JPH07321051A - Method of manufacturing compound semiconductor device, and semiconductor device - Google Patents

Method of manufacturing compound semiconductor device, and semiconductor device

Info

Publication number
JPH07321051A
JPH07321051A JP11481294A JP11481294A JPH07321051A JP H07321051 A JPH07321051 A JP H07321051A JP 11481294 A JP11481294 A JP 11481294A JP 11481294 A JP11481294 A JP 11481294A JP H07321051 A JPH07321051 A JP H07321051A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
compound semiconductor
iii
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11481294A
Other languages
Japanese (ja)
Other versions
JP3406376B2 (en
Inventor
Masahiko Kondo
正彦 近藤
Kazuhisa Uomi
和久 魚見
Yae Okuno
八重 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11481294A priority Critical patent/JP3406376B2/en
Publication of JPH07321051A publication Critical patent/JPH07321051A/en
Application granted granted Critical
Publication of JP3406376B2 publication Critical patent/JP3406376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor device provided with a nitrogen based III-V group mixed crystal semiconductor having no antiphase boundary on an Si substrate. CONSTITUTION:A surface light emitting laser diode composed of an n type GaN 0.03, P 0.97 buffer layer 15, an n-type semiconductor multilayer film mirror 16, an undoped active layer 18, etc., is arranged on an n type Si substrate 10. This mixed crystal semiconductor shows no antiphase boundary. On the other hand, an Si electronic element comprising a drain electrode 12, a source electrode 13, etc., is arranged on the same substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体がSi基
板上に配置された構造を有する化合物半導体装置、その
製造方法及びそのような構造を有する半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor device having a structure in which a compound semiconductor is arranged on a Si substrate, a method for manufacturing the same, and a semiconductor device having such a structure.

【0002】[0002]

【従来の技術】Si半導体技術は、トランジスタからI
C(集積回路)、VLSI(超大規模集積回路)へと発
展してきており、今後も集積規模の増大は続いて行くと
思われる。近年、集積規模の増大に伴い動作速度が電気
信号の配線遅延により制限されることが危惧され始め
た。その対策として、光による信号接続が注目されてい
る。これを実現するための重要な基盤技術は、Siと化
合物半導体の一体形成技術である。
2. Description of the Related Art In the Si semiconductor technology, from transistor to I
It has been developed into C (integrated circuit) and VLSI (very large scale integrated circuit), and it is expected that the scale of integration will continue to increase. In recent years, as the scale of integration increases, it is becoming more feared that the operating speed is limited by the wiring delay of electric signals. As a countermeasure, signal connection by light is drawing attention. An important basic technology for achieving this is a technology for integrally forming Si and a compound semiconductor.

【0003】従来、Si基板上に化合物半導体を一体形
成する手段としては、主に次の2つの手段が検討されて
きた。1つは、例えば、マテリアル リサーチ ソサイ
ティプロシーディング 116巻(マテリアル リサー
チ ソサイティ ピッツバーグ 1988年)(Mat
er. Res. Soc. Pro. Vol.11
6(Mater. Res. Soc., Pitts
burgh, 1988))に記載のSi基板上にGa
AsやInP等の化合物半導体をエピタキシャル成長さ
せるいわゆるスーパヘテロエピタキシァル法である。も
う1つは、アプライド フィジックス レターズ 62
巻、1038〜1040頁(1993)(Appl.P
hys.Lett.Vol.62,pp.1038〜1
040(1993))に記載のGaAsやInP等の化
合物半導体を熱処理により単結晶のSi基板上に張り合
わせる直接接合法である。
Conventionally, the following two means have been mainly studied as means for integrally forming a compound semiconductor on a Si substrate. One is, for example, Material Research Society Procedural Volume 116 (Material Research Society Pittsburgh 1988) (Mat.
er. Res. Soc. Pro. Vol. 11
6 (Mater. Res. Soc., Pitts
Burgh, 1988)).
This is a so-called superheteroepitaxy method in which a compound semiconductor such as As or InP is epitaxially grown. The other is Applied Physics Letters 62.
Volume, 1038-1040 (1993) (Appl. P.
hys. Lett. Vol. 62, pp. 1038-1
040 (1993)) is a direct bonding method in which a compound semiconductor such as GaAs or InP is bonded to a single crystal Si substrate by heat treatment.

【0004】また、Si基板に格子整合が可能な新材料
として、窒素をV族元素として少なくとも含むIII−V
族混晶半導体が報告され、この窒素系III−V族混晶半
導体をSi基板上にエピタキシャル成長させる方法が提
案されいる(特開平1−211912)。
Further, as a new material capable of lattice matching with a Si substrate, III-V containing at least nitrogen as a Group V element
Group mixed crystal semiconductors have been reported, and a method of epitaxially growing this nitrogen-based III-V group mixed crystal semiconductor on a Si substrate has been proposed (Japanese Patent Laid-Open No. 1-211912).

【0005】一方、化合物半導体基板は、Si等の半導
体基板に比べて高価であり、そのため、上記と同様な方
法で、Si等の安価な基板上に化合物半導体素子を形成
することも検討されている。
On the other hand, the compound semiconductor substrate is more expensive than the semiconductor substrate made of Si or the like. Therefore, it is also considered to form the compound semiconductor element on the inexpensive substrate made of Si or the like by the same method as described above. There is.

【0006】[0006]

【発明が解決しようとする課題】上記従来のスーパヘテ
ロエピタキシァル法と直接接合法は、単結晶のSi基板
上に格子定数の異なる化合物半導体をそれぞれエピタキ
シャル成長又は張り合わせにより一体形成する手法なの
で格子不整合が生じ、Siと化合物半導体の界面付近の
結晶にミスフィット転位が必然的に発生し、エピタキシ
ャル成長又は張り合わせの高温過程後の冷却過程で、シ
リコンと化合物半導体の熱膨張係数の違いから熱歪が生
じ、発生したミスフィット転位が移動、増殖するという
問題があった。さらに、Si基板上に作製された化合物
半導体素子の動作時にも結晶欠陥が移動、増殖するので
素子の信頼性が低いという問題があった。このため、S
i基板上に化合物半導体素子を設けた構造の化合物半導
体装置や、シリコン素子と化合物半導体素子のモノリシ
ックに集積した光電子集積回路(OEIC)は未だ実用
化されていない。
The above-mentioned conventional superheteroepitaxy method and direct junction method are methods of integrally forming compound semiconductors having different lattice constants on a single-crystal Si substrate by epitaxial growth or bonding, so that the lattice mismatch is caused. Occurs, and misfit dislocations inevitably occur in the crystal near the interface between Si and the compound semiconductor, and thermal strain occurs due to the difference in thermal expansion coefficient between silicon and the compound semiconductor during the cooling process after the high temperature process of epitaxial growth or bonding. However, there was a problem that the generated misfit dislocation migrates and propagates. Further, there is a problem that the reliability of the device is low because the crystal defects move and propagate even during the operation of the compound semiconductor device manufactured on the Si substrate. Therefore, S
A compound semiconductor device having a structure in which a compound semiconductor element is provided on an i substrate and an optoelectronic integrated circuit (OEIC) in which a silicon element and a compound semiconductor element are monolithically integrated have not yet been put to practical use.

【0007】また、上記従来の窒素系III−V族混晶半
導体は、混晶組成を選ぶことでSi基板と格子整合が可
能となり、ミスフィット転位を発生させないようにでき
るので高品質な結晶が得られると期待されるが、非極性
結晶のSiの上に有極性結晶である窒素系III−V族混
晶半導体をエピタキシャル成長させると、アンチフェイ
ズバンダリーという別の結晶欠陥が発生してしまうとい
う問題があった。
Further, the above-mentioned conventional nitrogen-based III-V group mixed crystal semiconductor can be lattice-matched with the Si substrate by selecting a mixed crystal composition, and misfit dislocations can be prevented so that a high quality crystal can be obtained. Although expected to be obtained, when a nitrogen-based III-V group mixed crystal semiconductor, which is a polar crystal, is epitaxially grown on Si, which is a non-polar crystal, another crystal defect called an antiphase boundary is generated. There was a problem.

【0008】すなわち、Si基板上にIII−V族半導体
をエピタキシャル成長させると、III族原子−V族原子
−III族原子−V族原子と並ぶ領域とV族原子−III族原
子−V族原子−III族原子と並ぶ領域(ドメイン)がで
きてしまい、これらのドメインがぶつかった境界(バン
ダリー)ではIII族原子−III族原子又はV族原子−V族
原子と並ぶ部分が生じてしまう。III−V族半導体はIII
族原子とV族原子が交互に並ぶことで初めて半導体とな
っているので、III族原子−III族原子又はV族原子−V
族原子と並ぶ部分、つまり原子の並び方(フェイズ)が
狂った部分は、結晶欠陥となりアンチフェイズバンダリ
ーと呼ばれる。
That is, when a group III-V semiconductor is epitaxially grown on a Si substrate, a group III atom--group V atom--group III atom--group V atom and a group V atom--group III atom--group V atom-- A region (domain) is formed along with the group III atom, and a portion (group) along with the group III atom-group III atom or group V atom-group V atom is generated at the boundary (bandary) where these domains collide. III-V semiconductor is III
It becomes a semiconductor for the first time when group atoms and group V atoms are alternately arranged. Therefore, group III atom-group III atom or group V atom-V
The part aligned with the group atoms, that is, the part in which the arrangement of atoms (phase) is wrong, becomes a crystal defect and is called an antiphase boundary.

【0009】Siと窒素系III−V族混晶半導体の熱膨
張係数差は2×10-6/℃以上もあり非常に大きいの
で、エピタキシャル成長後の冷却過程で熱歪が生じ、結
晶欠陥があるとそれが移動、増殖する。さらには、Si
基板上に作製された化合物半導体素子の動作時にも結晶
欠陥が移動、増殖するので、このアンチフェイズバンダ
リーがSi上に形成された窒素系III−V族混晶半導体
素子の寿命に問題を生じさせる。
Since the thermal expansion coefficient difference between Si and the nitrogen-based III-V group mixed crystal semiconductor is as large as 2 × 10 -6 / ° C. or more, thermal strain occurs in the cooling process after the epitaxial growth and crystal defects occur. And it moves and propagates. Furthermore, Si
Since the crystal defects move and multiply even during the operation of the compound semiconductor device formed on the substrate, this antiphase boundary causes a problem in the life of the nitrogen-based III-V group mixed crystal semiconductor device formed on Si. Let

【0010】一般に、アンチフェイズバンダリーをなく
すためには、Si基板の面方位を(100)、(11
0)、(111)等の正方位から数度以上ずらした傾角
基板を用いる。しかし、この方法ではアンチフェイズバ
ンダリーを完全になくすことはできなく、シングルドメ
イン化するには厚いバッファ層を必要とする。さらに
は、傾角基板の使用はSi電子素子の設計に制限を強い
ることになる。
In general, in order to eliminate the anti-phase boundary, the plane orientation of the Si substrate should be (100), (11
A tilt substrate such as 0) or (111) deviated from the normal direction by several degrees or more is used. However, this method cannot completely eliminate the anti-phase boundary and requires a thick buffer layer to achieve single domain. Furthermore, the use of tilted substrates imposes restrictions on the design of Si electronic devices.

【0011】本発明の第1の目的は、Si基板上に、ア
ンチフェイズバンダリーのない窒素系III−V族混晶半
導体が設けられた構造の化合物半導体装置を提供するこ
とにある。本発明の第2の目的は、そのような化合物半
導体装置の製造方法を提供することにある。本発明の第
3の目的は、そのような化合物半導体装置に、Si素子
が集積された半導体装置を提供することにある。
A first object of the present invention is to provide a compound semiconductor device having a structure in which a nitrogen-based III-V group mixed crystal semiconductor having no antiphase boundary is provided on a Si substrate. A second object of the present invention is to provide a method for manufacturing such a compound semiconductor device. A third object of the present invention is to provide a semiconductor device in which Si elements are integrated in such a compound semiconductor device.

【0012】[0012]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の化合物半導体装置は、Si基板上
に、アンチフェーズバンダリーがない、V族元素として
窒素を含むIII−V族混晶半導体を配置し、このIII−V
族混晶半導体に化合物半導体素子を設けるようにしたも
のである。
In order to achieve the first object, the compound semiconductor device of the present invention is a III-V compound containing nitrogen as a group V element, which has no anti-phase boundary on an Si substrate. Group III-V semiconductors are arranged and the III-V
A compound semiconductor element is provided on a group mixed crystal semiconductor.

【0013】上記のV族元素として窒素を含むIII−V
族混晶半導体とは、窒素を含むことにより、Siと格子
整合させたもので、V族元素は窒素と他の元素からな
る。一方、III族元素は1種の元素でも2種以上の元素
でもよい。例えば、GaNP、GaNAs、InNP等
の化合物半導体である。これらの混晶半導体は、すべて
の組成範囲でSiと格子整合するのではなく、GaNx
1-xではxが0.03、GaNyAs1-yではyが0.
19で格子整合する。x、yは、この値より若干ずれて
も、つまり実質的にこの値であれば、実用上はSiと格
子整合する。本明細書ではこのようなV族元素として窒
素を含むIII−V族混晶半導体を窒素系III−V族混晶半
導体と記載する。
III-V containing nitrogen as the group V element
A group mixed crystal semiconductor is one that is lattice-matched to Si by containing nitrogen, and a group V element is composed of nitrogen and another element. On the other hand, the group III element may be one element or two or more elements. For example, it is a compound semiconductor such as GaNP, GaNAs, or InNP. These mixed crystal semiconductors are not lattice-matched with Si over the entire composition range, but rather with GaN x
In P 1-x , x is 0.03, and in GaN y As 1-y , y is 0.
Lattice matching is performed at 19. Even if x and y are slightly deviated from this value, that is, if this value is substantially this value, lattice matching with Si is practically achieved. In this specification, such a III-V group mixed crystal semiconductor containing nitrogen as a V group element is referred to as a nitrogen-based III-V group mixed crystal semiconductor.

【0014】Si基板の結晶方位は、(100)、(1
10)又は(111)であることが好ましい。また、S
i基板とIII−V族混晶半導体の間に、アモルファスS
iが配置された構造としてもよい。さらに、III−V族
混晶半導体の結晶欠陥密度は、10万個/平方cm以下
であることが好ましい。結晶欠陥密度がゼロとなれば最
もよい。Si基板は、単結晶基板に限定するものではな
く、用途によっては多結晶Si基板やアモルファスSi
基板であってもよい。
The crystal orientation of the Si substrate is (100), (1
It is preferably 10) or (111). Also, S
Amorphous S is formed between the i substrate and the III-V mixed crystal semiconductor.
It may be a structure in which i is arranged. Further, the crystal defect density of the III-V mixed crystal semiconductor is preferably 100,000 / square cm or less. It is best if the crystal defect density becomes zero. The Si substrate is not limited to a single crystal substrate, but may be a polycrystalline Si substrate or amorphous Si substrate depending on the application.
It may be a substrate.

【0015】また、上記第2の目的を達成するために、
本発明の化合物半導体装置の製造方法は、有極性結晶基
板上に、所望のエッチング液でエッチングされる材質の
エピタキシャル層を形成し、このエピタキシャル層上
に、V族元素として窒素を含むIII−V族混晶半導体層
をエピタキシャル成長させ、このIII−V族混晶半導体
層とSi基板とを張り合わせ、さらに、上記のエピタキ
シャル層を所望のエッチング液でエッチングし、有極性
結晶基板をIII−V族混晶半導体層から分離するように
したものである。
In order to achieve the second object,
According to the method of manufacturing a compound semiconductor device of the present invention, an epitaxial layer made of a material that can be etched with a desired etching solution is formed on a polar crystal substrate, and III-V containing nitrogen as a group V element is formed on the epitaxial layer. The group III-V mixed crystal semiconductor layer is epitaxially grown, the III-V group mixed crystal semiconductor layer and the Si substrate are bonded together, and the epitaxial layer is etched with a desired etching solution to change the polar crystal substrate to the III-V group mixed crystal. It is separated from the crystalline semiconductor layer.

【0016】III−V族混晶半導体層とSi基板との張
り合わせは、直接接合法により張り合わせることができ
る。張り合わせは、400℃から700℃の範囲に加熱
して行うことが好ましく、400℃から600℃の範囲
に加熱して行うことがより好ましい。また、III−V族
混晶半導体層とSi基板との張り合わせは、少なくとも
いずれかの表面、つまり張り合わせる面にアモルファス
Si設けておき、このアモルファスSiを介して張り合
わせることもできる。
The III-V mixed crystal semiconductor layer and the Si substrate can be bonded together by a direct bonding method. The bonding is preferably performed by heating in the range of 400 ° C to 700 ° C, more preferably in the range of 400 ° C to 600 ° C. In addition, the III-V mixed crystal semiconductor layer and the Si substrate may be bonded to each other by providing amorphous Si on at least one of the surfaces, that is, the bonding surface, and bonding via the amorphous Si.

【0017】さらにまた、上記第3の目的を達成するた
めに、本発明の半導体装置は、上記記載の化合物半導体
装置のSi基板に、さらに半導体素子を設けるようにし
たものである。半導体素子としては、例えば、MOS−
FET等のSi電子素子がある。
Furthermore, in order to achieve the third object, the semiconductor device of the present invention is such that a semiconductor element is further provided on the Si substrate of the compound semiconductor device described above. As the semiconductor element, for example, a MOS-
There are Si electronic devices such as FETs.

【0018】[0018]

【作用】非極性結晶の上に有極性結晶をエピタキシャル
成長させるとアンチフェイズバンダリーがどうしても発
生してしまう。これを本質的に防ぐためには、有極性結
晶の上に有極性結晶をエピタキシャル成長させればよ
い。窒素系III−V族混晶半導体を、Siと格子定数が
極めて近い有極性結晶、例えば、GaPの上にエピタキ
シァル成長させると、アンチフェイズバンダリーの発生
を防ぐことができる。得られた窒素系III−V族混晶半
導体をSi基板と直接接合法により張り合わせることに
より、アンチフェイズバンダリーのない高品質の窒素系
III−V族混晶半導体をSi基板上に一体形成できる。
[Function] When a polar crystal is epitaxially grown on a non-polar crystal, an antiphase boundary is inevitably generated. To essentially prevent this, a polar crystal may be epitaxially grown on the polar crystal. When a nitrogen-based III-V mixed crystal semiconductor is epitaxially grown on a polar crystal having a lattice constant extremely close to that of Si, for example, GaP, the occurrence of anti-phase boundary can be prevented. By bonding the obtained nitrogen-based III-V mixed crystal semiconductor to a Si substrate by a direct bonding method, a high-quality nitrogen-based nitrogen-free nitrogen-based semiconductor
A III-V mixed crystal semiconductor can be integrally formed on a Si substrate.

【0019】GaAsやInPの材料を使った従来の直
接接合法では、Si基板との格子定数差のためにミスフ
ィット転位が発生してしまい、素子特性に問題があった
が、本発明では、Si基板と格子定数がほぼ等しい窒素
系III−V族混晶半導体を直接接合法によりSi基板と
張り合わせるのでミスフィット転位は発生しない。従っ
て、ミスフィット転位もアンチフェイズバンダリーもな
い高品質の窒素系III−V族混晶半導体をSi基板上に
一体形成することができる。具体的には、上記化合物半
導体の結晶欠陥密度を化合物半導体素子の特性が十分と
なる10万個/平方cm以下にすることができる。な
お、直接接合法はエピタキシャル法に比べて熱処理の温
度が数百℃低いので、熱歪の大きさを小さくできる利点
をも有している。
In the conventional direct bonding method using a material such as GaAs or InP, misfit dislocations are generated due to the difference in lattice constant from the Si substrate, which causes a problem in device characteristics. Misfit dislocations do not occur because a nitrogen-based III-V group mixed crystal semiconductor having a lattice constant substantially equal to that of the Si substrate is bonded to the Si substrate by the direct bonding method. Therefore, it is possible to integrally form a high-quality nitrogen-based III-V group mixed crystal semiconductor having neither misfit dislocations nor antiphase boundary on a Si substrate. Specifically, the crystal defect density of the compound semiconductor can be set to 100,000 defects / square cm or less, which is sufficient for the characteristics of the compound semiconductor device. The direct bonding method has a merit that the temperature of heat treatment is several hundred degrees lower than that of the epitaxial method, so that it has an advantage that the magnitude of thermal strain can be reduced.

【0020】直接接合の方法は、従来の単結晶同士を直
接張り合わせる方法だけでなく、単結晶Siと単結晶化
合物半導体の間にアモルファス材料であるアモルファス
Si層を挿入しても良い。アモルファスSiを介して張
り合わせる場合、アモルファスSiは無定形なので結晶
の方位を合わせる必要がなくなる。また、選択成長法又
はエッチング法により張り合わせる化合物半導体に予め
パターンを形成しておき、Si基板との位置合わせを行
うことにより、Si基板上の希望する場所に化合物半導
体層を選択的に形成することもできる。
The direct bonding method is not limited to the conventional method of directly bonding single crystals, but an amorphous Si layer which is an amorphous material may be inserted between the single crystal Si and the single crystal compound semiconductor. When affixing through amorphous Si, amorphous Si does not require crystal orientation because it is amorphous. Further, a compound semiconductor layer is selectively formed at a desired position on the Si substrate by forming a pattern in advance on the compound semiconductor to be bonded by the selective growth method or the etching method and aligning the pattern with the Si substrate. You can also

【0021】[0021]

【実施例】【Example】

〈実施例1〉本実施例では、Si電子素子のMOS−F
ET(絶縁ゲート型電界効果トランジスタ)と窒素系II
I−V族混晶半導体の面発光レーザダイオードを同一S
i基板上に集積したOEICの例を述べる。このOEI
Cの構造断面図を図1に示し、その作成方法を説明す
る。(100)面を持つn型Si基板10に、電子素子
を作製する準備として、Si基板にイオン注入を行う。
図1に示す様に、アイソレーションのためにBを注入し
て、高比抵抗のp型領域11を作製し、Pをイオン注入
して、n型のMOS−FETのドレイン電極12、ソー
ス電極13及び面発光レーザダイオード用コンタクト層
14を形成する。
Example 1 In this example, a MOS-F of a Si electronic element is used.
ET (insulated gate type field effect transistor) and nitrogen type II
The same surface emitting laser diode of IV group mixed crystal semiconductor is used.
An example of an OEIC integrated on an i substrate will be described. This OEI
A structural cross-sectional view of C is shown in FIG. 1 and a method for making the same will be described. Ion implantation is performed on the Si substrate 10 having a (100) plane as a preparation for manufacturing an electronic element.
As shown in FIG. 1, B is implanted for isolation to form a p-type region 11 having a high specific resistance, P is ion-implanted, and a drain electrode 12 and a source electrode of an n-type MOS-FET are formed. 13 and a surface emitting laser diode contact layer 14 are formed.

【0022】次に、面発光レーザダイオードの部分につ
いて説明する。図1において、15はn型GaN0.03
0.97バッファ層(n=1×10-18cm-3、d=0.1
μm)、16はn型半導体多層膜ミラー(n=1×10
-18cm-3)、17はn型GaN0.030.97クラッド層
(n=1×10-18cm-3)、18はノンドープ活性層
で、その構造は後に述べる。19はp型GaN0.03
0.97クラッド層(p=1×10-18cm-3)、20はp
型半導体多層膜ミラー(p=1×10-19cm-3)、2
1はp型GaN0.030.97キャップ層(p=1×10
-19cm-3、d=0.1μm)である。
Next, the surface emitting laser diode portion will be described. In FIG. 1, 15 is n-type GaN 0.03 P
0.97 buffer layer (n = 1 × 10 -18 cm -3 , d = 0.1
μm), 16 is an n-type semiconductor multilayer mirror (n = 1 × 10
-18 cm -3 ), 17 is an n-type GaN 0.03 P 0.97 cladding layer (n = 1 × 10 -18 cm -3 ), and 18 is a non-doped active layer, the structure of which will be described later. 19 is p-type GaN 0.03 P
0.97 clad layer (p = 1 × 10 -18 cm -3 ), 20 is p
Type semiconductor multilayer film mirror (p = 1 × 10 -19 cm -3 ), 2
1 is a p-type GaN 0.03 P 0.97 cap layer (p = 1 × 10
-19 cm -3 , d = 0.1 μm).

【0023】活性層には2nm厚の格子不整合度が−1
%のGaN0.070.93層と1nm厚の格子不整合度が+
2%のGaN0.10As0.90層を交互に積層した応力補償
型超格子層を用い、実効的に0.8eV(波長:1.5
5μm)のバンドギャップを持つ。活性層全体の厚さは
半導体中で凡そ1/4波長となるように33周期積層し
100nm厚とした。また、1波長共振器を実現するた
めミラー間が1波長となるように、クラッド層の厚さを
両側とも半導体中で3/8波長とした。半導体多層膜ミ
ラーは、半導体中で1/4波長厚の高屈折率GaN0.03
0.97層と半導体中で1/4波長厚の低屈折率AlN
0.040.96層を交互に積層することにより構成され、反
射率を99%以上にするためにミラー層の積層回数は2
0回とした。なお、p型ミラー層は抵抗率を下げるため
に、p=1×10-19cm-3の高濃度ドーピングを行っ
た。
The active layer has a lattice mismatch of -1 with a thickness of 2 nm.
% GaN 0.07 P 0.93 layer and 1 nm thick lattice mismatch +
Using a stress-compensation superlattice layer in which 2% GaN 0.10 As 0.90 layers are alternately laminated, an effective 0.8 eV (wavelength: 1.5
It has a band gap of 5 μm). The total thickness of the active layer was 100 nm by stacking 33 periods so that the semiconductor layer had a wavelength of about 1/4. Further, in order to realize a one-wavelength resonator, the thickness of the clad layer is set to 3/8 wavelength in the semiconductor on both sides so that the mirror has one wavelength. The semiconductor multi-layer film mirror is a high-refractive-index GaN 0.03 layer with a quarter wavelength thickness in the semiconductor.
Low refractive index AlN with quarter wavelength thickness in P 0.97 layer and semiconductor
It is composed by alternately laminating 0.04 P 0.96 layers, and the number of lamination of mirror layers is 2 in order to make the reflectance 99% or more.
It was 0 times. The p-type mirror layer was heavily doped with p = 1 × 10 −19 cm −3 in order to reduce the resistivity.

【0024】この面発光レーザダイオードの部分は、別
個に(100)GaP基板を用いガスソース分子線エピ
タキシー装置を用いて作製した。最初にGaP基板(図
示せず)上にGaPバッファ層(d=1μm、図示せ
ず)、AlN0.040.96エッチング層(d=1μm、図
示せず)を成長させた後、面発光レーザダイオードの部
分を、上記説明とは逆の順序に、p型GaN0.030.97
キャップ層21からn型GaN0.030.97バッファ層1
5まで連続成長させた。III族の原料には金属を、P及
びAsの原料にはフォスフィン及びアルシンを、そして
Nの原料には窒素分子をrfプラズマ(高周波プラズ
マ)により活性化した窒素ラジカルを用いた。n型ドー
パント、p型ドーパントの原料にはそれぞれSiとネオ
ペンタン(C)を用いた。成長を終えたウエハを、ハロ
ゲン系反応性イオンビームを用いて直径が5μmの円柱
状の面発光レーザダイオード部分を残して、AlN0.04
0.96エッチング層の途中まで表面から垂直にエッチン
グした。
The surface emitting laser diode portion was separately manufactured by using a (100) GaP substrate and a gas source molecular beam epitaxy apparatus. First, a GaP buffer layer (d = 1 μm, not shown) and an AlN 0.04 P 0.96 etching layer (d = 1 μm, not shown) are grown on a GaP substrate (not shown), and then a surface emitting laser diode is manufactured. The parts are replaced with p-type GaN 0.03 P 0.97 in the reverse order of the above description.
From the cap layer 21 to the n-type GaN 0.03 P 0.97 buffer layer 1
It was continuously grown up to 5. A metal was used as a group III raw material, phosphine and arsine were used as P and As raw materials, and a nitrogen radical in which nitrogen molecules were activated by rf plasma (high-frequency plasma) was used as a N raw material. Si and neopentane (C) were used as raw materials for the n-type dopant and the p-type dopant, respectively. The grown wafer is treated with a halogen-based reactive ion beam to leave a cylindrical surface-emitting laser diode portion having a diameter of 5 μm and AlN 0.04
The P 0.96 etching layer was etched vertically from the surface to the middle.

【0025】上記のように加工したn型Si基板とGa
P基板を濃硫酸で表面の親水性処理を行い、面発光レー
ザダイオード用のコンタクト層14とn型GaN0.03
0.97バッファ層15を合わせて、450℃の水素雰囲気
中で30分間の熱処理を行い張り合わせた。張り合わせ
た2枚の基板の間にポジ型レジストを注入した後に張り
合わせた基板全体を露光し、円柱状の面発光レーザダイ
オードの周囲にはレジストが残るが、GaP基板周囲に
はレジストがない状態とした。この基板をフッ酸系溶液
でAlN0.040.96エッチング層を横方向から選択的に
エッチングし、GaP基板を剥離させた。次に、レジス
トを取り除き、図1に示した構造を作製した。
An n-type Si substrate and Ga processed as described above
The surface of the P substrate is treated with concentrated sulfuric acid to make it hydrophilic, and the contact layer 14 for the surface emitting laser diode and the n-type GaN 0.03 P
The 0.97 buffer layers 15 were put together, and heat-treated for 30 minutes in a hydrogen atmosphere at 450 ° C. to bond them together. After injecting a positive type resist between the two bonded substrates, the entire bonded substrate is exposed, and the resist remains around the cylindrical surface emitting laser diode, but there is no resist around the GaP substrate. did. An AlN 0.04 P 0.96 etching layer was selectively etched from the lateral direction of this substrate with a hydrofluoric acid-based solution to peel off the GaP substrate. Next, the resist was removed and the structure shown in FIG. 1 was produced.

【0026】その後、面発光レーザダイオードの表面の
所望の部分に保護用のSiO2酸化膜をCVD(化学気
相堆積)法で形成し、p型GaN0.030.97キャップ層
21の上に透明電極22を形成した。次に、通常の方法
で、素子分離用のSiO2酸化膜、ゲート絶縁膜を形成
し、最後に、Alを用いてゲート電極、電気配線を作製
してMOS−FET及びOEICを完成させた。作製し
たOEICは、レーザダイオード駆動用MOS−FET
のゲート電極に電圧が印加されると面発光レーザダイオ
ードに電流が注入され、レーザ発振し、Si基板から垂
直方向にレーザ光が放出された。
Thereafter, a protective SiO 2 oxide film is formed on a desired portion of the surface emitting laser diode surface by a CVD (chemical vapor deposition) method, and a transparent electrode is formed on the p-type GaN 0.03 P 0.97 cap layer 21. 22 was formed. Next, a SiO 2 oxide film for element isolation and a gate insulating film were formed by a usual method, and finally, a gate electrode and an electric wiring were formed using Al to complete a MOS-FET and an OEIC. The produced OEIC is a MOS-FET for driving a laser diode.
When a voltage was applied to the gate electrode of, the current was injected into the surface emitting laser diode, laser oscillation occurred, and laser light was emitted in the vertical direction from the Si substrate.

【0027】なお、同じ方法でエピタキシャル成長、基
板の張り合わせを行って作成した別の化合物半導体層の
部分の結晶欠陥密度を測定したところ、10万個/平方
cm以下であり、また、アンチフェーズバンダリーは認
められなかった。そのため、本実施例のOEICは長寿
命であった。また、n型Si基板として、結晶方位が
(100)面の基板を用いたが、(110)面、(11
1)面を持つSi基板を用いても同様の結果が得られ
た。
The crystal defect density of another compound semiconductor layer portion prepared by performing epitaxial growth and substrate bonding by the same method was measured and found to be 100,000 / cm 2 or less, and the anti-phase boundary was used. Was not recognized. Therefore, the OEIC of this example had a long life. As the n-type Si substrate, a substrate having a crystal orientation of (100) plane was used.
Similar results were obtained using a Si substrate having a 1) plane.

【0028】〈実施例2〉図2に第2の実施例のpin
フォトダイオードの構造断面図を示す。図2において、
30はn型GaN0.030.97バッファ層(n=2×10
-18cm-3、d=1.0μm)、31は2nm厚の格子
不整合度が−2%のGaN0.140.86と2nm厚の格子
不整合度が+2%のGaN0.10As0.90を交互に積層
し、実効的に0.5eVのバンドギャップを持つノンド
ープ応力補償型超格子光吸収層(n=1×10-15cm
-3、d=0.5μm)、32はp型GaN0.030.97
ッファ層(p=2×10-18cm-3、d=1.0μ
m)、33は半金属GaNAsコンタクト層(d=0.
01μm)である。
<Embodiment 2> FIG. 2 shows the pin of the second embodiment.
The structural sectional drawing of a photodiode is shown. In FIG.
30 is an n-type GaN 0.03 P 0.97 buffer layer (n = 2 × 10
-18 cm -3 , d = 1.0 μm), 31 is 2 nm thick GaN 0.14 P 0.86 with a lattice mismatch of -2% and 2 nm thick GaN 0.10 As 0.90 with a lattice mismatch of + 2%. Non-doped stress-compensated superlattice optical absorption layer (n = 1 × 10 −15 cm) that has a band gap of 0.5 eV stacked.
-3 , d = 0.5 μm), 32 is a p-type GaN 0.03 P 0.97 buffer layer (p = 2 × 10 -18 cm -3 , d = 1.0 μm)
m) and 33 are semi-metal GaNAs contact layers (d = 0.
01 μm).

【0029】この部分は化学線エピタキシー装置を用い
て、(111)GaP基板上に選択成長により作製し
た。最初に、熱化学堆積法により、GaP基板(図示せ
ず)上に、SiO2を堆積させ、フォトリソグラフィに
より直径が5μmの穴の開いたSiO2マスクを作製す
る。この基板のマスクの穴の上に、GaPバッファ層
(d=1μm、図示せず)、AlN0.040.96エッチン
グ層(d=1μm、図示せず)を成長させた後、上記受
光部分を上記説明とは逆の順序で、p型GaN0.03
0.97バッファ層32からn型GaN0.030.97バッファ
層30までを連続して成長させた。Alの原料には金属
Alを、Gaの原料にはトリエチルガリウムを、P及び
Asの原料にはフォスフィン及びアルシンを、そしてN
の原料には窒素分子をrfプラズマにより活性化した窒
素ラジカルを用いた。n型ドーパント、p型ドーパント
の原料にはそれぞれSiとBeを用いた。
This portion was formed by selective growth on a (111) GaP substrate using an actinic ray epitaxy apparatus. First, SiO 2 is deposited on a GaP substrate (not shown) by a thermochemical deposition method, and a SiO 2 mask with holes having a diameter of 5 μm is formed by photolithography. After growing a GaP buffer layer (d = 1 μm, not shown) and an AlN 0.04 P 0.96 etching layer (d = 1 μm, not shown) on the holes of the mask of this substrate, the above-mentioned light receiving portion is described above. P-type GaN 0.03 P in the reverse order of
The 0.97 buffer layer 32 to the n-type GaN 0.03 P 0.97 buffer layer 30 were continuously grown. Metallic Al is used as a raw material of Al, triethylgallium is used as a raw material of Ga, phosphine and arsine are used as raw materials of P and As, and N is
A nitrogen radical in which nitrogen molecules were activated by rf plasma was used as the raw material. Si and Be were used as raw materials for the n-type dopant and the p-type dopant, respectively.

【0030】他方、(100)面を持つn型Si基板
(n=2×10-18cm-3)35上にシランとフォスフ
ィンを原料にしてプラズマ化学堆積法により0.1μm
厚のn型アモルファスSi層34を堆積させた。なお、
n型アモルファスSi層34は比抵抗を下げるために大
電力のプラズマ中で堆積させて微結晶を含ませた。次
に、フォトリソグラフィにより、上記受光部分が直接接
着される部分のみにn型アモルファスSi層34を選択
的に残し、他の部分は除去した。
On the other hand, silane and phosphine are used as raw materials on an n-type Si substrate (n = 2 × 10 -18 cm -3 ) 35 having a (100) plane to form a plasma chemical deposition method of 0.1 μm.
A thick n-type amorphous Si layer 34 was deposited. In addition,
The n-type amorphous Si layer 34 was deposited in high-power plasma to contain microcrystals in order to reduce the specific resistance. Next, by photolithography, the n-type amorphous Si layer 34 was selectively left only in the portion to which the light receiving portion was directly bonded, and the other portions were removed.

【0031】上記のように加工したGaP基板とSi基
板35を、濃硫酸で表面の親水性処理を行った後、40
0℃の水素雰囲気中で30分間の熱処理を行い張り合わ
せた。その後、フッ酸系溶液でAlN0.040.96エッチ
ング層をエッチングし、GaP基板を取り除き、図2に
示すpinフォトダイオードの構造を作製した。最後
に、表面保護用にポリイミド膜36を所定の形状に形成
し、電極37及び電極38を形成してpinフォトダイ
オードとした。
The GaP substrate and Si substrate 35 processed as described above are subjected to hydrophilic treatment on the surface with concentrated sulfuric acid, and then 40
Heat treatment was carried out for 30 minutes in a hydrogen atmosphere at 0 ° C. to bond them together. Then, the AlN 0.04 P 0.96 etching layer was etched with a hydrofluoric acid-based solution, the GaP substrate was removed, and the structure of the pin photodiode shown in FIG. 2 was produced. Finally, a polyimide film 36 was formed in a predetermined shape for surface protection, and an electrode 37 and an electrode 38 were formed to obtain a pin photodiode.

【0032】バンドギャップが1.1eV以下の、つま
り波長が1.1μm以上の赤外光はSiに対して透明な
ので、本実施例のpinフォトダイオードではSi基板
側から受光する。本実施例のpinフォトダイオード
は、光吸収層のバンドギャップが0.5eVなので従来
のフォトダイオードでは難しかった2.4μmまでの遠
赤外光を受光できる。
Since infrared light having a bandgap of 1.1 eV or less, that is, a wavelength of 1.1 μm or more is transparent to Si, the pin photodiode of this embodiment receives light from the Si substrate side. The pin photodiode of the present embodiment can receive far-infrared light up to 2.4 μm, which is difficult for the conventional photodiode because the band gap of the light absorption layer is 0.5 eV.

【0033】なお、同じ方法でエピタキシャル成長、基
板の張り合わせを行って作成した別の化合物半導体部分
の結晶欠陥密度を測定したところ、10万個/平方cm
以下であり、また、アンチフェーズバンダリーは認めら
れなかった。そのため、本実施例のpinフォトダイオ
ードは長寿命であった。また、n型Si基板として、結
晶方位が(100)面の基板を用いたが、(110)
面、(111)面を持つSi基板を用いても同様の結果
が得られた。
The crystal defect density of another compound semiconductor portion prepared by epitaxial growth and substrate bonding by the same method was measured to be 100,000 pieces / square cm.
Below, and no anti-phase bandary was recognized. Therefore, the pin photodiode of this example has a long life. Further, as the n-type Si substrate, a substrate having a crystal orientation of (100) plane was used.
Similar results were obtained using a Si substrate having a (111) plane.

【0034】[0034]

【発明の効果】本発明によれば、Si基板上に窒素系II
I−V族混晶半導体をアンチフェイズバンダリーを発生
させることなく一体形成した化合物半導体装置を得るこ
とができた。この混晶半導体の結晶欠陥密度は10万個
/平方cm以下であった。また、Si電子素子とモノリ
シックに集積した半導体素子を得ることができた。さら
にこのような化合物半導体装置を容易に製造することが
できた。
According to the present invention, a nitrogen-based compound II is formed on a Si substrate.
It was possible to obtain a compound semiconductor device in which the IV group mixed crystal semiconductor was integrally formed without generating an antiphase boundary. The crystal defect density of this mixed crystal semiconductor was 100,000 defects / square cm or less. Also, a semiconductor device monolithically integrated with the Si electronic device could be obtained. Further, such a compound semiconductor device could be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のOEICの構造断面図。FIG. 1 is a structural cross-sectional view of an OEIC according to a first embodiment of the present invention.

【図2】本発明の実施例2のpinフォトダイオードの
構造断面図。
FIG. 2 is a structural cross-sectional view of a pin photodiode of Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

10…n型Si基板 11…高比抵抗のp型領域 12…ドレイン電極 13…ソース電極 14…コンタクト層 15、30…n型GaN0.030.97バッファ層 16…n型半導体多層膜ミラー 17…n型GaN0.030.97クラッド層 18…ノンドープ活性層 19…p型GaN0.030.97クラッド層 20…p型半導体多層膜ミラー 21…p型GaN0.030.97キャップ層 22…透明電極 31…応力補償型超格子光吸収層 32…p型GaN0.030.97バッファ層 33…半金属GaNAsコンタクト層 34…n型アモルファスSi層 35…n型Si基板 36…ポリイミド膜 37、38…電極DESCRIPTION OF SYMBOLS 10 ... n-type Si substrate 11 ... high-resistivity p-type region 12 ... drain electrode 13 ... source electrode 14 ... contact layer 15, 30 ... n-type GaN 0.03 P 0.97 buffer layer 16 ... n-type semiconductor multilayer film mirror 17 ... n -Type GaN 0.03 P 0.97 clad layer 18 ... Non-doped active layer 19 ... P-type GaN 0.03 P 0.97 clad layer 20 ... P-type semiconductor multilayer film mirror 21 ... P-type GaN 0.03 P 0.97 Cap layer 22 ... Transparent electrode 31 ... Stress compensation type super Lattice light absorption layer 32 ... p-type GaN 0.03 P 0.97 buffer layer 33 ... semi-metal GaNAs contact layer 34 ... n-type amorphous Si layer 35 ... n-type Si substrate 36 ... polyimide film 37, 38 ... electrode

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】Si基板上に、アンチフェーズバンダリー
がない、V族元素として窒素を含むIII−V族混晶半導
体が配置され、該III−V族混晶半導体に化合物半導体
素子が設けられたことを特徴とする化合物半導体装置。
1. A group III-V mixed crystal semiconductor containing nitrogen as a group V element having no anti-phase boundary is arranged on a Si substrate, and a compound semiconductor element is provided on the group III-V mixed crystal semiconductor. A compound semiconductor device characterized by the above.
【請求項2】請求項1記載の化合物半導体装置におい
て、上記Si基板の結晶方位が(100)、(110)
又は(111)であることを特徴とする化合物半導体装
置。
2. The compound semiconductor device according to claim 1, wherein the Si substrate has a crystal orientation of (100), (110).
Alternatively, the compound semiconductor device is (111).
【請求項3】請求項1又は2記載の化合物半導体装置に
おいて、上記Si基板と上記III−V族混晶半導体の間
に、アモルファスSiが配置されたことを特徴とする化
合物半導体装置。
3. A compound semiconductor device according to claim 1 or 2, wherein amorphous Si is arranged between the Si substrate and the III-V mixed crystal semiconductor.
【請求項4】請求項1、2又は3記載の化合物半導体装
置において、上記III−V族混晶半導体の結晶欠陥密度
は、10万個/平方cm以下であることを特徴とする化
合物半導体装置。
4. The compound semiconductor device according to claim 1, 2 or 3, wherein the III-V mixed crystal semiconductor has a crystal defect density of 100,000 / square cm or less. .
【請求項5】請求項1から4のいずれか一に記載の化合
物半導体装置において、上記化合物半導体素子は、発光
ダイオードであることを特徴とする化合物半導体装置。
5. The compound semiconductor device according to claim 1, wherein the compound semiconductor element is a light emitting diode.
【請求項6】請求項5記載の化合物半導体装置におい
て、上記発光ダイオードは、レーザダイオードであるこ
とを特徴とする化合物半導体装置。
6. The compound semiconductor device according to claim 5, wherein the light emitting diode is a laser diode.
【請求項7】請求項1から4のいずれか一に記載の化合
物半導体装置において、上記化合物半導体素子は、フォ
トダイオードであることを特徴とする化合物半導体装
置。
7. The compound semiconductor device according to claim 1, wherein the compound semiconductor element is a photodiode.
【請求項8】請求項1から7のいずれか一に記載の化合
物半導体装置と、上記Si基板に設けられた半導体素子
とからなることを特徴とする半導体装置。
8. A semiconductor device comprising the compound semiconductor device according to claim 1 and a semiconductor element provided on the Si substrate.
【請求項9】請求項8記載の半導体装置において、上記
半導体素子は、電子素子であることを特徴とする半導体
装置。
9. The semiconductor device according to claim 8, wherein the semiconductor element is an electronic element.
【請求項10】有極性結晶基板上に、所望のエッチング
液でエッチングされる材質のエピタキシャル層を形成す
る工程、該エピタキシャル層上に、V族元素として窒素
を含むIII−V族混晶半導体層をエピタキシャル成長さ
せる工程、該III−V族混晶半導体層とSi基板とを張
り合わせる工程及び上記エピタキシャル層を所望のエッ
チング液でエッチングし、上記有極性結晶基板をIII−
V族混晶半導体層から分離する工程を有することを特徴
とする化合物半導体装置の製造方法。
10. A step of forming, on a polar crystal substrate, an epitaxial layer made of a material which can be etched with a desired etching solution, and a III-V mixed crystal semiconductor layer containing nitrogen as a V group element on the epitaxial layer. Is epitaxially grown, the step of adhering the III-V mixed crystal semiconductor layer and the Si substrate, and the epitaxial layer is etched with a desired etching solution to form the polar crystal substrate with III-
A method of manufacturing a compound semiconductor device, comprising a step of separating from a group V mixed crystal semiconductor layer.
【請求項11】請求項10記載の化合物半導体装置の製
造方法において、上記有極性結晶基板は、GaPである
ことを特徴とする化合物半導体装置の製造方法。
11. The method of manufacturing a compound semiconductor device according to claim 10, wherein the polar crystal substrate is GaP.
【請求項12】請求項10又は11記載の化合物半導体
装置の製造方法において、上記III−V族混晶半導体層
と上記Si基板とを張り合わせる工程は、少なくともい
ずれかの表面に設けられたアモルファスSiを介して張
り合わせることを特徴とする化合物半導体装置の製造方
法。
12. The method of manufacturing a compound semiconductor device according to claim 10, wherein the step of bonding the group III-V mixed crystal semiconductor layer and the Si substrate is an amorphous material provided on at least one surface thereof. A method for manufacturing a compound semiconductor device, which comprises laminating via Si.
JP11481294A 1994-05-27 1994-05-27 Method for manufacturing compound semiconductor device Expired - Fee Related JP3406376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481294A JP3406376B2 (en) 1994-05-27 1994-05-27 Method for manufacturing compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11481294A JP3406376B2 (en) 1994-05-27 1994-05-27 Method for manufacturing compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH07321051A true JPH07321051A (en) 1995-12-08
JP3406376B2 JP3406376B2 (en) 2003-05-12

Family

ID=14647306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481294A Expired - Fee Related JP3406376B2 (en) 1994-05-27 1994-05-27 Method for manufacturing compound semiconductor device

Country Status (1)

Country Link
JP (1) JP3406376B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222764A (en) * 1995-02-14 1996-08-30 Showa Denko Kk Light emitting diode
JPH10173294A (en) * 1996-10-07 1998-06-26 Canon Inc Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
JP2008085090A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Semiconductor laser device and its manufacturing method
US7388234B2 (en) 1998-07-29 2008-06-17 Sanyo Electric Co. Ltd. Semiconductor device and method of fabricating the same and method of forming nitride based semiconductor layer
JP2009164599A (en) * 2008-01-07 2009-07-23 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
CN101615646A (en) * 2008-06-24 2009-12-30 潘晓和 Threedimensional solid luminescent device and manufacture method thereof
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region
KR20210144644A (en) * 2015-01-29 2021-11-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light emitting device package

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222764A (en) * 1995-02-14 1996-08-30 Showa Denko Kk Light emitting diode
JPH10173294A (en) * 1996-10-07 1998-06-26 Canon Inc Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
US7388234B2 (en) 1998-07-29 2008-06-17 Sanyo Electric Co. Ltd. Semiconductor device and method of fabricating the same and method of forming nitride based semiconductor layer
US7768030B2 (en) 1998-07-29 2010-08-03 Sanyo Electric Co., Ltd. Nitride based semiconductor device with film for preventing short circuiting
US7977701B2 (en) 1998-07-29 2011-07-12 Sanyo Electric Co., Ltd. Semiconductor device with SiO2 film formed on side surface of nitride based semiconductor layer
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region
JP2008085090A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Semiconductor laser device and its manufacturing method
JP2009164599A (en) * 2008-01-07 2009-07-23 Dongbu Hitek Co Ltd Image sensor, and manufacturing method thereof
CN101615646A (en) * 2008-06-24 2009-12-30 潘晓和 Threedimensional solid luminescent device and manufacture method thereof
KR20210144644A (en) * 2015-01-29 2021-11-30 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light emitting device package

Also Published As

Publication number Publication date
JP3406376B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US5937274A (en) Fabrication method for AlGaIn NPAsSb based devices
JP3425185B2 (en) Semiconductor element
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
EP0553856B1 (en) Method of preparing a semiconductor substrate
US8410523B2 (en) Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-SB alloys
Okuno et al. Direct wafer bonding of III-V compound semiconductors for free-material and free-orientation integration
JPH11274467A (en) Photo-electronic integrated-circuit device
KR20070107755A (en) Novel gesisn-based compounds, templates, and semiconductor structures
JP3332127B2 (en) Semiconductor element
JP3406376B2 (en) Method for manufacturing compound semiconductor device
US9401404B2 (en) Semiconductor device and fabrication method
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP3474917B2 (en) Method for manufacturing semiconductor device
US5571748A (en) Methods for producing compound semiconductor devices
US5654583A (en) Semiconductor device having first and second semiconductor structures directly bonded to each other
JP3465349B2 (en) Semiconductor multilayer substrate and method of manufacturing semiconductor multilayer film
JPH07283488A (en) Compound semiconductor device, manufacture thereof and semiconductor device
JP2002246695A (en) Method for manufacturing semiconductor device using porous substrate, and semiconductor device
JP2003158074A (en) Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film
JP2876543B2 (en) Semiconductor device and manufacturing method thereof
JPH08195356A (en) Manufacture of semiconductor element and semiconductor device
JPH05145195A (en) Surface light emitting semiconductor laser
US6275515B1 (en) Semiconductor laser device and method of producing the same
JP2000244067A (en) Semiconductor laser element and its manufacture
JPH0774066A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees