part electrode portion (3a, 4a, 5a, and 6a) are provided with folded electrode portions (3b, 4b, 5b, and 6b), and a single strip electrode 7 is formed along the circumference in a portion other than the folded electrodes.

この円筒型圧電素子1の全長は100mm、外周の直径は15mm、内周と外周間の厚さは1mm、4分割電極部(3a、4a、5a、6a)の長さは50mm、帯状電極部2aの長さは45mmである。この円筒型圧電素1は内部の結晶が内周面から外周面方向にかけて円筒の中心軸と直交する方向に極性を持つように分極処理が施されている。分極の極性は内周面の分割電極面によって異なる極性を持っており図2(a)の符号で示した極性を持つ。ここで、プラスの記号は分極を行う際に、外周面の帯状電極部7をグランド電位とし、内周面にプラスの電圧を印加して分極処理を行った部分であり、素子内部の結晶はマイナスの極性が内周面を向いている。このように分極処理された電極をプラス電極と呼ぶ。また、マイナスの記号は分極を行う際に、外周面の帯状電極部7をグランド電位とし、内周面にマイナスの電圧を印加して分極処理を行った部分であり、素子内部の結晶はプラスの極性が内周面を向いている。このように分極処理された電極をマイナス電極と呼ぶ。本明細書中での電極の極性の呼び方は、すべてこの定義に従うものとする。本実施例の円筒型圧電素子1では、内周面の帯状電極部2aはプラス電極であり、4分割電極部(3a、4a、5a、6a)は中心軸に対して互いに対向する電極(3a、4a)、(5a、6a)が逆極性となるように分極処理を施した。
この円筒型圧電素子の内周面の帯状電極部2aが設けられる側を先端部、4分割電極部(3a、4a、5a、6a)が設けられる側を末端部とし、中心軸方向をZ軸、Z軸に直交し紙面の左右方向をX軸、紙面に対して垂直方向をY軸とする。円筒型圧電アクチュエータを使用する場合には、通常、末端部がベーズブロック8に固定される。
The total length of the cylindrical piezoelectric element 1 is 100 mm, the outer diameter is 15 mm, the thickness between the inner circumference and the outer circumference is 1 mm, the length of the four divided electrode portions (3a, 4a, 5a, 6a) is 50 mm, and the strip electrode portion The length of 2a is 45 mm. The cylindrical piezoelectric element 1 is polarized so that the inner crystal has a polarity in a direction orthogonal to the central axis of the cylinder from the inner peripheral surface to the outer peripheral surface. The polarity of polarization differs depending on the divided electrode surface on the inner peripheral surface, and has the polarity indicated by the reference numeral in FIG. Here, a plus sign is a portion where the band-like electrode portion 7 on the outer peripheral surface is set to the ground potential and a positive voltage is applied to the inner peripheral surface when polarization is performed, and the crystal inside the element is Negative polarity faces the inner surface. The electrode thus polarized is called a positive electrode. Also, the minus sign is a portion where the strip electrode portion 7 on the outer peripheral surface is set to the ground potential and a negative voltage is applied to the inner peripheral surface when polarization is performed, and the crystal inside the element is positive. The polarity is facing the inner circumference. The electrode thus polarized is called a negative electrode. All the designations of the polarity of electrodes in this specification shall follow this definition. In the cylindrical piezoelectric element 1 of the present embodiment, the belt-like electrode portion 2a on the inner peripheral surface is a plus electrode, and the four-divided electrode portions (3a, 4a, 5a, 6a) are electrodes (3a) facing each other with respect to the central axis. 4a) and (5a, 6a) were subjected to polarization treatment so as to have opposite polarities.
The side on which the strip electrode portion 2a on the inner peripheral surface of the cylindrical piezoelectric element is provided is the tip portion, and the side on which the quadrant electrode portions (3a, 4a, 5a, 6a) are provided is the end portion, and the central axis direction is the Z axis. The right and left direction perpendicular to the Z axis is the X axis, and the direction perpendicular to the paper is the Y axis. When a cylindrical piezoelectric actuator is used, the end portion is usually fixed to the base block 8.

ここで、外周面の帯状電極部7はグランドに接続される。また内周面の帯状電極部2aに接続される折返し電極部2bにはZ軸駆動電源9が接続される。さらに、内周面の4分割電極部(3a、4a、5a、6a)に接続される外周面の折返し電極部(3b、4b、5b、6b)のうち、X軸方向で対向する2つの電極部(3b、4b)にはX軸駆動電源10が、Y軸方向で対向する2つの電極部(5b、6b)にはY軸駆動電源11が接続される。なお、折返し電極(2b、3b、4b、5b、6b)は必ずしも設ける必要はなく内部の電極(2a、3a、4a、5a、6a)に直接接続してもよいが、折返し電極を設けることで駆動電源接続用の電極を円筒の外部に設けることができるため接続が容易となる。外周面の帯状電極7をグランドに接続する場合には、接地するか駆動電源(9、10、11)のグランド側に接続する。   Here, the belt-like electrode portion 7 on the outer peripheral surface is connected to the ground. A Z-axis drive power source 9 is connected to the folded electrode portion 2b connected to the strip electrode portion 2a on the inner peripheral surface. Further, two electrodes facing in the X-axis direction among the folded electrode portions (3b, 4b, 5b, 6b) on the outer peripheral surface connected to the four-divided electrode portions (3a, 4a, 5a, 6a) on the inner peripheral surface An X-axis drive power supply 10 is connected to the parts (3b, 4b), and a Y-axis drive power supply 11 is connected to the two electrode parts (5b, 6b) facing each other in the Y-axis direction. The folded electrodes (2b, 3b, 4b, 5b, 6b) are not necessarily provided, and may be directly connected to the internal electrodes (2a, 3a, 4a, 5a, 6a), but by providing the folded electrodes. Since the electrode for connecting the driving power source can be provided outside the cylinder, the connection is facilitated. When the strip electrode 7 on the outer peripheral surface is connected to the ground, it is grounded or connected to the ground side of the drive power source (9, 10, 11).

このように接続された円筒型圧電アクチュエータのZ軸駆動電源9に電圧を印加すると、印加する極性に応じて圧電素子内部の結晶に引力または斥力が作用し、厚み方向に歪みが生じる。この歪みによりZ軸方向にも歪みが生じ、圧電素子はZ軸方向に変位が生じる。Z軸駆動電源9によりプラス極性の電圧を印加した場合には、厚みが増加する方向の歪みが生じ、その結果、Z軸沿って縮む方向に変位が生じる。逆にマイナス極性の電圧を印加した場合には、Z軸に沿って伸びる方向に変位が生じる。   When a voltage is applied to the Z-axis drive power supply 9 of the cylindrical piezoelectric actuator connected in this way, an attractive force or a repulsive force acts on the crystal inside the piezoelectric element according to the applied polarity, and distortion occurs in the thickness direction. This distortion also causes distortion in the Z-axis direction, and the piezoelectric element is displaced in the Z-axis direction. When a positive polarity voltage is applied by the Z-axis drive power source 9, distortion in the direction of increasing thickness occurs, and as a result, displacement occurs in the direction of contraction along the Z-axis. Conversely, when a negative polarity voltage is applied, displacement occurs in a direction extending along the Z axis.

また、X軸駆動電源10に電圧を印加すると結晶の極性が対向する電極(3a、4a)で異なっているため、一方は厚みが増加し、他方は厚みが減少する。その結果、中心軸に平行な方向で一方の電極は縮み、他方の電極は伸びる方向に変位し、円筒型圧電アクチュエータには末端の固定端を中心にX軸方向のたわみが生じ、先端は円弧運動を行う。ここで、円弧運動の変位が微小であるため、近似的にX軸に平行な方向に変位したとみなすことができる。X軸駆動電源10の電圧の極性を変化させることで中心軸に対して正負両方向に移動させることができる。Y軸についてもY軸駆動電源11を用いて対向する電極(5a、6a)に電圧を印加することで、X軸と同じ原理によりY軸方向に変位させることができる。その結果、X軸とY軸の印加電圧を制御することでXY平面内の任意の方向に圧電素子先端を動かすことが可能となる。本実施例では各軸の電極に印加する電圧は−200V以上+200V以下の範囲で駆動を行うことで、XY平面内で100μm、Z軸方向に10μm移動させることができる。ここで、4分割電極部(3a、4a、5a、6a)の対向する電極の極性を同じ極性とする円筒型圧電素子を使用してもよいが、この場合には円筒型圧電素子をたわみ変形させるために各軸に2つの電源を用いて互いに逆極性となる電圧を印加する必要があり、XYの2軸では合計4個の駆動電源が必要となる。本実施例のように、対向する電極(3a、4a)(5a、6a)の極性を異なるように分極することで各軸に1個、XYの2軸で合計2個の駆動電源で同一極性の電圧を印加することでXY面内の移動が実現できる。   Also, when a voltage is applied to the X-axis drive power supply 10, the polarity of the crystals differs between the opposing electrodes (3a, 4a), so that one increases in thickness and the other decreases in thickness. As a result, one electrode contracts in a direction parallel to the central axis and the other electrode displaces in an extending direction, and the cylindrical piezoelectric actuator undergoes deflection in the X-axis direction around the fixed end at the end, and the tip is a circular arc. Do exercise. Here, since the displacement of the arc motion is very small, it can be considered that the displacement is approximately in the direction parallel to the X axis. By changing the polarity of the voltage of the X-axis drive power supply 10, it can be moved in both positive and negative directions with respect to the central axis. The Y axis can also be displaced in the Y axis direction by applying the voltage to the opposing electrodes (5a, 6a) using the Y axis drive power supply 11 by the same principle as the X axis. As a result, it is possible to move the tip of the piezoelectric element in an arbitrary direction within the XY plane by controlling the voltage applied to the X axis and the Y axis. In this embodiment, the voltage applied to the electrodes of each axis can be moved by 100 μm in the XY plane and 10 μm in the Z-axis direction by driving in the range of −200V to + 200V. Here, a cylindrical piezoelectric element in which the polarities of the electrodes facing the four divided electrode portions (3a, 4a, 5a, 6a) are the same polarity may be used. In this case, the cylindrical piezoelectric element is bent and deformed. In order to achieve this, it is necessary to apply voltages having opposite polarities to each axis using two power supplies, and a total of four drive power supplies are required for the two XY axes. As in this embodiment, the polarities of the opposing electrodes (3a, 4a) (5a, 6a) are polarized differently, so that the same polarity is achieved with two driving power sources, one for each axis and two for XY in total. The movement in the XY plane can be realized by applying the voltage.

次に、本実施例の円筒型圧電アクチュエータの変位検出方法を説明する。圧電アクチュエータでは通常、サブナノメータ〜数百マイクロメータオーダの微小な変位を発生させる目的で使用され、圧電素子の歪みにより変位を測定する場合に要求される歪み測定精度は、通常10−8〜10−3程度である。このような微小歪みを高感度で測定するために、本実施例では半導体を抵抗体に使用した歪みゲージにより、歪みの計測を行った。   Next, a displacement detection method for the cylindrical piezoelectric actuator of this embodiment will be described. Piezoelectric actuators are usually used for the purpose of generating minute displacements on the order of sub-nanometers to several hundreds of micrometers, and the strain measurement accuracy required for measuring displacements due to the distortion of piezoelectric elements is usually 10-8 to 10-10. -3 or so. In order to measure such a small strain with high sensitivity, in this embodiment, the strain was measured by a strain gauge using a semiconductor as a resistor.

図3(a)(b)に本実施例で使用される歪みゲージの構造と圧電素子への固定方法を示す。図3(a)は図2(b)で圧電素子に取り付けられた歪みゲージRz1のA−A線断面図であり、図3(b)は歪みゲージRz1の正面図である。なお、本実施例の他の歪みゲージもすべて同じ構造である。この歪みゲージRz1は、圧電素子1の素子本体15の外周面に形成されたニッケル製の電極7上に、絶縁体である厚さ15μmのポリイミド樹脂製のベース材16を介してn型半導体で構成される線状の抵抗体17が取り付けられている。また、線状抵抗体17の一方の端と他方の端は、図3(b)に示されるように、ベース16上にニッケルでパターニングされた抵抗体接続用電極18に接続されている。抵抗体17と抵抗体接続用電極18はあらかじめベース材16にパターニングされて歪みゲージRz1を構成しており、ベース材16を圧電素子の電極部7にエポキシ系の接着剤で接着する。   FIGS. 3A and 3B show the structure of the strain gauge used in this embodiment and the fixing method to the piezoelectric element. 3A is a cross-sectional view taken along line AA of the strain gauge Rz1 attached to the piezoelectric element in FIG. 2B, and FIG. 3B is a front view of the strain gauge Rz1. All the other strain gauges of this embodiment have the same structure. The strain gauge Rz1 is an n-type semiconductor through a base material 16 made of a polyimide resin having a thickness of 15 μm as an insulator on an electrode 7 made of nickel formed on the outer peripheral surface of the element body 15 of the piezoelectric element 1. A configured linear resistor 17 is attached. Further, one end and the other end of the linear resistor 17 are connected to a resistor connecting electrode 18 patterned with nickel on the base 16, as shown in FIG. 3B. The resistor 17 and the resistor connecting electrode 18 are previously patterned on the base material 16 to form the strain gauge Rz1, and the base material 16 is bonded to the electrode portion 7 of the piezoelectric element with an epoxy adhesive.

Z軸の歪みを測定する歪みゲージ(Rz1、Rz3)は、内周面に設けられた帯状電極部2aに対して表面側に位置する外周面の帯状電極部7に2箇所、線状の抵抗体17の長手方向が中心軸と平行になるように接着される。これらの2つの抵抗体(Rz1、Rz3)は抵抗体接続用電極18を介して外部に設置されるZ軸変位検出装置9に接続される。   The strain gauges (Rz1, Rz3) for measuring the Z-axis strain are provided at two locations on the strip electrode portion 7 on the outer peripheral surface located on the surface side with respect to the strip electrode portion 2a provided on the inner peripheral surface. Bonding is performed so that the longitudinal direction of the body 17 is parallel to the central axis. These two resistors (Rz1, Rz3) are connected to the Z-axis displacement detector 9 installed outside via the resistor connecting electrode 18.

ここで、図4により、変位検出装置の検出原理を説明する。図4は圧電素子に貼り付けられる抵抗体と、外部の変位検出装置で構成される電気回路図である。変位検出装置は変位検出用の抵抗体と、変位検出装置内部で接続される固定抵抗を合計4つ使用してブリッジ回路が組まれる。ここで図4の各抵抗の番号は、各電極に貼られている変位検出用の抵抗体の番号に対応し、圧電素子に取り付けられる抵抗体以外は変位検出装置内部に設けられる固定抵抗となる。本発明の他の実施例についても図4の回路図を用いて圧電素子に取り付けられる各抵抗体の番号に対応させて説明する。   Here, the detection principle of the displacement detection device will be described with reference to FIG. FIG. 4 is an electric circuit diagram including a resistor attached to the piezoelectric element and an external displacement detection device. In the displacement detection device, a bridge circuit is formed by using a total of four displacement detection resistors and fixed resistors connected inside the displacement detection device. Here, the numbers of the resistors in FIG. 4 correspond to the numbers of the displacement detection resistors attached to the electrodes, and are fixed resistors provided inside the displacement detection device other than the resistors attached to the piezoelectric elements. . Other embodiments of the present invention will also be described in correspondence with the numbers of the respective resistors attached to the piezoelectric elements, using the circuit diagram of FIG.

Z電極の抵抗体(Rz1、Rz3)は図4の回路図のR1、R3の部分に組み込まれる。抵抗体(Rz1、Rz3)の抵抗値は120Ωである。またR2、R4には抵抗値120Ωの固定抵抗が組み込まれる。ここでブリッジ回路にブリッジ電圧Eを印加する。本実施例ではEは2Vとした。Eは直流でも交流でもよいが本実施例では30kHzの交流を用いて対ノイズ性を向上させた。
以上のように構成したZ軸変位検出装置12で、圧電素子に歪みεが生じた場合、出力電圧eは以下の式で表される。
e=KEε/2
ここで、Kは抵抗体の材質により決まるゲージ率であり、本実施例でも用いたn型半導体の場合には約−100である。なお、最も一般的に用いられる銅ニッケル合金などの金属材料の抵抗体を用いた歪みゲージではゲージ率は通常2程度であるため、半導体ゲージにすることで約50倍検出感度が向上する。
この式から、出力電圧Eを測定することにより歪み量εの測定が可能となり、測定される歪み量から圧電素子の変位が求まる。
The Z electrode resistors (Rz1, Rz3) are incorporated in the R1 and R3 portions of the circuit diagram of FIG. The resistance value of the resistors (Rz1, Rz3) is 120Ω. R2 and R4 incorporate a fixed resistor having a resistance value of 120Ω. Here, a bridge voltage E is applied to the bridge circuit. In this embodiment, E is 2V. E may be direct current or alternating current, but in this embodiment, 30 kHz alternating current was used to improve noise resistance.
In the Z-axis displacement detection device 12 configured as described above, when the strain ε is generated in the piezoelectric element, the output voltage e is expressed by the following equation.
e = KEε / 2
Here, K is a gauge factor determined by the material of the resistor, and is about −100 in the case of the n-type semiconductor used also in this embodiment. It should be noted that the strain rate using a resistor of a metal material such as a copper nickel alloy that is most commonly used usually has a gauge factor of about 2. Therefore, by using a semiconductor gauge, the detection sensitivity is improved about 50 times.
From this equation, by measuring the output voltage E, the strain amount ε can be measured, and the displacement of the piezoelectric element can be obtained from the measured strain amount.

また、4分割電極部のX電極(3a、4a)、Y電極(5a、6a)の表面側に位置する外周面の帯状電極部7にはそれぞれ2枚のゲージ(Rx1、Rx2)(Ry1、Ry2)が接着され、図4のR3、R4には固定抵抗が組み込まれる。各抵抗体の特性はZ電極と同じである。このときにX軸変位検出装置13およびY軸変位検出装置14の出力電圧eは以下の式で表される。
e=KEε/2
したがって、X軸、Y軸の変位も変位検出装置(13,14)の出力電圧により測定することができる。
In addition, two gauges (Rx1, Rx2) (Ry1, each of the strip electrode portions 7 on the outer peripheral surface located on the surface side of the X electrodes (3a, 4a) and the Y electrodes (5a, 6a) of the four-divided electrode portions Ry2) is bonded, and fixed resistors are incorporated in R3 and R4 of FIG. The characteristics of each resistor are the same as those of the Z electrode. At this time, output voltages e of the X-axis displacement detector 13 and the Y-axis displacement detector 14 are expressed by the following equations.
e = KEε / 2
Therefore, the displacement of the X axis and the Y axis can also be measured by the output voltage of the displacement detector (13, 14).

ここで、図5(a)(b)に従来の変位計付圧電アクチュエータの内周面と外周面の電極パターンと抵抗体の取り付け方法を示す。この従来技術は圧電素子の形状や電極の形状は図2(a)(b)の内側電極と外側電極を逆にしただけであり、原理的には同一の圧電素子であるために移動量は同一の特性を示す。この従来技術では円筒型圧電素子20の内周面は円周に沿って単一の帯状電極部21aが設けられ、外周面の先端部には内周面の帯状電極部21aにつながる折返し電極部21bが設けられ、折返し電極部21bの下側には円周に沿って帯状電極部22が設けられ、下側には円周に沿って4分割され中心軸に平行な方向に形成された4分割電極部(23、24、25、26)が設けられる。外周面の帯状電極部22はマイナス極性に、4分割電極部(23、24、25、26)は中心軸に対して対向する電極(23、24)(25、26)が逆の極性となるように分極処理が施されている。外周面にある内側電極の折り返し電極部21bをグランドに接続し、外周面の帯状電極部分22にZ軸駆動電源27が、4分割電極部の対応する2つの電極(23、24)(25、26)にX軸駆動電源28およびY軸駆動電源29が接続される。
また、圧電素子20の変位検出用の抵抗体は図2(b)で使用したものと同一の歪みゲージが用いられ、外周面の帯状電極部上22に2枚(Rz1、Rz3)と4分割電極部上(23、24、25、26)に各1枚ずつ(Rx1、Rx2、Ry1、Ry2)取り付けられる。各抵抗体はそれぞれZ軸変位検出装置、X軸変位検出装置、Y軸検出装置(図示せず)に接続されて、図4に示したブリッジ回路が組まれる。
Here, FIGS. 5A and 5B show a method of attaching the electrode patterns and resistors on the inner and outer peripheral surfaces of a conventional piezoelectric actuator with a displacement meter. In this prior art, the shape of the piezoelectric element and the shape of the electrode are merely the reverse of the inner electrode and the outer electrode in FIGS. 2 (a) and (b). Shows the same characteristics. In this prior art, the inner peripheral surface of the cylindrical piezoelectric element 20 is provided with a single strip electrode portion 21a along the circumference, and the folded electrode portion connected to the strip electrode portion 21a on the inner peripheral surface is provided at the distal end portion of the outer peripheral surface. 21b is provided, a strip electrode part 22 is provided along the circumference below the folded electrode part 21b, and a lower part 4 is formed in a direction parallel to the central axis by being divided into four along the circumference. Divided electrode portions (23, 24, 25, 26) are provided. The strip-like electrode portion 22 on the outer peripheral surface has a negative polarity, and the four-split electrode portions (23, 24, 25, 26) have opposite polarities to the electrodes (23, 24) (25, 26) facing the central axis. Thus, the polarization process is performed. The folded electrode portion 21b of the inner electrode on the outer peripheral surface is connected to the ground, and the Z-axis drive power supply 27 is connected to the belt-like electrode portion 22 on the outer peripheral surface with two corresponding electrodes (23, 24) (25, 26) is connected to an X-axis drive power supply 28 and a Y-axis drive power supply 29.
Further, the same strain gauge as that used in FIG. 2B is used as the displacement detection resistor of the piezoelectric element 20, and two pieces (Rz1, Rz3) are divided into four pieces on the belt-like electrode portion 22 on the outer peripheral surface. One piece (Rx1, Rx2, Ry1, Ry2) is attached on the electrode part (23, 24, 25, 26). Each resistor is connected to a Z-axis displacement detector, an X-axis displacement detector, and a Y-axis detector (not shown), and the bridge circuit shown in FIG. 4 is assembled.

図2と図5の変位計付圧電アクチュエータでは、Z軸については製作の都合上、図2(b)と図5(b)に示したように、分極の極性が異なるように製作したため、Z軸駆動電源(9、27)により同一の大きさで同じ極性の電圧を印加すると、同一の大きさで移動方向の異なる変位が得られ、X軸、Y軸については、図2(b)と図5(b)に示したように同じ極性となるように製作したため、駆動電源により同一の大きさで同じ極性の電圧を印加すると、同一の大きさで移動方向も等しい変位が得られる。   In the piezoelectric actuator with a displacement meter shown in FIGS. 2 and 5, the Z-axis is manufactured so that the polarities of polarization are different as shown in FIGS. 2B and 5B for the convenience of manufacture. When voltages of the same magnitude and the same polarity are applied by the shaft drive power supply (9, 27), different displacements in the moving direction are obtained with the same magnitude, and the X axis and Y axis are as shown in FIG. Since the electrodes are manufactured to have the same polarity as shown in FIG. 5B, when the same polarity and the same polarity voltage are applied by the driving power source, the same magnitude and displacement in the moving direction can be obtained.

ここで、図2(b)と図5(b)に示した圧電アクチュエータのZ軸の電極の2つの抵抗体のうちRz1のみを、図4に示したブリッジ回路のR1の部分に接続し、残りを固定抵抗とし、Z軸駆動電源27により電圧を印加した場合の出力を測定した。   Here, only Rz1 of the two resistors of the Z-axis electrode of the piezoelectric actuator shown in FIGS. 2 (b) and 5 (b) is connected to the R1 portion of the bridge circuit shown in FIG. The rest was fixed resistance, and the output when a voltage was applied by the Z-axis drive power supply 27 was measured.

図2の圧電アクチュエータ1には0〜−100V、0.12Hzの矩形波34を入力し、図5の圧電アクチュエータ20には0〜+100V、0.12Hzの矩形波33を入力し、図2と図5を同一方向に変位させた場合の歪みゲージRz1による変位検出結果と、圧電アクチュエータ(1、20)の先端の変位を別に設けた変位が正確に構成された光学式の変位計(インターフェロメータ)で測定した結果を図6(a)、図6(b)に示す。図6(a)は図2の抵抗体Rz1が設けられる電極7がグランド電位の場合であり、図6(b)は抵抗体Rz1が設けられる電極22に駆動電圧が印加される従来技術の場合である。ここで、歪みゲージの検出信号と変位計の検出信号はともに、電圧が増加する方向に動くと先端が縮む方向に変位する。図6(b)で測定した変位計による圧電素子の変位30を見ると、電圧印加によりある距離まで立ち上がった後、時間的に少しずつ変位が生じた方向にクリープしている様子が観察される。一方、図6(b)の抵抗体Rz1での変位検出装置の出力31を見ると、クリープの方向が圧電素子の変位方向30とは、まったく逆方向に動いている様子が観察される。一方、図6(a)の結果を見ると、抵抗体Rz1での変位検出装置の出力32は図6(b)の変位計で測定される圧電素子の変位30のクリープの方向と一致しており、圧電アクチュエータの変位が正確に測定されている。なお、今回の実験では装置作製時の都合で電極の分極の極性が逆となったため、図6(a)、図6(b)で駆動電圧は逆となっているが測定結果には影響しない。   A rectangular wave 34 of 0 to −100 V and 0.12 Hz is input to the piezoelectric actuator 1 of FIG. 2, and a rectangular wave 33 of 0 to +100 V and 0.12 Hz is input to the piezoelectric actuator 20 of FIG. FIG. 5 shows an optical displacement meter (interferometer) in which the displacement detection result by the strain gauge Rz1 and the displacement of the tip of the piezoelectric actuator (1, 20) are accurately configured. The results measured with a meter are shown in FIGS. 6 (a) and 6 (b). FIG. 6A shows the case where the electrode 7 provided with the resistor Rz1 in FIG. 2 is at the ground potential, and FIG. 6B shows the case of the prior art in which a drive voltage is applied to the electrode 22 provided with the resistor Rz1. It is. Here, both the detection signal of the strain gauge and the detection signal of the displacement meter are displaced in the direction in which the tip contracts when the voltage moves in the direction in which the voltage increases. When looking at the displacement 30 of the piezoelectric element by the displacement meter measured in FIG. 6B, it is observed that creeping in the direction in which the displacement occurs little by little after rising up to a certain distance by voltage application. . On the other hand, when the output 31 of the displacement detection device with the resistor Rz1 in FIG. 6B is seen, it is observed that the creep direction is moving in a direction completely opposite to the displacement direction 30 of the piezoelectric element. On the other hand, looking at the result of FIG. 6A, the output 32 of the displacement detection device at the resistor Rz1 coincides with the creep direction of the displacement 30 of the piezoelectric element measured by the displacement meter of FIG. 6B. The displacement of the piezoelectric actuator is accurately measured. In this experiment, the polarity of the electrode polarization was reversed due to the convenience of manufacturing the device. Therefore, the drive voltage was reversed in FIGS. 6A and 6B, but the measurement result was not affected. .

この結果は、図2の圧電アクチュエータ1に0〜+100V、0.12Hzの矩形波を、図5の圧電アクチュエータ20にZ軸駆動電源に0〜−100V、0.12Hzの矩形波を印加して逆の方向に変位させた場合も測定したが、同じ特性を示し、抵抗体Rz1の検出特性は歪みの方向や印加電圧の極性には無関係であった。   As a result, a rectangular wave of 0 to +100 V and 0.12 Hz was applied to the piezoelectric actuator 1 of FIG. 2, and a rectangular wave of 0 to −100 V and 0.12 Hz was applied to the Z-axis drive power source to the piezoelectric actuator 20 of FIG. Measurement was also performed when the electrode was displaced in the opposite direction, but the same characteristics were exhibited, and the detection characteristics of the resistor Rz1 were irrelevant to the direction of distortion and the polarity of the applied voltage.

これは、図5の従来の圧電アクチュエータ20では、Z軸駆動電源27が接続される圧電素子の帯状電極部22に絶縁体を介して抵抗体Rz1が接着されるため、圧電素子の電極22と抵抗体17または抵抗体につながる接続用電極部(図示せず)で絶縁体16がはさまれる構造となり、両者に電位差が発生し、あたかもコンデンサとして作用して、そのとき発生する静電容量成分がZ軸変位検出装置(図示せず)の信号に影響を与えるためである。図2の本発明のように抵抗体Rz1を設ける電極7をグランド電位とすることで、両者の電位差がほとんどなくなり、静電容量成分が発生せず正確な測定が可能となる。   In the conventional piezoelectric actuator 20 shown in FIG. 5, the resistor Rz1 is bonded to the band-like electrode portion 22 of the piezoelectric element to which the Z-axis drive power supply 27 is connected via an insulator. The insulator 17 is sandwiched between the resistor 17 or a connecting electrode portion (not shown) connected to the resistor, a potential difference is generated between the two, and it acts as a capacitor, and a capacitance component generated at that time This affects the signal of the Z-axis displacement detection device (not shown). By setting the electrode 7 provided with the resistor Rz1 as the ground potential as in the present invention of FIG. 2, there is almost no potential difference between them, and no capacitance component is generated, and accurate measurement is possible.

また、図2(b)と図5(b)の4分割電極部(3a、4a、5a、6a)(23、24、25、26)についても、X軸の対向する2つの電極(3a、4a)(23、24)とY軸の対向する2つの電極間(5a、6a)(25、26)に矩形波を印加し、各抵抗体単体(Rx1、Ry1、Rx2、Ry2)をブリッジ回路に組込み変位検出装置の出力を測定した。   In addition, for the four-divided electrode portions (3a, 4a, 5a, 6a) (23, 24, 25, 26) in FIGS. 2 (b) and 5 (b), two electrodes (3a, 4a) A rectangular wave is applied between (23, 24) and two electrodes (5a, 6a) (25, 26) facing each other on the Y axis, and each resistor unit (Rx1, Ry1, Rx2, Ry2) is bridged The output of the built-in displacement detector was measured.

プラス極性の電極(3a、5a、24、26)の歪みを測定する抵抗体(Rx2、Ry2)の出力を測定する場合には、0〜+100V、0.12Hzの矩形波43を印加し、マイナス極性の電極(4a、6a、23、25)の歪みを測定する抵抗体(Rx1、Ry1)の出力を測定する場合には、0〜−100V、0.12Hzの矩形波44を印加し、同一方向に変位を与えて測定を行った。
図5の従来の圧電アクチュエータ20での測定結果を図7(a)〜(d)に、図2の本発明の圧電アクチュエータ1での測定結果を図8(a)〜(d)に示す。歪みゲージの出力は電圧が増加する方向が圧電素子の縮む方向である。
When measuring the output of the resistor (Rx2, Ry2) that measures the distortion of the positive polarity electrodes (3a, 5a, 24, 26), a rectangular wave 43 of 0 to +100 V, 0.12 Hz is applied, When measuring the output of the resistors (Rx1, Ry1) that measure the distortion of the polar electrodes (4a, 6a, 23, 25), a rectangular wave 44 of 0 to −100 V, 0.12 Hz is applied and the same Measurements were made with displacement in the direction.
The measurement results with the conventional piezoelectric actuator 20 in FIG. 5 are shown in FIGS. 7A to 7D, and the measurement results with the piezoelectric actuator 1 of the present invention in FIG. 2 are shown in FIGS. In the output of the strain gauge, the direction in which the voltage increases is the direction in which the piezoelectric element contracts.

図7の結果を見ると、歪みゲージ(Rx1、Ry1、Rx2、Ry2)の出力信号(35、36、37、38)は、各電極の極性ごとにクリープの大きさが異なり、マイナス電極上の歪みゲージ(Rx1、Ry1)の出力信号(37、38)の方がプラス電極上の歪みゲージ(Rx2、Ry2)の出力信号(35、36)よりもクリープ量が大きくなり、極性が同じ電極上の出力特性(35、36)(37、38)は同じ特性となった。一方、図8の結果を見ると、抵抗体(Rx1、Ry1、Rx2、Ry2)が設けられる電極7がグランドに接続される場合には各抵抗体(Rx1、Ry1、Rx2、Ry2)が設けられる部分の内周面側の電極(3a、4a、5a、6a)の極性によらず出力信号(39、40、41、42)は同一のクリープ特性を示し、圧電素子1の先端の動きと歪みゲージ(Rx1、Ry1、Rx2、Ry2)の出力が一致した。
この理由もZ軸のときと同じく静電容量成分が歪みゲージの出力信号に影響を与えるためである。
From the results shown in FIG. 7, the output signals (35, 36, 37, 38) of the strain gauges (Rx1, Ry1, Rx2, Ry2) have different creep sizes depending on the polarity of each electrode. The output signals (37, 38) of the strain gauges (Rx1, Ry1) have a larger creep amount than the output signals (35, 36) of the strain gauges (Rx2, Ry2) on the positive electrode, and are on the same polarity. The output characteristics (35, 36) and (37, 38) were the same characteristics. On the other hand, referring to the result of FIG. 8, when the electrode 7 provided with the resistors (Rx1, Ry1, Rx2, Ry2) is connected to the ground, each resistor (Rx1, Ry1, Rx2, Ry2) is provided. Regardless of the polarity of the electrodes (3a, 4a, 5a, 6a) on the inner peripheral surface side of the part, the output signals (39, 40, 41, 42) show the same creep characteristics, and the movement and distortion of the tip of the piezoelectric element 1 The outputs of the gauges (Rx1, Ry1, Rx2, Ry2) matched.
This is also because the electrostatic capacitance component affects the output signal of the strain gauge as in the case of the Z axis.

なお、XY電極についても、プラス極性の電極(3a、5a、24、26)の歪みを測定する抵抗体(Rx2、Ry2)の出力を測定する場合に、0〜−100V、0.12Hzの矩形波を印加し、マイナス極性の電極(4a、6a、23、25)の歪みを測定する抵抗体(Rx1、Ry1)の出力を測定する場合には、0〜+100V、0.12Hzの矩形波を印加し、図7、図8とは逆方向に変位させたときの歪みゲージの出力を測定したがクリープ特性は同じ結果となり、抵抗体の検出特性は歪みの方向や印加電圧の極性には無関係であった。
また、ベース材の特性や湿度の影響などで絶縁抵抗が低い場合、リーク電流が流れてしまい測定精度が悪化することがあったが、抵抗体を設ける面がグランド電位であれば、リーク電流もほとんど発生しない。
したがって、本発明のように抵抗体を設ける面をグランド電位とすることで静電容量やリーク電流の影響を受けず、抵抗体により高精度で変位検出が可能な変位計付圧電アクチュエータが提供される。
As for the XY electrode, when measuring the output of the resistor (Rx2, Ry2) for measuring the distortion of the positive polarity electrodes (3a, 5a, 24, 26), a rectangular shape of 0 to −100 V, 0.12 Hz. When measuring the output of a resistor (Rx1, Ry1) that applies a wave and measures the distortion of the negative polarity electrodes (4a, 6a, 23, 25), a rectangular wave of 0 to +100 V, 0.12 Hz is used. The strain gauge output was measured when applied and displaced in the direction opposite to that shown in FIGS. 7 and 8, but the creep characteristics were the same, and the detection characteristics of the resistor were independent of the direction of strain and the polarity of the applied voltage. Met.
In addition, when the insulation resistance is low due to the characteristics of the base material or humidity, the leakage current may flow and the measurement accuracy may deteriorate. However, if the surface on which the resistor is provided is the ground potential, the leakage current will also be It hardly occurs.
Accordingly, there is provided a piezoelectric actuator with a displacement meter that can detect displacement with high accuracy by a resistor without being affected by capacitance or leakage current by setting the surface on which the resistor is provided as a ground potential as in the present invention. The

また、従来の圧電アクチュエータでは高電圧がかかる電極面に歪みゲージが取り付けられていたので、抵抗体や抵抗体に接続されるリード線の圧電素子に付随する電極への接触や、経時変化により抵抗体が設けられる絶縁体内部を介して抵抗体に接続される絶縁体上の抵抗体接続用の電極や抵抗体と、圧電素子の電極がつながってしまう現象が発生し、ショートにより抵抗体や検出装置が破損することがあったが、抵抗体が貼り付けられる電極がグランド電位となっているため、これらの事故を防止することができ信頼性や耐久性が向上する。   In addition, since a strain gauge is attached to the electrode surface to which a high voltage is applied in the conventional piezoelectric actuator, the resistance due to the contact of the resistor or the lead wire connected to the resistor to the electrode associated with the piezoelectric element, or the change over time. A phenomenon occurs in which the electrode for connecting the resistor on the insulator or the resistor on the insulator connected to the resistor through the inside of the insulator on which the body is provided is connected to the electrode of the piezoelectric element. Although the device may be damaged, since the electrode to which the resistor is attached is at the ground potential, these accidents can be prevented and the reliability and durability are improved.

また、抵抗体が設けられる電極がグランド電位であるため、変位検出装置自体のノイズレベルも低下する。さらに、この変位計付圧電アクチュエータを装置に組み込んだ場合には、圧電アクチュエータの外周面の電極のほとんどの部分がグランドに接続されているため圧電アクチュエータの周囲に配置される電気配線などにノイズが載ることが防止され、装置の対ノイズ性能が向上する。   Moreover, since the electrode provided with the resistor is at the ground potential, the noise level of the displacement detection device itself is also reduced. Furthermore, when this piezoelectric actuator with a displacement meter is incorporated in the device, most of the electrodes on the outer peripheral surface of the piezoelectric actuator are connected to the ground, so noise is generated in the electrical wiring and the like arranged around the piezoelectric actuator. It is prevented from being mounted, and the anti-noise performance of the apparatus is improved.

本発明に係る第二実施例の円筒型の変位計付圧電アクチュエータ50を図9(a)(b)に示す。図9(a)は内周面の展開図であり、図9(b)は外周面の展開図である。
本実施例では各軸に抵抗体を4個配置し、4個の抵抗体によりブリッジ回路を構成することで、測定感度を上げるとともに温度による抵抗体の見かけ歪みを補償するようにした。本実施例では、図9(a)に示すように、内周面の上端には後で述べる外周面の帯状電極部51aに接続される折返し電極部51bを設け、その下に帯状電極部52を設け、さらにその下に円周面を4分割して中心軸に平行な方向に形成される4分割電極部(53a、54a、55a、56a)を設けた。帯状電極部52はプラス電極に分極し、4分割電極部(53a、54a、55a、56a)は中心軸に対して対向する電極(53a、54a)(55a、56a)が逆の極性を持つように分極を行った。
外周面は図9(b)に示すように、下端部に内周面の4分割電極部(53a、54a、55a、56a)に接続される折返し電極部(53b、54b、55b、56b)が設けられ、その他の部分には単一の帯状電極51aが設けられる。
FIGS. 9A and 9B show a cylindrical piezoelectric actuator 50 with a displacement meter according to a second embodiment of the present invention. FIG. 9A is a development view of the inner peripheral surface, and FIG. 9B is a development view of the outer peripheral surface.
In this embodiment, four resistors are arranged on each axis, and a bridge circuit is constituted by the four resistors, thereby increasing measurement sensitivity and compensating for the apparent distortion of the resistor due to temperature. In this embodiment, as shown in FIG. 9A, a folded electrode portion 51b connected to a strip-shaped electrode portion 51a on the outer peripheral surface described later is provided at the upper end of the inner peripheral surface, and a strip-shaped electrode portion 52 is provided below the folded electrode portion 51b. Further, a four-divided electrode portion (53a, 54a, 55a, 56a) formed in a direction parallel to the central axis by dividing the circumferential surface into four is provided thereunder. The strip electrode portion 52 is polarized to a plus electrode, and the four-divided electrode portions (53a, 54a, 55a, 56a) are such that the electrodes (53a, 54a) (55a, 56a) facing the central axis have opposite polarities. Was polarized.
As shown in FIG. 9 (b), the outer peripheral surface has folded electrode portions (53b, 54b, 55b, 56b) connected to the four-divided electrode portions (53a, 54a, 55a, 56a) on the inner peripheral surface at the lower end portion. A single strip electrode 51a is provided in the other portions.

外周面の帯状電極部51aはグランドに接続され、外周面の4分割電極部(53a、54a、55a、56a)の折返し電極(53b、54b、55b、56b)は、それぞれ中心軸に対して対向する電極(53b、54b)(55b、56b)ごとにX軸駆動電源58とY軸駆動電源59が接続される。また、Z軸駆動電源57は、内周面の帯状電極部52に接続される。
圧電素子50の垂直方向の変位を検出するための抵抗体(Rz1、Rz2、Rz3、Rz4)は第一実施例と同じ仕様の歪みゲージが使用され、外周面のグランドに接続される帯状電極部51a上で内周面の帯状電極部52の表側の任意の位置に2箇所、線状の抵抗体17の長手方向と円筒の中心軸が平行となるように歪みゲージ(Rz1、Rz3)接着される。また、外周面の帯状電極部51a上で、内周面の折り返し電極部51bの表側にも、歪みゲージ(Rz2、Rz4)を2箇所接着する。
The belt-like electrode portion 51a on the outer peripheral surface is connected to the ground, and the folded electrodes (53b, 54b, 55b, 56b) of the four-divided electrode portions (53a, 54a, 55a, 56a) on the outer peripheral surface are opposed to the central axis, respectively. An X-axis drive power supply 58 and a Y-axis drive power supply 59 are connected to each of the electrodes (53b, 54b) (55b, 56b) to be performed. Further, the Z-axis drive power source 57 is connected to the strip electrode portion 52 on the inner peripheral surface.
The resistor (Rz1, Rz2, Rz3, Rz4) for detecting the displacement in the vertical direction of the piezoelectric element 50 uses a strain gauge having the same specifications as in the first embodiment, and is a strip electrode portion connected to the ground on the outer peripheral surface. Strain gauges (Rz1, Rz3) are bonded at two arbitrary positions on the front side of the strip electrode portion 52 on the inner peripheral surface on 51a so that the longitudinal direction of the linear resistor 17 and the central axis of the cylinder are parallel to each other. The In addition, two strain gauges (Rz2, Rz4) are bonded to the front side of the folded electrode portion 51b on the inner peripheral surface on the strip electrode portion 51a on the outer peripheral surface.

これらの歪みゲージ(Rz1、Rz2、Rz3、Rz4)は図4のブリッジ回路に接続される。本実施例でも、図9(b)の各歪みゲージに付けている番号が、図4の抵抗の番号に対応する。   These strain gauges (Rz1, Rz2, Rz3, Rz4) are connected to the bridge circuit of FIG. Also in this embodiment, the numbers assigned to the strain gauges in FIG. 9B correspond to the resistor numbers in FIG.

Z軸駆動電源57により、内周面の帯状電極部52に電圧を印加すると帯状電極部52はアクティブ電極として作用し、中心軸と平行な方向に変位が生じ、そのときの歪み量に応じて内周面の帯状電極部52の表側に貼り付けられた抵抗体Rz1、Rz3の抵抗値が変化する。これら2枚の抵抗体(Rz1、Rz3)は歪み測定用のアクティブゲージとして作用する。
一方、内周面の折返し電極部51bは外周面の帯状電極部51aに接続されているためダミー電極として作用し、歪みは発生しない。この部分に接着した2枚の抵抗体(Rz2、Rz4)は、温度補償用ダミーゲージとして使用する。歪みゲージによる測定では周囲の温度変化や抵抗体の発熱により抵抗値が変化し見かけ上の歪みが発生して測定精度が悪化してしまう。特に本実施例で使用する半導体ゲージでは感度が高い反面、温度による見かけ歪みが大きく、温度補償を行うことが好ましい。アクティブゲージ(Rz1、Rz3)で発生する見かけ歪みをダミーゲージ(Rz2、Rz4)で発生する見かけ歪みで相殺することで見かけ歪みに影響されず歪み量の測定が行われる。以上のように構成されたZ軸の変位検出装置の出力は以下の式で表される。
When a voltage is applied to the belt-like electrode portion 52 on the inner peripheral surface by the Z-axis drive power source 57, the belt-like electrode portion 52 acts as an active electrode, causing displacement in a direction parallel to the central axis, and depending on the amount of distortion at that time Resistance values of the resistors Rz1 and Rz3 attached to the front side of the strip-shaped electrode portion 52 on the inner peripheral surface change. These two resistors (Rz1, Rz3) act as an active gauge for strain measurement.
On the other hand, the folded electrode portion 51b on the inner peripheral surface is connected to the strip-shaped electrode portion 51a on the outer peripheral surface, so that it acts as a dummy electrode and no distortion occurs. Two resistors (Rz2, Rz4) bonded to this portion are used as temperature compensating dummy gauges. In measurement using a strain gauge, the resistance value changes due to a change in ambient temperature or the heat generated by the resistor, and an apparent distortion occurs, resulting in a deterioration in measurement accuracy. In particular, the semiconductor gauge used in this embodiment has high sensitivity, but apparent strain due to temperature is large, and it is preferable to perform temperature compensation. By offsetting the apparent strain generated in the active gauges (Rz1, Rz3) with the apparent strain generated in the dummy gauges (Rz2, Rz4), the amount of strain is measured without being influenced by the apparent strain. The output of the Z-axis displacement detector configured as described above is expressed by the following equation.

e=KEε/2
実施例1の歪みゲージ2枚のときと出力電圧自体は同じであるが、温度による見かけ歪みの影響がなく実施例1よりも測定精度が向上する。
なお、Z軸方向の歪みの検出は歪みゲージ4枚をすべてアクティブゲージに使用して、そのうち2枚の抵抗体を中心軸と平行に、残りの2枚の抵抗体を円周面に沿って接着することでe=1.6KEε/2程度の出力電圧が得られ、温度補償も可能であるが、本実施例で抵抗体に用いている半導体を曲面への取り付けた場合には正確な出力得られないため、このような接着方法が可能となるのは金属製の抵抗体のみであり、抵抗体を半導体とした場合には本実施例のようにダミーゲージ用の電極を用いることが有効である。
e = KEε / 2
The output voltage itself is the same as in the case of the two strain gauges of Example 1, but there is no influence of apparent strain due to temperature, and the measurement accuracy is improved as compared to Example 1.
For detecting strain in the Z-axis direction, all four strain gauges are used as active gauges, of which two resistors are parallel to the central axis and the remaining two resistors are along the circumferential surface. By bonding, an output voltage of about e = 1.6 KEε / 2 can be obtained and temperature compensation is possible. However, when the semiconductor used for the resistor in this embodiment is attached to a curved surface, an accurate output is possible. Since it is not possible to obtain such a bonding method, only a metal resistor can be used. When the resistor is a semiconductor, it is effective to use a dummy gauge electrode as in this embodiment. It is.

また、圧電素子の水平方向の変位を検出するための抵抗体は、4分割の各電極部(53a、54a、55a、56a)の表側の帯状電極部51aに各2枚ずつ線状の抵抗体17が中心軸と平行になるように接着される。このとき対向する2つの電極(53a、54a)(55a、56a)の表側に接着された合計4枚の抵抗体(Rx1、Rx2、Rx3、Rx4)(Ry1、Ry2、Ry3、Ry4)を図4のブリッジ回路に接続する。この場合も図9(b)の抵抗体の番号が図4の抵抗の番号に対応する。このように構成された各軸の変位検出装置の出力は以下の式で表される。
e=KEε
この式からわかるように、実施例1の歪みゲージ2枚でブリッジ回路を構成したときに比べて出力が2倍となり高感度の測定が行われる。しかも、各抵抗体で発生する見かけ歪みも相殺されて、温度補償も行うことが可能である。
Moreover, the resistor for detecting the displacement of the piezoelectric element in the horizontal direction is a linear resistor of two pieces each on the strip-like electrode part 51a on the front side of each of the four divided electrode parts (53a, 54a, 55a, 56a). Glue 17 so that it is parallel to the central axis. At this time, a total of four resistors (Rx1, Rx2, Rx3, Rx4) (Ry1, Ry2, Ry3, Ry4) bonded to the front side of the two opposing electrodes (53a, 54a) (55a, 56a) are shown in FIG. Connect to the bridge circuit. Also in this case, the resistor numbers in FIG. 9B correspond to the resistor numbers in FIG. The output of the displacement detector for each axis configured in this way is expressed by the following equation.
e = KEε
As can be seen from this equation, the output is doubled compared to the case where the bridge circuit is configured with two strain gauges of the first embodiment, and high sensitivity measurement is performed. In addition, the apparent distortion generated in each resistor is offset and temperature compensation can be performed.

なお、本実施例では4分割電極部(53a、54a、55a、56a)の表側に接着される歪みゲージ(Rx1、Rx2、Rx3、Rx4)(Ry1、Ry2、Ry3、Ry4)は2枚を平行に並べて接着したが、円筒型圧電素子の場合には、同じ電極上であれば場所に寄らず長手方向で同じ歪み量が得られるため、各電極の幅が小さく平行に並べて配置することが困難な場合には、各電極に接着される歪みゲージを2枚一直線に並べて接着してもよい。   In this embodiment, two strain gauges (Rx1, Rx2, Rx3, Rx4) (Ry1, Ry2, Ry3, Ry4) bonded to the front side of the four-divided electrode portions (53a, 54a, 55a, 56a) are parallel. However, in the case of a cylindrical piezoelectric element, the same amount of strain can be obtained in the longitudinal direction regardless of the location as long as it is on the same electrode, so it is difficult to arrange the electrodes in a small parallel arrangement. In such a case, two strain gauges bonded to each electrode may be aligned and bonded in a straight line.

図10(a)(b)に本発明の第三実施例の変位計付円筒型圧電アクチュエータ60を示す。図10(a)は内周面の電極の展開図、図10(b)は外周面の電極の展開図である。なお、圧電素子の駆動方向や変位検出方法は第一実施例や第二実施例と同じであるため構成のみ説明し動作については説明を省略する。   FIGS. 10A and 10B show a cylindrical piezoelectric actuator 60 with a displacement meter according to a third embodiment of the present invention. FIG. 10A is a development view of the electrode on the inner peripheral surface, and FIG. 10B is a development view of the electrode on the outer peripheral surface. The driving direction of the piezoelectric element and the displacement detection method are the same as those in the first and second embodiments, so only the configuration will be described and the description of the operation will be omitted.

本実施例の変位計付圧電アクチュエータ60は中心軸に対して平行な方向に変位するアクチュエータである。内周面には上下に2分割された帯状電極部(61b、62a)が設けられる。
上端の帯状電極部61bは折返し電極となっており外周面の帯状電極部61aに接続される。内周面の帯状電極部62aはプラスの極性に分極される。
The piezoelectric actuator 60 with a displacement meter of the present embodiment is an actuator that is displaced in a direction parallel to the central axis. The inner peripheral surface is provided with strip-like electrode portions (61b, 62a) which are divided into two parts in the vertical direction.
The strip electrode portion 61b at the upper end is a folded electrode and is connected to the strip electrode portion 61a on the outer peripheral surface. The strip-shaped electrode portion 62a on the inner peripheral surface is polarized to a positive polarity.

外周面には帯状電極部61aと、下端に内周面の帯状電極部62aに接続される折返し電極部62bが設けられる。   A strip electrode portion 61a is provided on the outer peripheral surface, and a folded electrode portion 62b connected to the strip electrode portion 62a on the inner peripheral surface is provided at the lower end.

外周面の帯状電極部61aはグランド電位に接続され、内周面の帯状電極部62aは外周面の折返し電極部62bを介してZ軸駆動電源63に接続される。   The strip electrode portion 61a on the outer peripheral surface is connected to the ground potential, and the strip electrode portion 62a on the inner peripheral surface is connected to the Z-axis drive power source 63 via the folded electrode portion 62b on the outer peripheral surface.

内周面の折返し電極61bはダミー電極として作用し、表面の外周面の帯状電極部61aには歪みゲージ(Rz2、Rz4)が2箇所接着される。これら2枚の歪みゲージ(Rz2、Rz4)は温度補償用のダミーゲージとして作用する。 また、内周面の帯状電極部62aはアクティブ電極として作用し、表面の外周面の帯状電極部61aにも2箇所の歪みゲージ(Rz1、Rz3)が接着され、これら2枚の歪みゲージ(Rz1、Rz3)がアクティブゲージとして作用する。   The folded electrode 61b on the inner peripheral surface acts as a dummy electrode, and two strain gauges (Rz2, Rz4) are bonded to the strip electrode portion 61a on the outer peripheral surface. These two strain gauges (Rz2, Rz4) act as dummy gauges for temperature compensation. Further, the strip electrode portion 62a on the inner peripheral surface acts as an active electrode, and two strain gauges (Rz1, Rz3) are bonded to the strip electrode portion 61a on the outer peripheral surface of the surface, and these two strain gauges (Rz1) , Rz3) acts as an active gauge.

これら4枚の歪みゲージ(Rz1、Rz2、Rz3、Rz4)が図4のブリッジ回路に接続され変位検出装置を構成する。この変位検出装置により、e=KEε/2 の大きさの出力が得られ、温度補償も行われる。   These four strain gauges (Rz1, Rz2, Rz3, Rz4) are connected to the bridge circuit of FIG. 4 to constitute a displacement detection device. With this displacement detection device, an output having a magnitude of e = KEε / 2 is obtained, and temperature compensation is also performed.

図11(a)(b)に本発明の第四実施例の変位計付円筒型圧電アクチュエータ70を示す。図11(a)は内周面の電極の展開図、図11(b)は外周面の電極の展開図である。   FIGS. 11A and 11B show a cylindrical piezoelectric actuator 70 with a displacement meter according to a fourth embodiment of the present invention. FIG. 11A is a development view of the electrode on the inner peripheral surface, and FIG. 11B is a development view of the electrode on the outer peripheral surface.

本実施例の変位計付圧電アクチュエータ70は中心軸に対して垂直な2次元平面内で駆動するアクチュエータである。内周面は円周に沿って4分割され中心軸と平行な方向に4分割電極(72a、73a、74a、75a)が設けられ、各電極は中心軸に対して対向する電極(72a、73a)(74a、75a)が異なる極性となるように分極が行われている。また、外周面には内周面の4分割電極部(72a、73a、74a、75a)に接続される折返し電極部(72b、73b、74b、75b)と、帯状電極部71が設けられる。
4分割電極部(72a、73a、74a、75a)の中心軸に対してそれぞれ対向する2つの電極(72a、73a)(74a、75a)が外周面の折返し電極部(72b、73b、74b、75b)を介してそれぞれX軸駆動電源76とY軸駆動電源77に接続されている。また、外周面の帯状電極部71はグランド電位に接続される。
4分割電極部の各電極(72a、73a、74a、75a)の裏側に位置する外周面の帯状電極部分71には、それぞれ2枚の歪みゲージ(Rx2、Rx4)(Rx1、Rx3)(Ry2、Ry4)(Ry1、Ry3)が接着される。中心軸に対して対向する2つの電極に接着された各軸合計4個の歪みゲージ(Rx1、Rx2、Rx3、Rx4)(Ry1、Ry2、Ry3、Ry4)が図4のブリッジ回路に接続されて変位検出装置を構成し、2軸方向の変位検出が行われる。
The piezoelectric actuator 70 with a displacement meter of the present embodiment is an actuator that is driven in a two-dimensional plane perpendicular to the central axis. The inner peripheral surface is divided into four along the circumference, and four divided electrodes (72a, 73a, 74a, 75a) are provided in a direction parallel to the central axis, and each electrode is an electrode (72a, 73a) facing the central axis. ) (74a, 75a) are polarized so as to have different polarities. On the outer peripheral surface, folded electrode portions (72b, 73b, 74b, 75b) connected to the four-divided electrode portions (72a, 73a, 74a, 75a) on the inner peripheral surface and a strip electrode portion 71 are provided.
Two electrodes (72a, 73a) (74a, 75a) facing the central axis of each of the four-divided electrode portions (72a, 73a, 74a, 75a) are folded electrode portions (72b, 73b, 74b, 75b) on the outer peripheral surface. ) To the X-axis drive power supply 76 and the Y-axis drive power supply 77, respectively. In addition, the strip electrode portion 71 on the outer peripheral surface is connected to the ground potential.
Two strips of the strain gauges (Rx2, Rx4) (Rx1, Rx3) (Ry2, Ry4) (Ry1, Ry3) are bonded. A total of four strain gauges (Rx1, Rx2, Rx3, Rx4) (Ry1, Ry2, Ry3, Ry4) bonded to two electrodes facing the central axis are connected to the bridge circuit of FIG. A displacement detection device is configured to detect the displacement in the biaxial direction.

図12(a)(b)に本発明の第五実施例の変位計付円筒型圧電アクチュエータ80を示す。図12(a)は内周面の電極の展開図、図12(b)は外周面の電極の展開図である。   12 (a) and 12 (b) show a cylindrical piezoelectric actuator 80 with a displacement meter according to a fifth embodiment of the present invention. FIG. 12A is a development view of electrodes on the inner peripheral surface, and FIG. 12B is a development view of electrodes on the outer peripheral surface.

本実施例の変位計付圧電アクチュエータ80は中心軸に対して垂直な2次元平面内で駆動するアクチュエータである。内周面は円周に沿って4分割され中心軸と平行な方向に4分割電極(82a、83a、84a、85a)が設けられる。各電極(82a、83a、84a、85a)はすべてプラス電極で同一の極性となるように分極が行われている。また、外周面には内周面の4分割電極部(82a、83a、84a、85a)に接続される折返し電極部(82b、83b、84b、85b)と、帯状電極部81が設けられる。
4分割電極部(82a、83a、84a、85a)は外周面の折返し電極部(82b、83b、84b、85b)を介してX軸駆動電源(86、87)とY軸駆動電源(88、89)が交互に接続される。また、外周面の帯状電極部81はグランド電位に接続される。
本実施例では、各軸に2台の電源(86、87)(88、89)を使用して互いに逆相の電圧を印加し中心軸に対してたわみを発生させて先端を2次元平面内で駆動させる。
4分割電極部(82a、83a、84a、85a)の各電極の表側に位置する外周面の帯状電極部分81には、それぞれ2枚の歪みゲージ(Rx2、Rx4)(Rx1、Rx3)(Ry2、Ry4)(Ry1、Ry3)が接着される。中心軸に対して対向する2つの電極に接着された各軸合計4個の歪みゲージ(Rx1、Rx2、Rx3、Rx4)(Ry1、Ry2、Ry3、Ry4)が図4のブリッジ回路に接続されて変位検出装置を構成し、2軸方向の変位検出が行われる。
The piezoelectric actuator 80 with a displacement meter of the present embodiment is an actuator that is driven in a two-dimensional plane perpendicular to the central axis. The inner peripheral surface is divided into four along the circumference, and quadrant electrodes (82a, 83a, 84a, 85a) are provided in a direction parallel to the central axis. Each electrode (82a, 83a, 84a, 85a) is a positive electrode and is polarized so as to have the same polarity. On the outer peripheral surface, there are provided folded electrode portions (82b, 83b, 84b, 85b) connected to the four-divided electrode portions (82a, 83a, 84a, 85a) on the inner peripheral surface, and a strip electrode portion 81.
The quadrant electrode portions (82a, 83a, 84a, 85a) are connected to the X-axis drive power source (86, 87) and the Y-axis drive power source (88, 89) via the folded electrode portions (82b, 83b, 84b, 85b) on the outer peripheral surface. ) Are alternately connected. Further, the belt-like electrode portion 81 on the outer peripheral surface is connected to the ground potential.
In this embodiment, two power supplies (86, 87) (88, 89) are applied to each axis to apply voltages of opposite phases to each other to generate a deflection with respect to the central axis, so that the tip is in a two-dimensional plane. Drive with.
Two strips of gauges (Rx2, Rx4) (Rx1, Rx3) (Ry2, Ry4) (Ry1, Ry3) are bonded. A total of four strain gauges (Rx1, Rx2, Rx3, Rx4) (Ry1, Ry2, Ry3, Ry4) bonded to two electrodes facing the central axis are connected to the bridge circuit of FIG. A displacement detection device is configured to detect the displacement in the biaxial direction.

図13(a)(b)に本発明の第六実施例の変位計付円筒型圧電アクチュエータ90を示す。図13(a)は内周面の電極の展開図、図13(b)は外周面の電極の展開図である。   13 (a) and 13 (b) show a cylindrical piezoelectric actuator 90 with a displacement meter according to a sixth embodiment of the present invention. FIG. 13A is a development view of the electrode on the inner peripheral surface, and FIG. 13B is a development view of the electrode on the outer peripheral surface.

本実施例の変位計付圧電アクチュエータ90は中心軸に平行な方向に変位を発生させるためのアクチュエータである。内周面は上端部に外周面の帯状電極部91aに接続される帯状の折返し電極部91bが設けられ、その下側に円周に沿って4分割され中心軸と平行な方向に形成される4分割電極部(92a、93a、94a、95a)が設けられる。4分割電極部(92a、93a、94a、95a)の各電極はすべてプラス電極で同一の極性となるように分極が行われている。また、外周面には内周面の4分割電極部(92a、93a、94a、95a)に接続される折返し電極部(92b、93b、94b、95b)と、帯状電極部91aが設けられる。
4分割電極部(92a、93a、94a、95a)は外周面の折返し電極部(92b、93b、94b、95b)を介してそれぞれ電極に1台ずつZ軸駆動電源(96、97、98、99)が接続される。また、外周面の帯状電極部91aはグランド電位に接続される。
The piezoelectric actuator 90 with a displacement meter of the present embodiment is an actuator for generating displacement in a direction parallel to the central axis. The inner peripheral surface is provided with a belt-like folded electrode portion 91b connected to the belt-like electrode portion 91a on the outer peripheral surface at the upper end portion, and is formed in a direction parallel to the central axis by being divided into four along the circumference. Quadrant electrode parts (92a, 93a, 94a, 95a) are provided. All the electrodes of the quadrant electrode portions (92a, 93a, 94a, 95a) are positive electrodes and are polarized so as to have the same polarity. On the outer peripheral surface, there are provided folded electrode portions (92b, 93b, 94b, 95b) connected to the four-divided electrode portions (92a, 93a, 94a, 95a) on the inner peripheral surface, and a strip electrode portion 91a.
One quadrant electrode portion (92a, 93a, 94a, 95a) is provided for each Z-axis drive power source (96, 97, 98, 99) via a folded electrode portion (92b, 93b, 94b, 95b) on the outer peripheral surface. ) Is connected. Further, the strip electrode portion 91a on the outer peripheral surface is connected to the ground potential.

本実施例では、4分割電極部(92a、93a、94a、95a)に接続される各Z電源駆動電源(92a、93a、94a、95a)から同一極性で同一の大きさの電圧を印加する。各電極部分(92a、93a、94a、95a)の圧電素子には同一方向の歪みが発生し、中心軸に平行な方向に圧電アクチュエータ90を駆動させることができる。ここで、圧電素子の加工精度などにより、同じ電圧を印加した場合でも中心軸に対して完全に平行には動作しない場合がある。このような場合には4分割電極部(92a、93a、94a、95a)に印加する電圧を調整して偏差分を補正することが可能であり直進性が確保される。   In the present embodiment, voltages having the same polarity and the same magnitude are applied from the respective Z power source driving power sources (92a, 93a, 94a, 95a) connected to the four-divided electrode portions (92a, 93a, 94a, 95a). The piezoelectric element of each electrode portion (92a, 93a, 94a, 95a) is distorted in the same direction, and the piezoelectric actuator 90 can be driven in a direction parallel to the central axis. Here, depending on the processing accuracy of the piezoelectric element, even when the same voltage is applied, it may not operate completely parallel to the central axis. In such a case, it is possible to correct the deviation by adjusting the voltage applied to the four-divided electrode portions (92a, 93a, 94a, 95a), and to ensure straightness.

本実施例ではアクティブ電極として作用する4分割電極部(92a、93a、94a、95a)の各電極の表側に位置する外周面の帯状電極部分91aには2枚の歪みゲージ(Rz1、Rz3)を接着しアクティブゲージとして作用させ、ダミー電極として作用する内周面の折り返し電極部91bの表側の外周面の帯状電極部91a上に2枚の歪みゲージ(Rz2、Rz4)を接着し温度補償用のダミーゲージとして使用する。これら4個の歪みゲージ(Rz1、Rz2、Rz3、Rz4)を図4のブリッジ回路に接続し変位検出装置を構成し、中心軸と平行な方向の変位検出が行われる。
ここで、図13、図14を例にとり、分割電極の製造方法を説明する。本実施例では2つの方法を用いて電極分割を行った。
1つめの方法は、内周面、外周面、および両端面すべてに電極を作製した後、加工により電極を除去して分割を行った。
電極の作製は、圧電体を円筒に成型後、脱脂洗浄を行い、触媒として作用するパラジウムを素子全面に吸着し乾燥させる。次にメッキ液に浸漬して無電解ニッケルメッキを行い、厚さ約3μmのニッケルを全面に設ける。
ダイヤモンドコートを施した工具により内周面および外周面のニッケル層と圧電体の表面の一部を削ることで分割電極を作製した。なお、外側電極の分割は比較的容易に行うことができるため、メッキ工程の際にマスキングテープなどで外周面のみ分割電極を作製しておくと作業時間が短縮される。
2つ目の方法は、電極を設けない部分にマスキングを施す方法で分割を行った。
この方法では、圧電体を円筒に成型後、脱脂洗浄を行った後、分割ラインに沿ってレジスト液を塗布し乾燥させる。次にパラジウムを吸着し乾燥させ、レジストを除去し、メッキ液に浸漬することでパラジウムが吸着している部分のみに選択的に無電解ニッケルメッキを行うことで分割電極を作製した。
なお、工程の順序を入れ替え、パラジウム吸着→レジスト塗布→無電解ニッケルメッキ→レジスト除去または、レジスト塗布→パラジウム吸着→無電解ニッケルメッキ→レジスト除去などの方法で分割を行うことも可能である。
なお、マスキングの種類はレジストに限定されず、マスキングテープや他のマスキング手法も使用できる。
また、電極の種類はニッケルに限定されず、銀や金、カーボンなど任意の導電体が使用できる。
これらの製造方法は本発明の他の実施例にも適用できる。
なお、実施例3と実施例6で使用される圧電素子はアクティブ電極を有する圧電素子とダミー電極を有する圧電素子を別体で構成し、セラミックスなどの接続部材を使って接着してもよい。この場合、内周面の分割工程を省略できて、一体成形する場合よりも製作が容易となる。
また、実施例1から6に示した圧電素子は、外周面のグランド電位に接続される電極を一様な帯状電極で構成したが、外周面の抵抗体が設けられる電極も分割して、銅線などで同電位になるように接続してグランド電位に接続してもよい。
In this embodiment, two strain gauges (Rz1, Rz3) are provided on the belt-like electrode portion 91a on the outer peripheral surface located on the front side of each electrode of the four-divided electrode portions (92a, 93a, 94a, 95a) that act as active electrodes. Adhering and acting as an active gauge, two strain gauges (Rz2 and Rz4) are adhered to the belt-like electrode portion 91a on the outer peripheral surface on the front side of the folded electrode portion 91b on the inner peripheral surface acting as a dummy electrode, for temperature compensation. Use as a dummy gauge. These four strain gauges (Rz1, Rz2, Rz3, Rz4) are connected to the bridge circuit of FIG. 4 to constitute a displacement detection device, and displacement detection in a direction parallel to the central axis is performed.
Here, the manufacturing method of a division | segmentation electrode is demonstrated taking FIG. 13, FIG. 14 as an example. In this embodiment, electrode division was performed using two methods.
In the first method, electrodes were prepared on all of the inner peripheral surface, the outer peripheral surface, and both end surfaces, and then divided by removing the electrodes by processing.
For the production of the electrode, the piezoelectric body is molded into a cylinder and then degreased and washed, and palladium acting as a catalyst is adsorbed on the entire surface of the element and dried. Next, it is immersed in a plating solution to perform electroless nickel plating, and nickel having a thickness of about 3 μm is provided on the entire surface.
A segmented electrode was fabricated by cutting a part of the nickel layer on the inner and outer peripheral surfaces and the surface of the piezoelectric body with a diamond-coated tool. Since the outer electrode can be divided relatively easily, the working time can be shortened if the divided electrode is formed only on the outer peripheral surface with a masking tape or the like in the plating step.
In the second method, division was performed by masking a portion where no electrode was provided.
In this method, a piezoelectric body is molded into a cylinder, degreased and washed, and then a resist solution is applied along a dividing line and dried. Next, palladium was adsorbed and dried, the resist was removed, and immersed in a plating solution to selectively perform electroless nickel plating only on the portion where palladium was adsorbed, thereby producing divided electrodes.
In addition, it is also possible to change the order of the steps and to divide by a method such as palladium adsorption → resist application → electroless nickel plating → resist removal or resist application → palladium adsorption → electroless nickel plating → resist removal.
Note that the type of masking is not limited to resist, and a masking tape or other masking technique can also be used.
Moreover, the kind of electrode is not limited to nickel, Arbitrary conductors, such as silver, gold | metal | money, and carbon, can be used.
These manufacturing methods can be applied to other embodiments of the present invention.
In addition, the piezoelectric element used in Example 3 and Example 6 may be configured by separately forming a piezoelectric element having an active electrode and a piezoelectric element having a dummy electrode, and bonding them using a connecting member such as ceramics. In this case, the process of dividing the inner peripheral surface can be omitted, and the manufacture becomes easier than in the case of integral molding.
In addition, in the piezoelectric elements shown in Examples 1 to 6, the electrode connected to the ground potential on the outer peripheral surface is formed of a uniform strip electrode, but the electrode provided with the resistor on the outer peripheral surface is also divided into copper electrodes. A line or the like may be connected so as to have the same potential, and may be connected to the ground potential.

図14(a)(b)と図15に本発明の第七実施例の変位計付円筒型圧電アクチュエータ100を示す。図14(a)は内周面の電極の展開図、図14(b)は外周面の電極の展開図である。図15は図14(b)の歪みゲージ取付部分のB−B断面図である。   14 (a), 14 (b) and 15 show a cylindrical piezoelectric actuator 100 with a displacement meter according to a seventh embodiment of the present invention. FIG. 14A is a development view of the electrode on the inner peripheral surface, and FIG. 14B is a development view of the electrode on the outer peripheral surface. FIG. 15 is a cross-sectional view taken along the line BB of the strain gauge mounting portion of FIG.

図14(a)に示すように内周面は単一の帯状電極部101aが設けられる。また図14(b)に示すように外周面には、内周面の帯状電極部101aにつながる折返し電極部101bと、帯状電極部103と、4分割電極部(104、105、106、107)から構成される。外周面の帯状電極部103はプラスの極性に分極され、4分割電極部(104、105、106、107)は中心軸に対して対向する電極(104、105)(106、107)がそれぞれ異なる極性となるように分極が行われる。   As shown in FIG. 14A, the inner peripheral surface is provided with a single strip electrode portion 101a. Further, as shown in FIG. 14B, on the outer peripheral surface, the folded electrode portion 101b connected to the strip-shaped electrode portion 101a on the inner peripheral surface, the strip-shaped electrode portion 103, and the four-divided electrode portions (104, 105, 106, 107). Consists of The belt-like electrode portion 103 on the outer peripheral surface is polarized to a positive polarity, and the four-divided electrode portions (104, 105, 106, 107) have different electrodes (104, 105) (106, 107) facing the central axis. Polarization is performed so as to be polar.

内周面の帯状電極部101aは外周面の折返し電極部101bを介してグランド電位に接続され、外周面の帯状電極部103はZ軸駆動電源110に接続され、4分割電極部(104、105、106、107)の中心軸に対してそれぞれ対向する2つの電極(104、105)(106、107)はそれぞれX軸駆動電源111とY軸駆動電源112に接続されている。   The strip electrode portion 101a on the inner peripheral surface is connected to the ground potential via the folded electrode portion 101b on the outer peripheral surface, and the strip electrode portion 103 on the outer peripheral surface is connected to the Z-axis drive power supply 110 and is divided into four divided electrode portions (104, 105). , 106, 107) are respectively connected to the X-axis drive power supply 111 and the Y-axis drive power supply 112, respectively.

本実施例では、図15に示されるように、外周面の帯状電極部103内の2箇所と、4分割電極部(104、105、106、107)の各電極部に1箇所、電極を設けない領域108を作り、圧電素子112に直接歪みゲージ(Rz1、Rz3、Rx1、Rx2、Ry1、Ry2)を接着した。歪みゲージのスペックや接着方法は第一実施例と同じである。これらは軸ごとに2枚の歪みゲージ(Rz1、Rz3)(Rx1、Rx2)(Ry1、Ry2)と2個の固定抵抗が図4のブリッジ回路に組み込まれ、変位検出装置を構成する。   In this embodiment, as shown in FIG. 15, two electrodes are provided in the strip-like electrode portion 103 on the outer peripheral surface and one electrode is provided in each electrode portion of the four-divided electrode portion (104, 105, 106, 107). The non-region 108 was formed, and strain gauges (Rz1, Rz3, Rx1, Rx2, Ry1, Ry2) were directly bonded to the piezoelectric element 112. The specifications of the strain gauge and the bonding method are the same as in the first embodiment. For each of these axes, two strain gauges (Rz1, Rz3) (Rx1, Rx2) (Ry1, Ry2) and two fixed resistors are incorporated in the bridge circuit of FIG. 4 to constitute a displacement detection device.

このように圧電素子に直接歪みゲージを接着することで歪みゲージのベース16の接着面側に圧電素子の電極(103、104、105、106、107)が存在しないので、静電容量が発生せず、歪みゲージの検出信号に静電容量が悪影響を及ぼすことがない。
また、内周面に分割電極を設ける場合に比べると、本実施例では外周面に分割電極を作製するため圧電素子の電極の作製が容易である。
なお、本実施例のように圧電素子に直接抵抗体を設ける場合には必ずしも絶縁性のベースを介して抵抗体を設ける必要はなく、圧電素子上に抵抗体を直接固着してもよい。
By directly bonding the strain gauge to the piezoelectric element in this manner, the piezoelectric element electrodes (103, 104, 105, 106, 107) do not exist on the bonding surface side of the strain gauge base 16, so that electrostatic capacity is not generated. Therefore, the capacitance does not adversely affect the detection signal of the strain gauge.
Compared with the case where the divided electrodes are provided on the inner peripheral surface, the present embodiment makes it easier to manufacture the electrodes of the piezoelectric element because the divided electrodes are formed on the outer peripheral surface.
When the resistor is directly provided on the piezoelectric element as in this embodiment, it is not always necessary to provide the resistor via an insulating base, and the resistor may be directly fixed on the piezoelectric element.

図16(a)(b)と図17に本発明の第八実施例の変位計付円筒型圧電アクチュエータ120を示す。図16(a)は内周面の電極の展開図、図16(b)は外周面の電極の展開図である。図17は図16(b)の歪みゲージ取付部分のC−C断面図である。   16 (a), 16 (b) and 17 show a cylindrical piezoelectric actuator 120 with a displacement meter according to an eighth embodiment of the present invention. FIG. 16A is a development view of the electrode on the inner peripheral surface, and FIG. 16B is a development view of the electrode on the outer peripheral surface. FIG. 17 is a cross-sectional view taken along the line CC of the strain gauge mounting portion of FIG.

図16(a)に示されるように、内周面は単一の帯状電極121aが設けられる。また図16(b)に示されるように外周面には、内周面の帯状電極部121aにつながる折返し電極部121bと、帯状電極部122と、4分割電極部(123、124、125、126)から構成される。外周面の帯状電極部122はプラスの極性に分極され、4分割電極部(123、124、125、126)は中心軸に対して対向する電極(123、124)(125、126)がそれぞれ異なる極性となるように分極が行われる。   As shown in FIG. 16A, the inner peripheral surface is provided with a single strip electrode 121a. Further, as shown in FIG. 16B, on the outer peripheral surface, the folded electrode portion 121b connected to the strip-shaped electrode portion 121a on the inner peripheral surface, the strip-shaped electrode portion 122, and the four-divided electrode portions (123, 124, 125, 126). ). The belt-like electrode portion 122 on the outer peripheral surface is polarized with a positive polarity, and the four-divided electrode portions (123, 124, 125, 126) are different from each other in the electrodes (123, 124) (125, 126) facing the central axis. Polarization is performed so as to be polar.

内周面の帯状電極部121aは外周面の折返し電極部121bを介してグランド電位に接続され、外周面の帯状電極部122はZ軸駆動電源129に接続され、4分割電極部(123、124、125、126)の中心軸に対してそれぞれ対向する2つの電極(123、124)(125、126)はそれぞれX軸駆動電源130とY軸駆動電源131に接続されている。   The belt-like electrode portion 121a on the inner circumferential surface is connected to the ground potential via the folded electrode portion 121b on the outer circumferential surface, and the belt-like electrode portion 122 on the outer circumferential surface is connected to the Z-axis drive power source 129 and is divided into four divided electrode portions (123, 124). , 125, 126), the two electrodes (123, 124) (125, 126) opposed to the central axis are connected to the X-axis drive power supply 130 and the Y-axis drive power supply 131, respectively.

本実施例では、図17に示したように、外周面の帯状電極部122内の2箇所と、4分割電極部(123、124、125、126)の各電極部に1箇所に、各電極とは独立した歪みゲージ取付用の電極128を作り、歪みゲージ取付用の電極128上に歪みゲージ(Rz1、Rz3、Rx1、Rx2、Ry1、Ry2)を接着した。歪みゲージのスペックや接着方法は第一実施例と同じである。これらは軸ごとに2枚の歪みゲージ(Rz1、Rz3)(Rx1、Rx2)(Ry1、Ry2)と2個の固定抵抗が図4のブリッジ回路に組み込まれ、変位検出装置を構成する。   In this embodiment, as shown in FIG. 17, each electrode is provided at two locations in the belt-like electrode portion 122 on the outer peripheral surface and at one location on each electrode portion of the four-divided electrode portions (123, 124, 125, 126). An electrode 128 for attaching a strain gauge independent from the above was prepared, and strain gauges (Rz1, Rz3, Rx1, Rx2, Ry1, Ry2) were bonded onto the electrode 128 for attaching a strain gauge. The specifications of the strain gauge and the bonding method are the same as in the first embodiment. For each of these axes, two strain gauges (Rz1, Rz3) (Rx1, Rx2) (Ry1, Ry2) and two fixed resistors are incorporated in the bridge circuit of FIG. 4 to constitute a displacement detection device.

ここで、歪みゲージ取付用電極部128はグランドに接続してもよいが、本実施例では抵抗体17に印加される電圧と同電位にした。このように歪みゲージ取付用電極128を圧電素子の駆動用電源(129、130、131)に接続される電極(122、123、124、125、126)とは独立に設けてその上に歪みゲージ(Rz1、Rz3、Rx1、Rx2、Ry1、Ry2)を接着することで、歪みゲージ貼り付け部分に静電容量が発生せず、歪みゲージの検出信号に静電容量が悪影響を及ぼすことがない。
本実施例では歪みゲージのベース材16上の抵抗体17や抵抗体接続用電極(図示せず)と歪みゲージ取付用電極部128が同電位になっているので、歪みゲージ取付用電極部128をグランドに接続する場合よりもさらに静電容量の影響を排除することが可能である。
このように歪みゲージ取付用電極部の電位を抵抗体に印加する電圧と同電位にする方法は本発明の他の実施例でグランドに電極を接続する代わりに適用することも可能である。
Here, although the strain gauge attaching electrode portion 128 may be connected to the ground, in this embodiment, it is set to the same potential as the voltage applied to the resistor 17. As described above, the strain gauge mounting electrode 128 is provided independently of the electrodes (122, 123, 124, 125, 126) connected to the driving power sources (129, 130, 131) of the piezoelectric element, and the strain gauge is provided thereon. By adhering (Rz1, Rz3, Rx1, Rx2, Ry1, Ry2), no electrostatic capacitance is generated in the strain gauge attaching portion, and the electrostatic capacitance does not adversely affect the strain gauge detection signal.
In this embodiment, since the resistor 17 on the strain gauge base material 16 and the resistor connecting electrode (not shown) and the strain gauge attaching electrode portion 128 are at the same potential, the strain gauge attaching electrode portion 128. It is possible to further eliminate the influence of the electrostatic capacity than when connecting to the ground.
Thus, the method of setting the potential of the strain gauge mounting electrode portion to the same potential as the voltage applied to the resistor can be applied instead of connecting the electrode to the ground in another embodiment of the present invention.

図18に本発明の第九実施例のバイモルフ型の変位計付圧電アクチュエータ140を示す。
バイモルフ型圧電アクチュエータ140はりん青銅などの弾性体からなる板状弾性部材141の両面に長手方向で互いに逆方向の歪みが発生するように分極処理が施された2枚の板状の圧電素子(142、143)を固着し、双方の圧電素子(142、143)に歪みを発生させることで支持点149に対して曲げ変形を発生させるアクチュエータである。上下面の圧電素子(142、143)は表面側と弾性体に接着される側に電極(144、145、146、147)が設けられる。
FIG. 18 shows a bimorph type piezoelectric actuator 140 with a displacement meter according to a ninth embodiment of the present invention.
The bimorph piezoelectric actuator 140 includes two plate-like piezoelectric elements (both of which are polarized so that distortions in the opposite directions in the longitudinal direction are generated on both surfaces of a plate-like elastic member 141 made of an elastic material such as phosphor bronze). 142, 143) is fixed, and the piezoelectric element (142, 143) is distorted to generate distortion, thereby causing the support point 149 to bend. The upper and lower piezoelectric elements (142, 143) are provided with electrodes (144, 145, 146, 147) on the surface side and the side bonded to the elastic body.

本実施例では弾性体141の上下の面に接着される圧電素子(142、143)の表面側電極(144、145)にそれぞれ2枚ずつの歪みゲージ(R1、R2)( R3、R4)を長軸方向の歪みが計測可能なように接着し合計4個の歪みゲージ(R1、R2、R3、R4)によりブリッジ回路を組み、曲げ方向の変位を検出するように構成した。   In this embodiment, two strain gauges (R1, R2) (R3, R4) are provided on the surface side electrodes (144, 145) of the piezoelectric elements (142, 143) bonded to the upper and lower surfaces of the elastic body 141, respectively. Bonding was performed so that the strain in the major axis direction could be measured, and a bridge circuit was assembled with a total of four strain gauges (R1, R2, R3, R4) to detect displacement in the bending direction.

本実施例で使用する歪みゲージ(R1、R2、R3、R4)は、フェノール樹脂とエポキシ樹脂を混合した厚さ15μmの絶縁体のベース材上に銅ニッケル合金で抵抗体をパターニングした金属抵抗体の歪みゲージを使用した。抵抗値は120Ω、ゲージ率は2である。
ここで、本実施例では、歪みゲージ(R1、R2、R3、R4)が貼り付けられる電極(144、145)をグランド電位とし、弾性体との接合面側の電極(146、147)に駆動電源148を接続するようにした。
The strain gauge (R1, R2, R3, R4) used in this example is a metal resistor in which a resistor is patterned with a copper nickel alloy on an insulating base material having a thickness of 15 μm mixed with a phenol resin and an epoxy resin. The strain gauge was used. The resistance value is 120Ω and the gauge factor is 2.
Here, in this embodiment, the electrodes (144, 145) to which the strain gauges (R1, R2, R3, R4) are attached are set to the ground potential, and are driven to the electrodes (146, 147) on the joint surface side with the elastic body. A power source 148 was connected.

このように接続することで、歪みゲージ(R1、R2、R3、R4)部分に静電容量が発生せず、変位検出信号を静電容量成分の影響なく検出することができ、検出精度が向上する。
なお、弾性体の片面のみに圧電素子を固着してユニモルフ型の圧電アクチュエータとすることもできる。
By connecting in this way, no capacitance is generated in the strain gauge (R1, R2, R3, R4) portion, the displacement detection signal can be detected without the influence of the capacitance component, and the detection accuracy is improved. To do.
A unimorph type piezoelectric actuator can be formed by fixing a piezoelectric element only to one surface of the elastic body.

図19に本発明の第十実施例の積層型の変位計付圧電アクチュエータ150を示す。積層型圧電アクチュエータ150は厚み方向に分極処理が施された膜状圧電素子151と電極(151、152)を交互に積層して形成される。隣り合う膜状圧電素子151の分極の極性は互いに逆になるように配置される。膜状の圧電素子151の上下の電極はそれぞれ積層型圧電素子の側面に設けられた電極(152、153)に交互に接続される。この側面の一方の電極153がグランドに、他方の電極152は駆動電源156に接続される。   FIG. 19 shows a laminated piezoelectric actuator 150 with a displacement meter according to a tenth embodiment of the present invention. The laminated piezoelectric actuator 150 is formed by alternately laminating film-like piezoelectric elements 151 and electrodes (151 and 152) that are polarized in the thickness direction. Adjacent film-like piezoelectric elements 151 are arranged such that the polarities of polarization are opposite to each other. The upper and lower electrodes of the film-like piezoelectric element 151 are alternately connected to electrodes (152, 153) provided on the side surfaces of the multilayer piezoelectric element. One electrode 153 on this side is connected to the ground, and the other electrode 152 is connected to the drive power source 156.

グランド電極に接続される電極153には、ベース材155と抵抗体154で構成される実施例9で使用したものと同じ歪みゲージR1が長手方向の歪みを検出可能なように接着される。この歪みゲージR1を変位検出装置に接続することで積層型圧電アクチュエータ150の変位を検出することができる。
この実施例の場合にも、歪みゲージR1はグランド電極側に接続されているので歪みゲージR1の取付部分に静電容量が発生せず、変位検出信号が静電容量成分の影響を受けずに検出することができ、検出精度が向上する。
To the electrode 153 connected to the ground electrode, the same strain gauge R1 composed of the base material 155 and the resistor 154 as used in the ninth embodiment is bonded so that the strain in the longitudinal direction can be detected. By connecting the strain gauge R1 to the displacement detection device, the displacement of the multilayer piezoelectric actuator 150 can be detected.
Also in this embodiment, since the strain gauge R1 is connected to the ground electrode side, no capacitance is generated at the mounting portion of the strain gauge R1, and the displacement detection signal is not affected by the capacitance component. The detection accuracy can be improved.

図20に変位計付圧電アクチュエータを用いた位置決め装置の一例として、実施例2の圧電アクチュエータ50を使用して走査型プローブ顕微鏡160を構成したものを示す。
本実施例では、図9に示した圧電アクチュエータ50の末端をベース173に固定し、先端にサンプルホルダ172を固定し、三軸微動機構として使用する。
FIG. 20 shows a configuration of a scanning probe microscope 160 using the piezoelectric actuator 50 of the second embodiment as an example of a positioning apparatus using a piezoelectric actuator with a displacement meter.
In this embodiment, the end of the piezoelectric actuator 50 shown in FIG. 9 is fixed to the base 173, and the sample holder 172 is fixed to the tip, which is used as a three-axis fine movement mechanism.

サンプルホルダ172上に載置したサンプル171と対向する側には先端に探針170を有するカンチレバー169がカンチレバーホルダ168に固定されて配置されている。
カンチレバー169の変位は半導体レーザ165と集光レンズ166およびフォトディテクタ167から構成される光てこ方式の変位検出機構164により測定される。
On the side facing the sample 171 placed on the sample holder 172, a cantilever 169 having a probe 170 at the tip is fixed to the cantilever holder 168.
The displacement of the cantilever 169 is measured by an optical lever type displacement detection mechanism 164 including a semiconductor laser 165, a condensing lens 166, and a photodetector 167.

本実施例では、探針170とサンプル171を原子間力の作用する領域まで接近させて、変位計付圧電アクチュエータ50の4分割電極部(53a、54a、55a、56a)を使用してサンプル面内と平行な方向にラスタスキャンを行いながら、探針170とサンプル171の距離が一定となるように変位検出機構164の信号により帯状電極部52を使用してサンプル面内と垂直な方向のフィードバック制御を行う。   In the present embodiment, the probe surface 170 and the sample 171 are brought close to the region where the atomic force acts, and the sample surface is used by using the quadrant electrode portions (53a, 54a, 55a, 56a) of the piezoelectric actuator 50 with a displacement meter. While performing a raster scan in a direction parallel to the inside, feedback is made in a direction perpendicular to the sample plane using the strip electrode unit 52 by a signal from the displacement detection mechanism 164 so that the distance between the probe 170 and the sample 171 is constant. Take control.

このとき、XY方向の動作は各軸に設けられた歪みゲージ(Rx1,Rx2,Rx3,Rx4)(Ry1,Ry2,Ry3,Ry4)により、X軸変位検出装置162とY軸変位検出装置163で測定される変位から、圧電アクチュエータ50へ X軸駆動電源58とY軸駆動電源59により印加する駆動電圧に対して線形に動作するようにフィードバック制御される。
このように構成された走査型プローブ顕微鏡160でXYに印加される信号を2次元平面の情報として、Z軸に取り付けられる歪みゲージ(Rz1、Rz2、Rz3、Rz4)によりZ軸変位検出装置161で検出される変位信号を高さ情報として画像化することで、3次元の凹凸形状を測定することが可能である。
At this time, the movement in the XY directions is performed by the X-axis displacement detection device 162 and the Y-axis displacement detection device 163 by the strain gauges (Rx1, Rx2, Rx3, Rx4) (Ry1, Ry2, Ry3, Ry4) provided on each axis. From the measured displacement, feedback control is performed so as to operate linearly with respect to the drive voltage applied to the piezoelectric actuator 50 by the X-axis drive power supply 58 and the Y-axis drive power supply 59.
The Z-axis displacement detector 161 uses a strain gauge (Rz1, Rz2, Rz3, Rz4) attached to the Z-axis as a signal applied to XY by the scanning probe microscope 160 configured in this way as information on a two-dimensional plane. A three-dimensional uneven shape can be measured by imaging the detected displacement signal as height information.

なお、Z軸については、Z軸変位検出装置161の信号を画像化すれば、印加電圧に対してZ軸の移動量を線形動作させなくても正確な高さ情報の測定が可能であるが、Z軸の駆動電圧に対して変位量を線形動作させるようにフィードバック制御させた場合にはZ軸駆動電源57によりZ軸に印加される電圧を高さ情報として表示させることも可能である。   As for the Z axis, if the signal of the Z axis displacement detection device 161 is imaged, accurate height information can be measured without linearly moving the Z axis with respect to the applied voltage. When feedback control is performed so that the displacement amount is linearly operated with respect to the Z-axis drive voltage, the voltage applied to the Z-axis by the Z-axis drive power supply 57 can be displayed as height information.

図21に変位計付圧電アクチュエータを用いた位置決め装置の一例として、実施例3と実施例4の圧電アクチュエータ(60、70)を組み合わせて走査型プローブ顕微鏡180を構成した例を示す。
本実施例では、図11に示した水平方向駆動用の圧電アクチュエータ70の末端をベース(図示せず)に固定し、先端側に固定用部材184を介してさらに図10に示した垂直方向駆動用の圧電アクチュエータ60を接続し、垂直方向駆動用の圧電アクチュエータ60の先端にカンチレバーホルダ185を設け、先端に探針191を有するカンチレバー190を固定し、三軸微動機構として使用する。
FIG. 21 shows an example in which a scanning probe microscope 180 is configured by combining the piezoelectric actuators (60, 70) of Example 3 and Example 4 as an example of a positioning device using a piezoelectric actuator with a displacement meter.
In the present embodiment, the end of the horizontal driving piezoelectric actuator 70 shown in FIG. 11 is fixed to a base (not shown), and the vertical driving shown in FIG. A piezoelectric actuator 60 is connected, a cantilever holder 185 is provided at the tip of the piezoelectric actuator 60 for vertical driving, and a cantilever 190 having a probe 191 is fixed at the tip, which is used as a three-axis fine movement mechanism.

探針191に対向する側にはサンプルホルダ193を設け、サンプル192を載置する。
カンチレバー190の変位は半導体レーザ187と集光レンズ188およびフォトディテクタ189から構成される光てこ方式の変位検出機構186により測定される。
本実施例での動作は第11実施例がサンプル171をスキャンさせるのに対して、本実施例ではカンチレバー190をスキャンさせる以外の動作は実施例11と同じであるので説明は省略する。
A sample holder 193 is provided on the side facing the probe 191 and a sample 192 is placed thereon.
The displacement of the cantilever 190 is measured by an optical lever type displacement detection mechanism 186 composed of a semiconductor laser 187, a condenser lens 188 and a photodetector 189.
The operation of this embodiment is the same as that of the eleventh embodiment except that the eleventh embodiment scans the sample 171. In this embodiment, the operation other than the scanning of the cantilever 190 is the same as that of the eleventh embodiment.

円筒型圧電素子の内周面に分割電極を作製する場合には、外周面に作製する場合に比べて電極の分割に技術を要するが、本実施例のように水平方向微動機構70と垂直方向微動機構60を分割して構成することで、単体の円筒型圧電アクチュエータ(60、70)の内部電極の分割領域が少なくなり作製を容易に行うことができる。
また、実施例11、実施例12のように円筒型圧電アクチュエータの外周面の電極(71、61a)をグランドに接続することで歪みゲージの検出信号はもちろんのこと、円筒型圧電アクチュエータの周囲に配置される配線材や電気部品などへのノイズの混入が低減され、その結果、測定データのノイズレベルが少なくなる。特に走査型プローブ顕微鏡でサンプル表面の電気的特性の測定を行う場合には効果的である。
また、歪みゲージの配線材以外にも、周囲に配置される他の配線材や電気部品と圧電アクチュエータの電極がショートすることも防止される。
When a divided electrode is manufactured on the inner peripheral surface of a cylindrical piezoelectric element, a technique is required for dividing the electrode as compared with the case of manufacturing on an outer peripheral surface. However, as in this embodiment, the horizontal fine movement mechanism 70 and the vertical direction are required. By dividing the fine movement mechanism 60, the divided area of the internal electrode of the single cylindrical piezoelectric actuator (60, 70) is reduced, and the fabrication can be easily performed.
Further, by connecting the electrodes (71, 61a) on the outer peripheral surface of the cylindrical piezoelectric actuator to the ground as in the case of the eleventh and twelfth examples, not only the strain gauge detection signal but also around the cylindrical piezoelectric actuator. Mixing of noise into the wiring materials and electrical components to be arranged is reduced, and as a result, the noise level of the measurement data is reduced. This is particularly effective when measuring the electrical characteristics of the sample surface with a scanning probe microscope.
Further, in addition to the strain gauge wiring material, other wiring materials and electrical components arranged around the electrode of the piezoelectric actuator can be prevented from being short-circuited.

なお、本発明は以上述べてきたような実施例に限定されるものではない。
圧電素子の形状は任意のものが使用できる。圧電素子上の電極も導電性があればニッケルの他、銅や銀や金など他の材質でも使用可能である。また圧電素子の製造段階で電極上に絶縁コートが施されており、その上に絶縁体のベースに固着された抵抗体を貼り付ける場合にも実質的な構造は本発明と同じであるため本発明に含まれる。
また、抵抗体の材料も任意であり、実施例で紹介したn型半導体や銅ニッケル合金の他、ニクロム系合金や、p型半導体、n型とp型を組み合わせた半導体なども使用できる。また抵抗体の形状も直線形状に限定されず任意の形状のものが使用できる。
またや抵抗体が設けられる絶縁体のベース材も、ポリイミド樹脂やフェノールエポキシ混合樹脂の他、紙や、フェノール樹脂、エポキシ樹脂など任意絶縁材料が使用できる。またベース材の固定方法も必ずしも接着に限定されず、SiO2などの蒸着、あるいは絶縁性の接着剤自体をベース材にしてその上に抵抗体を直接設けてもよい。また、本発明の変位計付圧電アクチュエータが使用される位置決め装置は、走査型プローブ顕微鏡用以外にも、例えば光学顕微鏡やレーザ顕微鏡、半導体製造装置、半導体検査装置、工作機械、OA機器、AV機器、光学機器などにさまざまな装置に適用可能である。
The present invention is not limited to the embodiments described above.
Any shape of the piezoelectric element can be used. As long as the electrode on the piezoelectric element is conductive, other materials such as copper, silver and gold can be used in addition to nickel. In addition, when an insulating coat is applied on the electrode at the manufacturing stage of the piezoelectric element, and a resistor fixed to the base of the insulator is stuck on the electrode, the substantial structure is the same as that of the present invention. Included in the invention.
The material of the resistor is also arbitrary, and besides the n-type semiconductor and the copper-nickel alloy introduced in the embodiments, a nichrome-based alloy, a p-type semiconductor, a semiconductor combining n-type and p-type, and the like can be used. Also, the shape of the resistor is not limited to a linear shape, and an arbitrary shape can be used.
In addition, as the base material of the insulator on which the resistor is provided, any insulating material such as paper, phenol resin, and epoxy resin can be used in addition to polyimide resin and phenol-epoxy mixed resin. Also, the fixing method of the base material is not necessarily limited to adhesion, and a resistor may be provided directly on the base material by using a vapor deposition such as SiO 2 or an insulating adhesive itself. In addition to the scanning probe microscope, the positioning device in which the piezoelectric actuator with a displacement meter of the present invention is used is, for example, an optical microscope, a laser microscope, a semiconductor manufacturing apparatus, a semiconductor inspection apparatus, a machine tool, OA equipment, and AV equipment. It can be applied to various devices such as optical instruments.

本発明の第一実施例に係る円筒型の変位計付圧電アクチュエータの概観図である。It is a general-view figure of the cylindrical type piezoelectric actuator with a displacement meter which concerns on 1st Example of this invention. (a)本発明の第一実施例で使用される円筒型圧電素子の内周面の展開図である。(b)本発明の第一実施例で使用される円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element used by the 1st Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element used by the 1st Example of this invention. (a)図2(b)のA−A線断面図である。(b)図3(a)の正面図である。(A) It is the sectional view on the AA line of FIG.2 (b). (B) It is a front view of Fig.3 (a). 変位検出装置の回路図である。It is a circuit diagram of a displacement detection apparatus. (a)従来の円筒型圧電素子の内周面の展開図である。(b)従来の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the conventional cylindrical piezoelectric element. (B) It is an expanded view of the outer peripheral surface of the conventional cylindrical piezoelectric element. (a)図2の本発明の円筒型の変位計付圧電アクチュエータのZ軸に矩形波を印加したときの歪みゲージの検出データである。(b)図5の従来の円筒型の変位計付圧電アクチュエータのZ軸に矩形波を印加したときのインターフェロメータで測定された変位のデータと、歪みゲージの検出データである。(A) It is the detection data of a strain gauge when a rectangular wave is applied to the Z-axis of the cylindrical piezoelectric actuator with a displacement meter of the present invention in FIG. (B) Displacement data measured by an interferometer when a rectangular wave is applied to the Z axis of the conventional cylindrical piezoelectric actuator with a displacement meter in FIG. 5 and strain gauge detection data. (a)〜(d)図5の従来の円筒型の変位計付圧電アクチュエータのX軸およびY軸の電極に矩形波を印加したときの各電極に設けた歪みゲージの検出データである。(A)-(d) It is the detection data of the strain gauge provided in each electrode when a rectangular wave is applied to the X-axis and Y-axis electrodes of the conventional cylindrical piezoelectric actuator with a displacement meter of FIG. (a)〜(d)図2の本発明の円筒型の変位計付圧電アクチュエータのX軸およびY軸の電極に矩形波を印加したときの各電極に設けた歪みゲージ検出データである。(A)-(d) It is the strain gauge detection data provided in each electrode when a rectangular wave is applied to the X-axis and Y-axis electrodes of the cylindrical piezoelectric actuator with a displacement meter of FIG. (a)本発明の第二実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第二実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 2nd Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 2nd Example of this invention. (a)本発明の第三実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第三実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of the 3rd Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of the 3rd Example of this invention. (a)本発明の第四実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第四実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 4th Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 4th Example of this invention. (a)本発明の第五実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第五実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 5th Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 5th Example of this invention. (a)本発明の第六実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第六実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 6th Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 6th Example of this invention. (a)本発明の第七実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第七実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 7th Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 7th Example of this invention. 図14(b)のB−B線断面図である。It is BB sectional drawing of FIG.14 (b). (a)本発明の第八実施例の円筒型圧電素子の内周面の展開図である。(b)本発明の第八実施例の円筒型圧電素子の外周面の展開図である。(A) It is an expanded view of the internal peripheral surface of the cylindrical piezoelectric element of 8th Example of this invention. (B) It is an expanded view of the outer peripheral surface of the cylindrical piezoelectric element of 8th Example of this invention. 図16(b)のC−C線断面図である。It is CC sectional view taken on the line of FIG.16 (b). 本発明の第九実施例に係るバイモルフ型の変位計付圧電アクチュエータの概観図である。It is a general-view figure of the bimorph type piezoelectric actuator with a displacement meter which concerns on 9th Example of this invention. 本発明の第十実施例に係る積層型の変位計付圧電アクチュエータの概観図である。It is a general-view figure of the multilayer type piezoelectric actuator with a displacement meter which concerns on 10th Example of this invention. 本発明の第十一実施例に係る、円筒型の変位計付圧電アクチュエータを用いた走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope using the cylindrical piezoelectric actuator with a displacement meter based on the 11th Example of this invention. 本発明の第十二実施例に係る、円筒型の変位計付圧電アクチュエータを用いた走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope using the cylindrical piezoelectric actuator with a displacement meter based on 12th Example of this invention. 従来の円筒型の変位計付圧電アクチュエータを用いた走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope using the conventional cylindrical type piezoelectric actuator with a displacement meter. 図22の走査型プローブ顕微鏡で用いられる円筒型の変位計付圧電アクチュエータの概観図である。It is a general-view figure of the cylindrical type piezoelectric actuator with a displacement meter used with the scanning probe microscope of FIG. 図23の円筒型の変位計付圧電アクチュエータで水平方向の変位検出に用いられる回路図である。FIG. 24 is a circuit diagram used for horizontal displacement detection in the cylindrical piezoelectric actuator with a displacement meter of FIG. 23. 図23の円筒型の変位計付圧電アクチュエータで垂直方向の変位検出に用いられる回路図である。FIG. 24 is a circuit diagram used for vertical displacement detection in the cylindrical piezoelectric actuator with a displacement meter of FIG. 23.

符号の説明Explanation of symbols

1、20、50、60、70、80、90、100、120 円筒型の変位計付圧電アクチュエータ
Rz1、Rz2、Rz3、Rz4、Rx1、Rx2、Rx3、Rx4,Ry1,Ry2,Ry3,Ry4,R1,R2,R3,R4 歪みゲージ(抵抗体)
12、161、183 Z軸変位検出装置
13、162、181 X軸変位検出装置
14、163、182 Y軸変位検出装置
16 ベース材(絶縁体)
17 抵抗体
18 抵抗体接続用電極
9、27、57、63、96、97、98、99、109、129 Z軸駆動電源
10、28、58、76、86、87、110、130 X軸駆動電源
11、29、59、77、88、89、111、131 Y軸駆動電源
148、156 駆動電源
140 バイモルフ型の変位計付圧電アクチュエータ
150 積層型の変位計付圧電アクチュエータ
1, 20, 50, 60, 70, 80, 90, 100, 120 Cylindrical piezoelectric actuator with displacement gauge Rz1, Rz2, Rz3, Rz4, Rx1, Rx2, Rx3, Rx4, Ry1, Ry2, Ry3, Ry4, R1 , R2, R3, R4 Strain gauge (resistor)
12, 161, 183 Z-axis displacement detectors 13, 162, 181 X-axis displacement detectors 14, 163, 182 Y-axis displacement detector 16 Base material (insulator)
17 Resistor 18 Resistor connection electrode 9, 27, 57, 63, 96, 97, 98, 99, 109, 129 Z-axis drive power supply 10, 28, 58, 76, 86, 87, 110, 130 X-axis drive Power supply 11, 29, 59, 77, 88, 89, 111, 131 Y-axis drive power supply 148, 156 Drive power supply 140 Bimorph type piezoelectric actuator with displacement meter 150 Laminated piezoelectric actuator with displacement meter

Claims (15)

任意の形状に形成され、内部の結晶が任意の方向に分極処理を施され、少なくとも厚み方向の対向する2面にそれぞれ電極が設けられた圧電素子と、前記電極間に電圧を印加し前記圧電素子に歪みを発生させるための駆動電源と、前記電極上に絶縁体を介して設けられた抵抗体と、前記抵抗体に接続され、前記抵抗体に任意の電圧を印加し、抵抗値変化を検出することで前記圧電素子の歪み量を検出する変位検出装置からなり、抵抗体が設けられる圧電素子上の電極をグランド電位に接続することを特徴とする変位計付圧電アクチュエータ。   A piezoelectric element formed in an arbitrary shape, whose inner crystal is polarized in an arbitrary direction, and electrodes are provided on at least two opposing surfaces in the thickness direction, and a voltage is applied between the electrodes to apply the piezoelectric A drive power source for generating distortion in the element, a resistor provided on the electrode via an insulator, and connected to the resistor, an arbitrary voltage is applied to the resistor to change a resistance value. A piezoelectric actuator with a displacement meter, comprising a displacement detection device that detects a strain amount of the piezoelectric element by detecting the electrode, and connecting an electrode on the piezoelectric element provided with a resistor to a ground potential. 任意の形状に形成され、内部の結晶が任意の方向に分極処理を施され、少なくとも厚み方向の対向する2面にそれぞれ電極が設けられた圧電素子と、前記電極間に電圧を印加し前記圧電素子に歪みを発生させるための駆動電源と、前記電極上に絶縁体を介して設けられた抵抗体と、前記抵抗体に接続され、前記抵抗体に任意の電圧を印加し、抵抗値変化を検出することで前記圧電素子の歪み量を検出する変位検出装置からなり、抵抗体が設けられる圧電素子上の電極の電位を前記抵抗体に印加される電位と等しくした変位計付圧電アクチュエータ。   A piezoelectric element formed in an arbitrary shape, whose inner crystal is polarized in an arbitrary direction, and electrodes are provided on at least two opposing surfaces in the thickness direction, and a voltage is applied between the electrodes to apply the piezoelectric A drive power source for generating distortion in the element, a resistor provided on the electrode via an insulator, and connected to the resistor, an arbitrary voltage is applied to the resistor to change a resistance value. A piezoelectric actuator with a displacement meter, comprising a displacement detection device that detects the amount of strain of the piezoelectric element by detecting it, wherein the potential of the electrode on the piezoelectric element provided with the resistor is equal to the potential applied to the resistor. 前記圧電素子を円筒型に形成し、円筒型の圧電素子の内周面と外周面の双方に電極を設け、外周面の電極に絶縁体を介して抵抗体を設けた請求項1または2のいずれかに記載の円筒型の変位計付圧電アクチュエータ。   The piezoelectric element according to claim 1 or 2, wherein the piezoelectric element is formed in a cylindrical shape, electrodes are provided on both an inner peripheral surface and an outer peripheral surface of the cylindrical piezoelectric element, and a resistor is provided on the electrode on the outer peripheral surface via an insulator. The cylindrical piezoelectric actuator with a displacement meter according to any one of the above. 内周面の電極が複数に分割される請求項3に記載の円筒型の変位計付圧電アクチュエータ。   The cylindrical piezoelectric actuator with a displacement meter according to claim 3, wherein the electrode on the inner peripheral surface is divided into a plurality of parts. 外周面の電極が外周に添って設けられる単一の帯状電極、または外周面の電極が内周面に接続される折返し電極と単一の帯状電極で構成され、前記帯状電極に絶縁体を介して抵抗体を設けた請求項3または4のいずれかに記載の変位計付圧電アクチュエータ。   A single band-shaped electrode in which the outer peripheral surface electrode is provided along the outer periphery, or a folded electrode in which the outer peripheral surface electrode is connected to the inner peripheral surface and a single band-shaped electrode are formed. 5. A piezoelectric actuator with a displacement meter according to claim 3, wherein a resistor is provided. 前記円筒型の圧電素子の内周面に少なくとも2箇所以上の電極を設け、圧電体を介して前記内周面の電極に対向する外周面側にも電極を設け、前記内周面電極の少なくとも1つの電極はひずみを生じさせないダミー電極とし、他の電極は電圧を印加することにより圧電素子にひずみを生ずるアクティブ電極とし、前記アクティブ電極の外側電極に1箇所または2箇所の抵抗体を設け、前記ダミー電極の外側電極に1箇所または2箇所の抵抗体を設け、少なくとも前記抵抗体が設けられる電極が同電位になるように構成されてグランド電位に接続され、前記アクティブ電極の外周面側に設けられた抵抗体によりひずみ検出を行う際に、ダミー電極の外周面側に設けられた抵抗体により温度補償を行うようにアクティブ電極とダミー電極間の各抵抗体を接続してブリッジ回路を構成したことを特徴とする請求項3乃至5のいずれかに記載の変位計付圧電アクチュエータ。   At least two or more electrodes are provided on the inner peripheral surface of the cylindrical piezoelectric element, and an electrode is also provided on the outer peripheral surface facing the inner peripheral electrode via a piezoelectric body. One electrode is a dummy electrode that does not cause distortion, the other electrode is an active electrode that generates distortion in the piezoelectric element by applying a voltage, and one or two resistors are provided on the outer electrode of the active electrode, One or two resistors are provided on the outer electrode of the dummy electrode, and at least the electrode on which the resistor is provided is configured to have the same potential and connected to the ground potential, and on the outer peripheral surface side of the active electrode When the strain is detected by the provided resistor, each resistor between the active electrode and the dummy electrode is subjected to temperature compensation by the resistor provided on the outer peripheral surface side of the dummy electrode. The piezoelectric actuator with displacement meter according to any one of claims 3 to 5, characterized in that to constitute a bridge circuit by connecting the body. 前記ダミー電極を有する圧電素子と、前記アクティブ電極を有する圧電素子が同一の圧電体の材料を用いて別体により構成されることを特徴とする請求項6に記載の変位計付圧電アクチュエータ。   7. The piezoelectric actuator with a displacement meter according to claim 6, wherein the piezoelectric element having the dummy electrode and the piezoelectric element having the active electrode are configured separately using the same piezoelectric material. 前記外周面または/および内周面の電極が、前記圧電体の表面に電極を設けた後、機械加工による電極の一部の除去により形成することを特徴とする請求項3乃至7のいずれかに記載の変位計付圧電アクチュエータ。   The electrode on the outer peripheral surface or / and the inner peripheral surface is formed by removing a part of the electrode by machining after providing the electrode on the surface of the piezoelectric body. A piezoelectric actuator with a displacement meter as described in 1. 前記外周面または/および内周面の電極が、前記圧電体の表面にマスキングを行い、該マスキング以外の部分に電極を設けた後、前記マスクの除去により形成することを特徴とする請求項3乃至7のいずれかに記載の変位計付圧電アクチュエータの製造方法。   The electrode on the outer peripheral surface or / and the inner peripheral surface is formed by removing the mask after masking the surface of the piezoelectric body and providing an electrode in a portion other than the masking. A method for manufacturing a piezoelectric actuator with a displacement meter according to any one of claims 1 to 7. 任意の板状弾性体の上面および/または下面に、板状の圧電素子を固着し、前記圧電素子の表面および弾性体との界面側にそれぞれ電極を設け、前記圧電素子の表面側電極に絶縁体を介して抵抗体を設けたバイモルフ型またはユニモルフ型であることを特徴とする請求項1または2のいずれかに記載の変位計付圧電アクチュエータ。   A plate-like piezoelectric element is fixed to the upper and / or lower surface of an arbitrary plate-like elastic body, electrodes are provided on the surface of the piezoelectric element and the interface with the elastic body, respectively, and the surface-side electrode of the piezoelectric element is insulated. 3. The piezoelectric actuator with a displacement meter according to claim 1, wherein the piezoelectric actuator is a bimorph type or a unimorph type provided with a resistor through a body. 複数枚の膜状圧電素子と電極を交互に積層して積層型の圧電素子を形成し、前記膜状圧電素子に挟まれた電極に交互に接続される2つの電極を前記積層型圧電素子の側面に形成し、前記側面電極の一方の電極に絶縁体を介して抵抗体を設けた積層型であることを特徴とする請求項1または2のいずれかにに記載の変位計付圧電アクチュエータ。   A plurality of film-shaped piezoelectric elements and electrodes are alternately stacked to form a stacked piezoelectric element, and two electrodes alternately connected to the electrodes sandwiched between the film-shaped piezoelectric elements are connected to the stacked piezoelectric elements. The piezoelectric actuator with a displacement meter according to claim 1 or 2, wherein the piezoelectric actuator is a laminated type formed on a side surface and provided with a resistor on one electrode of the side surface electrode through an insulator. 任意の形状に形成され、内部の結晶が任意の方向に分極処理を施され、少なくとも厚み方向の対向する2面にそれぞれ電極が設けられた圧電素子と、前記電極間に電圧を印加し前記圧電素子に歪みを発生させるための駆動電源と、前記圧電素子上に設けられた抵抗体と、前記抵抗体に接続され、抵抗値変化を検出することで前記圧電体の歪み量を検出する変位検出装置からなり、前記抵抗体が設けられる部分は圧電素子上に電極が設けられていないことを特徴とする変位計付圧電アクチュエータ。   A piezoelectric element formed in an arbitrary shape, whose inner crystal is polarized in an arbitrary direction, and electrodes are provided on at least two opposing surfaces in the thickness direction, and a voltage is applied between the electrodes to apply the piezoelectric element Displacement detection that detects the amount of distortion of the piezoelectric body by detecting a change in resistance value, connected to the resistor, and a driving power source for generating strain in the element, a resistor provided on the piezoelectric element A piezoelectric actuator with a displacement meter, characterized in that the portion provided with the resistor is provided with no electrode on the piezoelectric element. 前記抵抗体が半導体であることを特徴とする、請求項1乃至12のいずれかに記載の変位計付圧電アクチュエータ。   13. The piezoelectric actuator with a displacement meter according to claim 1, wherein the resistor is a semiconductor. 請求項1乃至13のいずれかに記載の変位計付圧電アクチュエータに使用される圧電素子。   The piezoelectric element used for the piezoelectric actuator with a displacement meter in any one of Claims 1 thru | or 13. 請求項1乃至13のいずれかに記載の変位計付圧電アクチュエータを用いた位置決め装置。   A positioning device using the piezoelectric actuator with a displacement meter according to claim 1.
JP2008278548A 2007-11-26 2008-10-29 Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same Expired - Fee Related JP5339851B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008278548A JP5339851B2 (en) 2007-11-26 2008-10-29 Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same
US12/276,740 US8115367B2 (en) 2007-11-26 2008-11-24 Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007304798 2007-11-26
JP2007304798 2007-11-26
JP2008278548A JP5339851B2 (en) 2007-11-26 2008-10-29 Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same

Publications (2)

Publication Number Publication Date
JP2009152557A true JP2009152557A (en) 2009-07-09
JP5339851B2 JP5339851B2 (en) 2013-11-13

Family

ID=40921306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278548A Expired - Fee Related JP5339851B2 (en) 2007-11-26 2008-10-29 Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same

Country Status (1)

Country Link
JP (1) JP5339851B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080774A (en) * 2011-10-03 2013-05-02 Olympus Corp Method of manufacturing cylindrical piezoelectric element, cylindrical piezoelectric element, and micro drive mechanism
JP2014172178A (en) * 2013-03-05 2014-09-22 Seiko Epson Corp Liquid jet head, liquid jet device, piezoelectric element, and manufacturing method of piezoelectric element
CN113219649A (en) * 2021-04-30 2021-08-06 哈尔滨芯明天科技有限公司 High-reliability piezoelectric deflection mirror for aerospace application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321385A (en) * 1994-05-26 1995-12-08 Olympus Optical Co Ltd Piezoelectric element actuator having strain gauge sensor
JPH09148642A (en) * 1995-11-22 1997-06-06 Sony Corp Piezoelectric actuator and its strain gauge bonding method
JP2005227170A (en) * 2004-02-13 2005-08-25 Sii Nanotechnology Inc Fine adjustment mechanism for scanning type probe microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321385A (en) * 1994-05-26 1995-12-08 Olympus Optical Co Ltd Piezoelectric element actuator having strain gauge sensor
JPH09148642A (en) * 1995-11-22 1997-06-06 Sony Corp Piezoelectric actuator and its strain gauge bonding method
JP2005227170A (en) * 2004-02-13 2005-08-25 Sii Nanotechnology Inc Fine adjustment mechanism for scanning type probe microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080774A (en) * 2011-10-03 2013-05-02 Olympus Corp Method of manufacturing cylindrical piezoelectric element, cylindrical piezoelectric element, and micro drive mechanism
US9768374B2 (en) 2011-10-03 2017-09-19 Olympus Corporation Method of manufacturing cylindrical piezoelectric element
JP2014172178A (en) * 2013-03-05 2014-09-22 Seiko Epson Corp Liquid jet head, liquid jet device, piezoelectric element, and manufacturing method of piezoelectric element
CN113219649A (en) * 2021-04-30 2021-08-06 哈尔滨芯明天科技有限公司 High-reliability piezoelectric deflection mirror for aerospace application
CN113219649B (en) * 2021-04-30 2022-11-22 哈尔滨芯明天科技有限公司 High-reliability piezoelectric deflection mirror for aerospace application

Also Published As

Publication number Publication date
JP5339851B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
US8115367B2 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
KR100933536B1 (en) Computer-readable recording medium recording microstructure inspection apparatus, microstructure inspection method and microstructure inspection program
US9885576B2 (en) Angular velocity sensor
US20090128171A1 (en) Microstructure Probe Card, and Microstructure Inspecting Device, Method, and Computer Program
JP6051412B2 (en) Piezoelectric actuator device and manufacturing method thereof
JPH11352143A (en) Acceleration sensor
WO2013179647A2 (en) Physical amount sensor
JP2010127763A (en) Semiconductor mechanical quantity detection sensor and controller using the same
US20140373626A1 (en) Inertial force sensor
JP5024803B2 (en) Detection sensor
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
US20110232384A1 (en) Laminated structure provided with movable portion
JP5339851B2 (en) Piezoelectric actuator with displacement meter, piezoelectric element, and positioning device using the same
JP5032359B2 (en) Cylindrical piezoelectric actuator, piezoelectric element, and scanning probe microscope using the same
JP3135181U (en) Sensor that detects both acceleration and angular velocity
JP5164743B2 (en) Cantilever, cantilever system, probe microscope and adsorption mass sensor
JP4758405B2 (en) Sensor element and physical sensor device
JP2008215934A (en) Force sensor, load detector and profile measuring apparatus
JP2001108605A (en) Cantilever for scanning-type probe microscope and its manufacturing method, and scaning-type probe microscope and surface charge-measuring microscope
JP4913467B2 (en) Potential sensor
JP2007101203A (en) Angular velocity sensor
JP2005164324A (en) Dynamic sensor and rotation detection sensor using magnetic thin film
JP2006118916A (en) Surface information measuring instrument, and surface information measuring method
JP2000097691A (en) Fine surface shape measuring instrument
JP2009250955A (en) Inertial force sensor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5339851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees