JPH0732132B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPH0732132B2
JPH0732132B2 JP61297164A JP29716486A JPH0732132B2 JP H0732132 B2 JPH0732132 B2 JP H0732132B2 JP 61297164 A JP61297164 A JP 61297164A JP 29716486 A JP29716486 A JP 29716486A JP H0732132 B2 JPH0732132 B2 JP H0732132B2
Authority
JP
Japan
Prior art keywords
gas
susceptor
phase growth
vapor phase
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61297164A
Other languages
Japanese (ja)
Other versions
JPS63148622A (en
Inventor
弘巳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61297164A priority Critical patent/JPH0732132B2/en
Publication of JPS63148622A publication Critical patent/JPS63148622A/en
Publication of JPH0732132B2 publication Critical patent/JPH0732132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 この発明は、気相成長装置において、 サセプタの回転部分に羽根を設け、該羽根にガスを噴射
して該回転部分を回転させることにより、 摩耗による粉末発生を防止して、汚染されない良好なエ
ピタキシャル成長を実現するものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] In the vapor phase growth apparatus of the present invention, a blade is provided in a rotating portion of a susceptor, gas is injected into the blade to rotate the rotating portion, and thereby powder generation due to abrasion is generated. To achieve good epitaxial growth without contamination.

〔産業上の利用分野〕[Industrial application field]

本発明は気相成長装置、特に有機金属熱分解気相成長方
法(MO-CVD法)等に適する気相成長装置の改善に関す
る。
The present invention relates to a vapor phase growth apparatus, and more particularly to improvement of a vapor phase growth apparatus suitable for a metalorganic pyrolysis vapor phase growth method (MO-CVD method) and the like.

例えば化合物半導体装置などにおいて、単結晶基板上に
種々の組成、不純物ドーピングの単結晶層をエピタキシ
ャル成長した半導体基体が多く用いられており、その成
長方法として気相成長法、特にMO-CVD法に大きい期待が
寄せられている。
For example, in a compound semiconductor device or the like, a semiconductor substrate in which a single crystal layer of various compositions and impurity doping is epitaxially grown on a single crystal substrate is often used, and the growth method thereof is large in a vapor phase growth method, particularly a MO-CVD method. Expectations are coming.

しかしながら従来の気相成長装置には後述の如き問題点
がありその改善が必要である。
However, the conventional vapor phase growth apparatus has the following problems and needs to be improved.

〔従来の技術と発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

MO-CVD法は、常温で安定な水素化合物が得られないII族
或いはIII族元素については有機化合物、IV族、V族或
いはVI族元素については通常水素化合物を出発原料とす
る気相エピタキシャル成長法であり、例えば砒化ガリウ
ム(GaAs)の成長では、室温近傍では安定であり結晶成
長温度では分解して元素を解離する化合物である、例え
ばトリメチルガリウム((CH3)3Ga)とアルシン(AsH3)とを
原料として、 (CH3)3Ga+AsH3→GaAs+3CH4 なる結晶成長反応を応用している。
The MO-CVD method is a vapor phase epitaxial growth method in which an organic compound is used as a starting material for a group II or III element for which a stable hydrogen compound is not obtained at room temperature and a hydrogen compound is usually used as a starting material for a group IV, V or VI element. For example, in the growth of gallium arsenide (GaAs), compounds that are stable near room temperature and decompose at the crystal growth temperature to dissociate elements, such as trimethylgallium ((CH 3 ) 3 Ga) and arsine (AsH 3 ) And as a raw material, a crystal growth reaction of (CH 3 ) 3 Ga + AsH 3 → GaAs + 3CH 4 is applied.

MO-CVD法より先に開発された有機金属化合物を用いない
気相成長法−ハライド法及びハイドライド法−の成長機
構が相律に支配されるのに対して、このMO-CVD法の成長
機構は成長面へ輸送される物質の動力学(kinetics)に
支配されるために、気相成長装置内の位置による成長速
度のばらつきが大きくなる傾向がある。
The growth mechanism of vapor-phase growth method-halide method and hydride method-which does not use organometallic compounds, which was developed prior to MO-CVD method, is controlled by phase, whereas the growth mechanism of MO-CVD method is controlled. Is controlled by the kinetics of the substance transported to the growth surface, so that the growth rate tends to vary greatly depending on the position in the vapor phase growth apparatus.

従ってMO-CVD法に用いる気相成長装置では、エピタキシ
ャル成長層の厚さを均一化するために被成長基板を回転
させることが多い。すなわち第2図に例示する模式図の
如く、被成長基板21を通常グラファイトよりなるサセプ
タ22上に載置し、例えば石英ガラスよりなる反応管23を
包囲する高周波コイル24によってサセプタ22を加熱し、
原料ガスを導入口23iから導入してエピタキシャル成長
を行う気相成長装置で、サセプタ22に設けた回転部分22
Rを、反応管23の外部から挿入した例えば石英、カーボ
ン等からなる回転軸25で駆動している。
Therefore, in the vapor phase growth apparatus used for the MO-CVD method, the growth substrate is often rotated in order to make the thickness of the epitaxial growth layer uniform. That is, as shown in the schematic diagram illustrated in FIG. 2, the growth substrate 21 is placed on a susceptor 22 usually made of graphite, and the susceptor 22 is heated by a high-frequency coil 24 surrounding a reaction tube 23 made of quartz glass,
A rotary part 22 provided on a susceptor 22 is a vapor phase growth apparatus for performing epitaxial growth by introducing a source gas from an introduction port 23i.
R is driven by a rotary shaft 25 inserted from the outside of the reaction tube 23 and made of, for example, quartz or carbon.

しかしながら上述の如きサセプタの回転部分を例えばウ
ォームギア等の機構で外部から駆動する気相成長装置を
用いれば、潤滑材等が制限されるために、回転軸25から
サセプタの回転部分22Rへの伝達機構及びサセプタの回
転部分22Rとその台座部分22Bとの間の摩擦によりサセプ
タ材等が削られて微細な粉末を生じ、これが成長面上に
飛散してエピタキシャル成長層を劣化するという問題を
伴っており、その改善が必要とされている。
However, if a vapor phase growth apparatus that drives the rotating portion of the susceptor as described above from the outside by a mechanism such as a worm gear is used, the lubricant or the like is limited, so that the transmission mechanism from the rotating shaft 25 to the rotating portion 22R of the susceptor is limited. Also, the susceptor material and the like are scraped by the friction between the rotating portion 22R of the susceptor and the pedestal portion 22B to generate fine powder, which is accompanied by the problem that it is scattered on the growth surface and deteriorates the epitaxial growth layer, That improvement is needed.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、サセプタと、ガス供給手段を有し、前記
サセプタは、被成長基板が載置される円板状の部分と該
円板状の部分の下に設けられた羽根と回転中心軸を備え
た回転部分と、該回転部分が回転自在に嵌合するくぼみ
と該回転中心軸に対して左右に外れた位置に設けられて
該くぼみに開口する少なくとも2本のガス導孔を備えた
台座部分を有するものであり、前記ガス供給手段は、そ
れぞれの前記ガス導孔から前記羽根にガス流量制御可能
にガスを噴射するものであり、前記サセプタは、回転部
分が前記ガス供給手段の制御するガス流量によって、回
転方向と回転数が任意に可変されるように構成された気
相成長装置によって解決される。また前記回転部分が回
転する際に、前記サセプタの台座部分に対して浮上する
構造、前記ガスを複数の噴射口から噴射し、前記回転部
分に相互に反対方向のトルクを与えて回転速度を制御す
る構造が望ましい。
The problem is that it has a susceptor and a gas supply means, and the susceptor has a disk-shaped portion on which a substrate to be grown is placed, a blade provided below the disk-shaped portion, and a rotation center shaft. A rotary portion provided with a hollow, a hollow into which the rotary portion fits freely, and at least two gas guide holes that are provided at positions deviated to the left and right with respect to the central axis of rotation and open into the hollow. The susceptor has a pedestal part, and the gas supply means injects gas from each of the gas guide holes to the blade so that the gas flow rate can be controlled, and the susceptor has a rotating part for controlling the gas supply means. This is solved by a vapor phase growth apparatus configured such that the rotation direction and the rotation speed can be arbitrarily changed depending on the gas flow rate. Also, when the rotating portion rotates, the structure is such that it floats above the pedestal portion of the susceptor, the gas is injected from a plurality of injection ports, and torque is applied to the rotating portion in opposite directions to control the rotation speed. A structure that does

〔作用〕[Action]

本発明による気相成長装置は、例えば後述する実施例の
如くサセプタの回転部分に羽根を設け、この羽根にガス
を噴射して回転部分を回転させつつエピタキシャル成長
を行う。
In the vapor phase growth apparatus according to the present invention, a blade is provided in the rotating portion of the susceptor, for example, as will be described later, and gas is injected to the blade to rotate the rotating portion to perform epitaxial growth.

この駆動方法では、機械的な伝達機構が無く、更に回転
部分がサセプタの台座部分に対して浮上して回転する状
態、或いは少なくとも重力の一部を浮力で打ち消した状
態として、回転部分が接触する面積或いは接触面にかか
る荷重を減少させることが容易であり、摩耗よる粉末の
発生が防止される。
In this driving method, there is no mechanical transmission mechanism, and further, the rotating portion comes into contact with the rotating portion in a state of floating and rotating with respect to the pedestal portion of the susceptor, or in a state of canceling at least a part of gravity by buoyancy. It is easy to reduce the load applied to the area or contact surface, and the generation of powder due to wear is prevented.

なお噴射するガスをキャリアガスと同一ガスにすること
が最も好都合であるが、これを原料ガスとは分離して複
数の噴射口に導き、回転部分に加わる相互に反対方向の
トルクをガスの流量で制御して、回転速度を選択するこ
とが容易に可能である。
It is most convenient to make the injected gas the same as the carrier gas, but separate this from the raw material gas and guide it to multiple injection ports, and apply torques in opposite directions applied to the rotating parts to the flow rate of the gas. It is possible to easily select the rotation speed by controlling with.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically described below with reference to examples.

第1図(a)は本発明の実施例を示す模式図、同図
(b)はそのサセプタの平面図、同図(c)はその台座
部分を破断した側面図であり、1は被成長基板、2は回
転部分2R、台座部分2Bからなるサセプタ、3は反応管、
4は高周波コイル、5は2本のガス供給管、6はガス供
給管5に接続されたガス導孔である。
FIG. 1 (a) is a schematic view showing an embodiment of the present invention, FIG. 1 (b) is a plan view of the susceptor, FIG. 1 (c) is a side view in which the pedestal portion is cut away, and 1 is the growth target. Substrate 2, reference numeral 2R is a susceptor consisting of a rotating portion 2R and pedestal portion 2B, 3 is a reaction tube,
Reference numeral 4 is a high frequency coil, 5 is two gas supply pipes, and 6 is a gas guide hole connected to the gas supply pipe 5.

本実施例のサセプタの回転部分2Rは、被成長基板1を載
置する円板状の部分2Raの下に羽根2Rbが設けられ、更に
回転中心軸2Rcを備えている。またサセプタの台座部分2
Bは上述の回転部分2Rが嵌合するくぼみを備え、更に回
転中心軸2Rcに対して左右に外れた位置に2本のガス導
孔6が設けられている。
The rotating portion 2R of the susceptor of this embodiment is provided with a blade 2Rb below a disk-shaped portion 2Ra on which the growth substrate 1 is placed, and further has a rotation center axis 2Rc. Also, the pedestal part 2 of the susceptor
B has a recess into which the rotating portion 2R described above fits, and further two gas guide holes 6 are provided at positions deviated to the left and right with respect to the rotation center axis 2Rc.

サセプタの回転部分2Rを台座部分2Bの上に乗せ、ガス供
給管5及びガス導孔6から通常キャリアガスを流して、
例えば20rpm程度以下の回転数で回転部分2Rを回転させ
る。この回転方向及び回転数は2本のガス導入孔6のガ
ス流量を選択することにより容易に制御することができ
る。
Place the rotating part 2R of the susceptor on the pedestal part 2B, and let the normal carrier gas flow from the gas supply pipe 5 and the gas guide hole 6,
For example, the rotating portion 2R is rotated at a rotation speed of about 20 rpm or less. The rotation direction and the rotation speed can be easily controlled by selecting the gas flow rates of the two gas introduction holes 6.

更にこの流入したガスによりサセプタの回転部分2Rに浮
力が作用し、本実施例では回転部分2Rが台座部分2Bから
僅かに浮上して両者間の接触が殆どなくなり、摩耗によ
る微細な粉末発生が防止される。例えばエピタキシャル
成長層のごみ、粉末などに起因する欠陥密度が、従来は
平均値が2000個/cm2程度であるのに対して、本実施例
では500個/cm2程度に減少している。
Furthermore, buoyancy acts on the rotating portion 2R of the susceptor by the inflowing gas, and in this embodiment, the rotating portion 2R slightly floats from the pedestal portion 2B and contact between the two is almost eliminated, and fine powder generation due to wear is prevented. To be done. For example, the average defect density of the epitaxial growth layer due to dust, powder, etc. is about 2000 pieces / cm 2 , whereas it is reduced to about 500 pieces / cm 2 in this embodiment.

〔発明の効果〕〔The invention's effect〕

以上説明した如く本発明によれば、気相成長装置のサセ
プタを回転させてもその摩耗による粉末発生が防止され
て、汚染が殆どない良好なエピタキシャル成長が実現さ
れる。
As described above, according to the present invention, even if the susceptor of the vapor phase growth apparatus is rotated, generation of powder due to abrasion is prevented, and good epitaxial growth with almost no contamination is realized.

【図面の簡単な説明】 第1図は本発明の実施例の模式図、 第2図は従来例の模式図である。 図において、 1は被成長基板、2はサセプタ、2Rはサセプタの回転部
分、2Raは円板状の部分、2Rbは羽根、2Rcは回転中心
軸、2Bはサセプタの台座部分、3は反応管、4は高周波
コイル、5はガス供給管、6はガス導孔を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional example. In the figure, 1 is a substrate to be grown, 2 is a susceptor, 2R is a rotating part of the susceptor, 2Ra is a disk-shaped part, 2Rb is a blade, 2Rc is a central axis of rotation, 2B is a pedestal part of the susceptor, 3 is a reaction tube, 4 is a high frequency coil, 5 is a gas supply pipe, and 6 is a gas guide hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】サセプタと、ガス供給手段を有し、 前記サセプタは、被成長基板が載置される円板状の部分
と該円板状の部分の下に設けられた羽根と回転中心軸を
備えた回転部分と、該回転部分が回転自在に嵌合するく
ぼみと該回転中心軸に対して左右に外れた位置に設けら
れて該くぼみに開口する少なくとも2本のガス導孔を備
えた台座部分を有するものであり、 前記ガス供給手段は、それぞれの前記ガス導孔から前記
羽根にガス流量制御可能にガスを噴射するものであり、 前記サセプタは、回転部分が前記ガス供給手段の制御す
るガス流量によって、回転方向と回転数が任意に可変さ
れる ことを特徴とする気相成長装置。
1. A susceptor and a gas supply means, wherein the susceptor has a disk-shaped portion on which a substrate to be grown is placed, a blade provided below the disk-shaped portion, and a rotation center shaft. A rotary portion provided with a hollow, a hollow into which the rotary portion fits freely, and at least two gas guide holes that are provided at positions deviated to the left and right with respect to the central axis of rotation and open into the hollow. The susceptor has a pedestal portion, and the gas supply means injects gas from each of the gas guide holes to the blade so that a gas flow rate can be controlled. The susceptor has a rotating portion for controlling the gas supply means. A vapor phase growth apparatus characterized in that the rotation direction and the number of rotations can be arbitrarily changed depending on the gas flow rate to be generated.
【請求項2】前記ガスは、前記被成長基板に対して供給
するキャリアガスと同一のガスであり、かつ該キャリア
ガスとは独立して前記ガス導孔に供給される請求項1記
載の気相成長装置。
2. The gas according to claim 1, wherein the gas is the same gas as the carrier gas supplied to the substrate to be grown and is supplied to the gas introducing hole independently of the carrier gas. Phase growth equipment.
JP61297164A 1986-12-12 1986-12-12 Vapor phase growth equipment Expired - Lifetime JPH0732132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297164A JPH0732132B2 (en) 1986-12-12 1986-12-12 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297164A JPH0732132B2 (en) 1986-12-12 1986-12-12 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS63148622A JPS63148622A (en) 1988-06-21
JPH0732132B2 true JPH0732132B2 (en) 1995-04-10

Family

ID=17843016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297164A Expired - Lifetime JPH0732132B2 (en) 1986-12-12 1986-12-12 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0732132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7170598B2 (en) * 2019-07-17 2022-11-14 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176729A (en) * 1983-03-25 1984-10-06 Matsushita Electric Ind Co Ltd Method for driving electrochromic display device
JPS59155131A (en) * 1984-01-18 1984-09-04 Hitachi Ltd Method for contact exposure

Also Published As

Publication number Publication date
JPS63148622A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
US8052794B2 (en) Directed reagents to improve material uniformity
JPH06310438A (en) Substrate holder and apparatus for vapor growth of compound semiconductor
JP2002175992A (en) Film-forming apparatus having substrate-rotating mechanism
US4801557A (en) Vapor-phase epitaxy of indium phosphide and other compounds using flow-rate modulation
JPH0732132B2 (en) Vapor phase growth equipment
US6391108B2 (en) Liquid phase growth method of silicon crystal, method of producing solar cell, and liquid phase growth apparatus
JPH0639358B2 (en) Metalorganic vapor phase growth equipment
CA1325160C (en) Apparatus for producing compound semiconductor
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
EP0342656A2 (en) Method of manufacturing a compound semiconductor light emitting device
JPS63292620A (en) Apparatus for depositing single atom layer thin film
JP2007042899A (en) Vapor phase epitaxial growth apparatus
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JP2004296639A (en) Vapor deposition equipment
JP3473251B2 (en) Multi-charge lateral vapor deposition method and apparatus
JP2005303168A (en) Vapor deposition device
JPS62297296A (en) Vapor phase epitaxy process
JP2023113015A (en) Vapor phase growth apparatus
JP2023112785A (en) Vapor phase growth apparatus
JP2791444B2 (en) Vapor phase epitaxial growth method
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPH0226893A (en) Vapor growth device
JPS6229399B2 (en)
JPH0536397B2 (en)
JPH02125485A (en) Compound semiconductor light emitting element