JPH07320987A - Electrode structure - Google Patents

Electrode structure

Info

Publication number
JPH07320987A
JPH07320987A JP6114876A JP11487694A JPH07320987A JP H07320987 A JPH07320987 A JP H07320987A JP 6114876 A JP6114876 A JP 6114876A JP 11487694 A JP11487694 A JP 11487694A JP H07320987 A JPH07320987 A JP H07320987A
Authority
JP
Japan
Prior art keywords
electrode
current collector
electrode material
carbon fiber
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6114876A
Other languages
Japanese (ja)
Inventor
Kohei Yamamoto
浩平 山本
Masanori Nakanishi
正典 中西
Masahiro Suga
正博 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI SHOKO KK
FDK Corp
Original Assignee
MIYOSHI SHOKO KK
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI SHOKO KK, FDK Corp filed Critical MIYOSHI SHOKO KK
Priority to JP6114876A priority Critical patent/JPH07320987A/en
Publication of JPH07320987A publication Critical patent/JPH07320987A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an electrode structure which can reduce the resistance by preventing the stripping off of an electrode material from a current collector. CONSTITUTION:In an electrode provided with a current collector 11 and electrode material 14 joined to the surface of the body 11, activated carbon fibers 13 are electrostatically flocked to the surface of the collector 11 and, at the same time, the material 14 is closely adhered and fixed to the surface of the collector 11. In addition, the activated carbon fibers 13 are directly flocked to the internal surface of a case for battery or cap. Moreover, the collector 11 can be constituted of a conductive resin sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
用電極または電池用電極等の電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure such as an electrode for an electric double layer capacitor or an electrode for a battery.

【0002】[0002]

【従来の技術】電気二重層コンデンサ用電極として、例
えばスパイラル形構造を有する電極は、電極材料として
のスラリーを集電体としての金属製シート上に塗布し、
この後乾燥工程、圧延工程、巻回工程を経て製造され
る。
2. Description of the Related Art As an electrode for an electric double layer capacitor, for example, an electrode having a spiral structure, a slurry as an electrode material is applied onto a metal sheet as a current collector,
After that, it is manufactured through a drying process, a rolling process, and a winding process.

【0003】上記電極スラリーには、例えば活性炭粉
末、結着剤(バインダ)および増粘剤との混練物が用い
られ、ドクターブレード法等によりシートの表面に直接
塗布されている。
For the electrode slurry, for example, a kneaded material of activated carbon powder, a binder (binder) and a thickener is used, and it is directly applied to the surface of the sheet by a doctor blade method or the like.

【0004】また、電池用電極として、例えば扁平形電
池用の電極は以下のようにして作製される。
Further, as a battery electrode, for example, an electrode for a flat battery is manufactured as follows.

【0005】電極集電部を構成する扁平容器状の金属製
ケースの内面にネット状の金属製集電体を溶接し、この
ネット状集電体の上に例えば活物質として二酸化マンガ
ン、導電剤および結着剤等の混合物からなる粉末電極剤
を堆積し、この粉末電極剤を所定の形状にプレス成形す
ることによりネット状集電体に電極材料を食い込ませ
て、電極材料をケースの内底面に固定している。この
後、固定された電極材料は電解液が注液されて含浸す
る。
A net-shaped metal current collector is welded to the inner surface of a flat container-shaped metal case constituting the electrode current collector, and manganese dioxide as an active material, a conductive agent, etc., are welded onto the net-shaped current collector. A powdered electrode material consisting of a mixture of a binder and a binder is deposited, and the powdered electrode material is press-molded into a predetermined shape so that the electrode material is bitten into the net-shaped current collector, and the electrode material is placed on the inner bottom surface of the case. It is fixed to. After that, the fixed electrode material is impregnated by injecting an electrolytic solution.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記各
電極には、以下の(1)〜(2)の問題があった。
However, each electrode has the following problems (1) and (2).

【0007】(1)前記電気二重層コンデンサ用シート
状電極において、前記乾燥、圧延工程で電極材料がシー
トから部分的に剥離してシートと電極材料との間の接触
抵抗が増大することがある。
(1) In the sheet electrode for the electric double layer capacitor, the electrode material may be partially peeled from the sheet in the drying and rolling steps, and the contact resistance between the sheet and the electrode material may increase. .

【0008】この問題が発生する原因としては以下のこ
とが挙げられる。
The cause of this problem is as follows.

【0009】シートと電極スラリーとの接着強度は主に
電極スラリーのバインダ量に依存しており、シートの表
面に対して前記電極スラリーを直接塗布しているだけで
あるため充分ではない。
The adhesive strength between the sheet and the electrode slurry mainly depends on the binder amount of the electrode slurry, and is not sufficient because the electrode slurry is only applied directly to the surface of the sheet.

【0010】また、塗布したスラリーには前述した混練
物の部分的な凝集が発生していることがある。
In addition, the above-mentioned kneaded material may partially aggregate in the applied slurry.

【0011】この場合、前記乾燥工程において、スラリ
ーが乾燥してその粘度が低下すると、前記凝集部分の周
辺にひび割れが発生してシートから剥離してしまうこと
がある。
In this case, when the slurry is dried and the viscosity thereof is lowered in the drying step, cracks may occur around the agglomerated portion and peel off from the sheet.

【0012】また、前記圧延工程においても、上記スラ
リーの凝集部分やひび割れ部分に圧延力が作用するとそ
こから剥離してしまう。また、乾燥工程で生じた剥離部
分に圧延力が作用すると、さらに剥離部分が拡大してし
まう。
Also in the rolling step, if the rolling force acts on the agglomerated portion or the cracked portion of the slurry, the slurry is peeled off. Further, when the rolling force acts on the peeled portion generated in the drying step, the peeled portion further expands.

【0013】前記巻回工程においても、スラリーは巻回
中心に近いほど円周方向に圧縮力が作用し、また巻回中
心から遠いほど円周方向に引張力が作用するため、この
圧縮力、引張力によりひび割れや剥離が発生してしまう
ことがある。
Also in the winding step, the compression force acts on the slurry in the circumferential direction as it is closer to the winding center, and the tensile force acts in the circumferential direction as it is farther from the winding center. Cracks or peeling may occur due to the tensile force.

【0014】またバインダ量を増加させることにより接
着強度を高めることは可能であるが、電極自体の抵抗が
高くなり逆効果である。
Although it is possible to increase the adhesive strength by increasing the amount of the binder, the resistance of the electrode itself is increased, which has the opposite effect.

【0015】(2)前記電池用電極において、電極材料
は電解液が注液され含浸すると電極が膨潤して電極材料
がケース内底面から剥離し、電極材料とケースとの間の
接触抵抗が増大することがある。
(2) In the battery electrode, when the electrode material is injected and impregnated with the electrolytic solution, the electrode swells and the electrode material peels from the inner bottom surface of the case, increasing the contact resistance between the electrode material and the case. I have something to do.

【0016】この問題が発生する原因としては以下のこ
とが挙げられる。
The cause of this problem is as follows.

【0017】前述の成形された電極材料には前記ケース
内底面に溶接された前記ネット状集電体が食い込んでい
るが、このネット状の集電体は電極材料の表層に食い込
んでいるだけであり、その表層より内部にまでは入り込
んでいない。したがって、電解液を含浸して膨潤すると
電極材料はその径の拡大により、その下部は部分的にネ
ット状集電部から離脱して浮き上がりケースの底部から
離間するように反りが生じ、最終的には剥離してしまう
のである。
The net-shaped current collector welded to the inner bottom surface of the case bites into the molded electrode material described above, but the net-shaped current collector only bites into the surface layer of the electrode material. Yes, it does not penetrate into the inside from its surface layer. Therefore, when the electrode material is impregnated with the electrolyte and swells, the diameter of the electrode material increases, so that the lower part of the electrode material partly separates from the net-shaped current collecting portion and rises to warp so as to separate from the bottom portion of the case. Is peeled off.

【0018】本発明は、以上の問題を解決するためにな
されたものであって、その目的は、集電体からの電極材
料の剥離を防止して抵抗を小さくできる電極構造を提供
することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide an electrode structure capable of preventing the electrode material from peeling from the current collector and reducing the resistance. is there.

【0019】[0019]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、集電体と前記集電体の表面に接合された
電極材料とを備えた電極において、前記集電体の前記表
面には導電性炭素繊維が静電植毛されるとともに前記炭
素繊維を介して前記電極材料が前記集電体の前記表面に
密着係止されてなるのである。
To achieve the above object, the present invention provides an electrode comprising a current collector and an electrode material bonded to the surface of the current collector, wherein the surface of the current collector is The conductive carbon fibers are electrostatically flocked, and the electrode material is tightly locked to the surface of the current collector through the carbon fibers.

【0020】ここで、前記炭素繊維が電極を構成する電
池用ケースまたはキャップの内面に直接的に静電植毛さ
れてなるのである。
Here, the carbon fibers are electrostatically flocked directly on the inner surface of the battery case or cap constituting the electrode.

【0021】好ましくは前記集電体を導電性樹脂シート
とするのである。
Preferably, the current collector is a conductive resin sheet.

【0022】さらに好ましくは、前記導電性炭素繊維を
活性炭素繊維とするのである。
More preferably, the conductive carbon fiber is an activated carbon fiber.

【0023】[0023]

【作用】本発明に係る電極構造によれば、前記集電体の
前記表面には導電性炭素繊維が静電植毛されるとともに
前記炭素繊維を介して前記電極材料が前記集電体の前記
表面に密着かつ係止されるため、電極材料が集電体から
剥離せず抵抗の小さい電極が得られる。
According to the electrode structure of the present invention, conductive carbon fibers are electrostatically planted on the surface of the current collector, and the electrode material is provided on the surface of the current collector through the carbon fibers. Since the electrode material does not peel off from the current collector, the electrode having low resistance can be obtained.

【0024】前記炭素繊維が電極を構成する電池用ケー
スまたはキャップの内面に直接的に静電植毛される場合
には、前記炭素繊維を介して前記電極材料が前記ケース
または前記キャップの内面に密着かつ係止されるため、
電極材料が前記ケースまたは前記キャップから剥離せず
抵抗の小さい電極が得られる。
When the carbon fibers are electrostatically flocked directly on the inner surface of the battery case or cap forming the electrode, the electrode material is adhered to the inner surface of the case or the cap through the carbon fibers. And because it is locked,
The electrode material does not peel off from the case or the cap, and an electrode with low resistance is obtained.

【0025】前記集電体が導電性樹脂シートである場合
には、炭素繊維の植毛強度を向上でき電極材料と集電体
とをより強固に密着係止できる。
When the current collector is a conductive resin sheet, the flocking strength of the carbon fibers can be improved and the electrode material and the current collector can be more firmly and firmly locked.

【0026】前記導電性炭素繊維が活性炭素繊維である
場合には、活性炭素繊維の表面積が大きいため電極材料
との接触面積が大きくなりさらに抵抗を小さくできる。
When the conductive carbon fiber is the activated carbon fiber, the surface area of the activated carbon fiber is large, so that the contact area with the electrode material is increased and the resistance can be further reduced.

【0027】[0027]

【実施例】以下、本発明の好適な実施例を図面を用いて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the drawings.

【0028】まず、シート状電極を集電体とした実施例
を図1及び図2(a)に示す。図1は本実施例の電極の
一部拡大断面図を示しており、この電極は、集電体11
とその表面に静電植毛された炭素繊維13とこの炭素繊
維13上に配置された電極材料14を備え、集電体11
と炭素繊維13とは炭素繊維固着層12を介して固着さ
れるとともに炭素繊維13は集電体11の表面に対して
立ち上がって電極材料14の内部に入り込んでいる。
First, an embodiment in which a sheet electrode is used as a current collector is shown in FIGS. 1 and 2 (a). FIG. 1 shows a partially enlarged cross-sectional view of the electrode of this embodiment.
And a carbon fiber 13 electrostatically flocked on the surface thereof and an electrode material 14 arranged on the carbon fiber 13,
The carbon fiber 13 and the carbon fiber 13 are fixed to each other through the carbon fiber fixing layer 12, and the carbon fiber 13 rises to the surface of the current collector 11 and enters the inside of the electrode material 14.

【0029】図2(a)を用いてその製法について説明
すると、厚さ20μm程度のアルミニウム製シート状集
電体11の両面に導電性接着剤として導電性炭素を最大
40%混合したポリフッ化ビニリデン(以下、PVDF
とする)を塗布した後、集電体11の各面に繊維長0.
3mmの活性炭素繊維13を植毛密度約50,000本
/平方センチメートルに静電植毛した。このとき、塗布
したPVDFに活性炭素繊維13が刺設されて集電体1
1の両面には活性炭素繊維固着層12が形成された。
The manufacturing method will be described with reference to FIG. 2A. Polyvinylidene fluoride mixed with conductive carbon as a conductive adhesive at a maximum of 40% on both surfaces of an aluminum sheet-shaped current collector 11 having a thickness of about 20 μm. (Hereafter, PVDF
And the fiber length of 0. is applied to each surface of the current collector 11.
Electrostatic flocking of 3 mm of activated carbon fiber 13 was carried out at a flocking density of about 50,000 fibers / cm 2. At this time, the activated carbon fibers 13 were pierced into the applied PVDF to collect the current collector 1.
The activated carbon fiber fixing layer 12 was formed on both surfaces of No. 1 of FIG.

【0030】上記静電植毛は、電圧25,000V、電
流0.2mAの電力を用いて鉛直方向下方向きに磁界を
発生させ、この磁界内にシート面を水平にした集電体1
1を配置するとともに集電体11の上方に活性炭素繊維
13を入れたふるいを一定の距離を保って対設したうえ
で、このふるいに水平方向の微小な振動を与えて活性炭
素繊維13を落下させることにより行われる。これによ
り落下中の活性炭素繊維13はその長手方向が磁界の向
きに沿って直立した状態で鉛直下方に飛降し、シート面
に直角に刺設されることになる。
The electrostatic flocking uses a power of 25,000 V and a current of 0.2 mA to generate a magnetic field in the downward direction in the vertical direction, and the current collector 1 in which the sheet surface is horizontal in the magnetic field.
1 is placed and a sieve containing activated carbon fibers 13 is placed above the current collector 11 with a certain distance kept in opposition to each other, and the sieve is subjected to horizontal microvibration to activate the activated carbon fibers 13. It is done by dropping. As a result, the activated carbon fibers 13 that are falling fall vertically downward with the longitudinal direction thereof standing upright along the direction of the magnetic field, and are pierced perpendicularly to the sheet surface.

【0031】その後、活性炭素繊維固着層12、活性炭
素繊維13の上にスラリー状の電極材料14をドクター
ブレード方式で塗布し、これを乾燥した後ロール圧延に
より厚さ0.22mmに圧延し、幅40mm長さ250
mmの大きさに裁断してシート状電極を作製した。
After that, a slurry electrode material 14 is applied onto the activated carbon fiber fixing layer 12 and the activated carbon fiber 13 by a doctor blade method, dried and then rolled to a thickness of 0.22 mm by roll rolling. Width 40 mm length 250
A sheet-like electrode was produced by cutting into a size of mm.

【0032】ここで、スラリー状電極材料14には、活
性炭粉末、導電剤としてアセチレンブラック及び結着剤
としてPVDFをそれぞれ重量比60:20:20の割
合で混練したものを用いた。
Here, as the slurry electrode material 14, used was a mixture of activated carbon powder, acetylene black as a conductive agent, and PVDF as a binder in a weight ratio of 60:20:20, respectively.

【0033】上記電極は、静電植毛の繊維として表面積
の大きい活性炭素繊維を用いたため活性炭素繊維13と
電極材料14との接触面積が大きくなり抵抗を小さくす
ることができる。
In the above electrode, since the active carbon fiber having a large surface area is used as the fiber for electrostatic flocking, the contact area between the active carbon fiber 13 and the electrode material 14 is increased and the resistance can be reduced.

【0034】尚、シート状集電体の材質としては上記ア
ルミニウムの金属箔の他に、例えば樹脂に導電性カーボ
ン材料を分散した導電性樹脂シートでもよく、この場
合、前記静電植毛の際に使用する導電性接着剤が金属箔
に比べて強固にシートに接着するため、この導電層を介
して前記炭素繊維と樹脂シートとを接着でき植毛密度や
植毛強度を大きくできる。したがって、電極材料と集電
体とをより強固に固定できる。
As the material of the sheet-shaped current collector, in addition to the aluminum metal foil, for example, a conductive resin sheet in which a conductive carbon material is dispersed in resin may be used. In this case, when electrostatic flocking is performed, Since the conductive adhesive used adheres to the sheet more firmly than the metal foil, the carbon fiber and the resin sheet can be adhered via this conductive layer, and the flock density and flock strength can be increased. Therefore, the electrode material and the current collector can be more firmly fixed.

【0035】つぎに、2つの上記シート状電極との間に
セパレータを挾み込むように重ね合わせてスパイラル状
に巻回することにより分極性電極要素を作製し、これを
円筒形のケース内に電解液とともに密封入することによ
りスパイラル形電気二重層コンデンサを作製した。
Next, a separator is sandwiched between the two sheet-like electrodes and wound in a spiral shape so that the separator is sandwiched between them, thereby producing a polarizable electrode element, which is placed in a cylindrical case. A spiral-type electric double layer capacitor was manufactured by hermetically sealing with an electrolytic solution.

【0036】上記実施例のようにして作製した電極と従
来の電極とをそれぞれ採用したスパイラル形電気二重層
コンデンサの内部抵抗および放電容量の比較試験を行っ
た。この試験では、内部抵抗については交流法を用いて
交流電源の周波数が1kHzの場合のインピーダンスを
内部抵抗とし、放電容量については2.3Vの定電圧充
電後に1Aの定電流放電を行った場合の容量を放電容量
とした。このとき、静電植毛用繊維として表面活性して
いない通常の炭素繊維を用いた場合を実施例1、図2
(a)に示した上述の活性炭素繊維を用いた場合を実施
例2とし、従来同様、図2(b)に示すようにシート状
集電体11に電極材料14を塗布しただけで静電植毛し
ない場合を比較例1として、各例それぞれ10個につい
て上記試験を行った。その結果、表1に示すように、内
部抵抗に関しては比較例1より実施例1、2の方が約
0.5倍と小さく、放電容量に関しては比較例1より実
施例1、2の方が約1.5倍と大きい。なお、実施例1
より実施例2の方が内部抵抗及び放電容量ともに若干優
れた結果を得た。これは、炭素繊維として表面積の大き
い活性炭素繊維を用いたため、活性炭素繊維と電極材料
との接触面積がより大きくなるためである。
A comparison test of the internal resistance and the discharge capacity of the spiral electric double layer capacitor employing the electrode manufactured as in the above-mentioned example and the conventional electrode was conducted. In this test, for the internal resistance, the impedance when the frequency of the AC power supply was 1 kHz was used as the internal resistance using the AC method, and for the discharge capacity, constant current discharge of 1 A was performed after constant voltage charging of 2.3 V. The capacity was defined as the discharge capacity. At this time, the case where the normal carbon fiber which is not surface activated is used as the fiber for electrostatic flocking is shown in FIG.
The case where the above-mentioned activated carbon fiber shown in (a) is used is set as Example 2, and as in the conventional case, as shown in FIG. The above-mentioned test was conducted on 10 samples in each example, with the case where no hair was transplanted as Comparative Example 1. As a result, as shown in Table 1, the internal resistance of Examples 1 and 2 was about 0.5 times smaller than that of Comparative Example 1, and the discharge capacity of Examples 1 and 2 was smaller than that of Comparative Example 1. It is about 1.5 times as large. In addition, Example 1
As a result, Example 2 was slightly superior in internal resistance and discharge capacity. This is because the activated carbon fiber having a large surface area is used as the carbon fiber, and thus the contact area between the activated carbon fiber and the electrode material becomes larger.

【0037】[0037]

【表1】 つぎに、偏平容器状の金属ケースを集電体とした実施例
を図3(a)を用いて説明する。本実施例では、この金
属ケースの内底面に静電植毛加工を施している。
[Table 1] Next, an embodiment in which a flat container-shaped metal case is used as a current collector will be described with reference to FIG. In this embodiment, electrostatic flocking is applied to the inner bottom surface of this metal case.

【0038】図3(a)において、集電体として偏平容
器状の金属ケース21の内面に直接、活性炭素繊維23
を静電植毛する。その後、例えばプレス成形金型を用い
て電極材料24を成形する。このプレス成形金型は下
型、ダイ、ポンチ等からなり、この下型上にケース21
をその内面を上にして設置し、次いでダイを下降させて
ケース21の内底面上に設置する。この状態でダイの内
側に形成されるキャビティ内に所要量の粉末電極剤を投
入し、しかる後、ポンチを下降させて粉末電極剤を成形
する。
In FIG. 3A, the activated carbon fiber 23 is directly attached to the inner surface of a flat container-shaped metal case 21 as a current collector.
Electrostatically flock. After that, the electrode material 24 is molded using, for example, a press molding die. This press-molding die is composed of a lower die, a die, a punch, and the like.
Is installed with its inner surface facing upward, and then the die is lowered to be installed on the inner bottom surface of the case 21. In this state, a required amount of the powder electrode agent is put into the cavity formed inside the die, and then the punch is lowered to mold the powder electrode agent.

【0039】なお、上記静電植毛は前述したシート状電
極の場合と同等の条件で行った。
The electrostatic flocking was performed under the same conditions as in the case of the above-mentioned sheet electrode.

【0040】このとき活性炭素繊維23の直立性により
活性炭素繊維23はケース21の内面に対して立ち上が
った状態で成形されて電極材料24の内部に入り込んで
いる。
At this time, due to the uprightness of the activated carbon fiber 23, the activated carbon fiber 23 is molded in a state of standing upright with respect to the inner surface of the case 21 and enters the inside of the electrode material 24.

【0041】この構成によれば、活性炭素繊維23を介
して電極材料24がケース21の表面に密着係止される
ため、電極材料24がケース21から剥離したりするこ
とがなく抵抗の小さい電極が得られる。
According to this structure, since the electrode material 24 is tightly locked to the surface of the case 21 through the activated carbon fiber 23, the electrode material 24 is not peeled from the case 21 and the electrode having a small resistance is formed. Is obtained.

【0042】上記電極は、静電植毛の繊維として表面積
の大きい活性炭素繊維を用いたため活性炭素繊維23と
電極材料24との接触面積が大きくなり抵抗を小さくす
ることができる。
In the above electrode, since the activated carbon fiber having a large surface area is used as the fiber for electrostatic flocking, the contact area between the activated carbon fiber 23 and the electrode material 24 is increased and the resistance can be reduced.

【0043】そして、扁平形電池を構成するとともに上
記ケースに嵌合するキャップに対しても上記と異なる電
極材料を用いて電極を形成し、それぞれの電極に電解液
を注液して電極の中間にセパレータを配置し、封口ガス
ケットを介してケースにキャップを嵌合させ、ケースの
開口部をカシメ付けて内部を密封し、一方の電極を正
極、他方の電極を負極として扁平形電池を作製する。
Electrodes are formed by using electrode materials different from those described above on the caps that form the flat battery and fit into the case, and electrolytic solution is injected into each electrode to form an intermediate portion of the electrodes. A separator is placed in the case, a cap is fitted to the case through a sealing gasket, the opening of the case is crimped to seal the inside, and a flat battery is manufactured with one electrode as a positive electrode and the other electrode as a negative electrode. .

【0044】また、上記電池とは別に、上記粉末電極剤
に電極活物質として二酸化マンガン、導電剤、結着剤を
混合・造粒を用い、上記キャップを負極として金属リチ
ウムとすれば、扁平形リチウム電池が完成する。
Separately from the battery, the powder electrode material is mixed and granulated with manganese dioxide, a conductive agent, and a binder as an electrode active material, and the cap is made of metallic lithium as a negative electrode. The lithium battery is completed.

【0045】つぎに、本実施例の電極と従来の電極とを
それぞれ採用した扁平形電池のケースにおける電極材料
の脱落試験および剥離試験を行った。この試験では、電
極が配置されたケースを20センチメートルの高さから
床面に対して落下させたときのケースからの脱落の有
無、及び電極材料に電解液を注液したときの膨潤による
剥離の有無を確認した。このとき、静電植毛用繊維とし
て表面活性していない通常の炭素繊維を用いた場合を実
施例3、同様に上述の活性炭素繊維を用いた場合を実施
例4とし、ステンレス製のネット状集電体をケース内面
に直接溶接してこれに電極活物質を直接圧着した場合を
比較例2として、それぞれの例につき20個ずつ上記試
験を行った。その結果、表2に示すように、落下による
脱落に関しては比較例では18個のものについて発生し
ており、これに対して実施例3、4では脱落したものは
なかった。注液による剥離に関しては、図3(b)に示
すように比較例では15個のものについて発生してお
り、これに対して図3(a)に示すように実施例3、4
では剥離したものはなかった。
Next, a drop test and a peel test of the electrode material were carried out in the case of the flat battery employing the electrode of this example and the conventional electrode. In this test, the case in which the electrode was placed was dropped from the height of 20 cm to the floor surface, and whether or not the electrode dropped out of the case, and peeling due to swelling when the electrolytic solution was injected into the electrode material. It was confirmed whether or not. At this time, the case of using normal carbon fiber which is not surface activated as the fiber for electrostatic flocking is set as Example 3, and the case of using the above-mentioned activated carbon fiber is set as Example 4 similarly. As a comparative example 2, a case in which an electric body was directly welded to the inner surface of the case and an electrode active material was directly pressure-bonded thereto was used, and 20 tests were conducted for each example. As a result, as shown in Table 2, in the comparative example, 18 pieces were dropped out, whereas in Examples 3 and 4, none were dropped out. Regarding the peeling by the liquid injection, as shown in FIG. 3 (b), 15 pieces occurred in the comparative example, while in contrast to Examples 3 and 4 shown in FIG. 3 (a).
There was nothing peeled off.

【0046】また、上記剥離試験で剥離しなかったケー
スを用いて扁平形電池を形成した場合の内部抵抗を測定
した。その結果、表2に示すように、内部抵抗に関して
は比較例2より実施例3、4の方が約2/3倍に小さく
なった。なお、実施例3より実施例4の方が若干優れた
結果を得た。これは、炭素繊維として表面積の大きい活
性炭素繊維を用いたため、活性炭素繊維と電極材料との
接触面積がより大きくなるためである。
The internal resistance was measured when a flat battery was formed using a case that did not peel in the peel test. As a result, as shown in Table 2, the internal resistances of Examples 3 and 4 were about 2/3 times smaller than those of Comparative Example 2. In addition, the result of Example 4 was slightly superior to that of Example 3. This is because the activated carbon fiber having a large surface area is used as the carbon fiber, and thus the contact area between the activated carbon fiber and the electrode material becomes larger.

【0047】[0047]

【表2】 なお、本実施例では静電植毛繊維として、炭素繊維ある
いは活性炭素繊維の何れか一方のみを用いたが、例えば
炭素繊維50%、活性炭素繊維50%の割合にする等、
適宜組み合わせて用いてもよい。
[Table 2] Although only one of carbon fiber and activated carbon fiber is used as the electrostatic flocked fiber in this embodiment, for example, the ratio of carbon fiber is 50% and activated carbon fiber is 50%.
You may use it combining suitably.

【0048】さらに、静電植毛繊維の長さを適宜変更す
ることにより電極材料の厚みを設定できる。したがっ
て、電極材料の厚みを変えることにより容量を設定で
き、例えば繊維長さを大きくすれば高容量化が図れる。
Further, the thickness of the electrode material can be set by appropriately changing the length of the electrostatic flocked fiber. Therefore, the capacity can be set by changing the thickness of the electrode material, and for example, the capacity can be increased by increasing the fiber length.

【0049】[0049]

【発明の効果】本発明に係る電極構造によれば、前記集
電体の前記表面には導電性炭素繊維が静電植毛されると
ともに前記炭素繊維を介して前記電極材料が前記集電体
の前記表面に密着かつ係止されるため、電極材料が集電
体から剥離せず抵抗の小さい電極が得られる。
According to the electrode structure of the present invention, conductive carbon fibers are electrostatically planted on the surface of the current collector, and the electrode material serves as the collector of the current collector through the carbon fibers. Since the electrode material is adhered and locked to the surface, the electrode material does not peel off from the current collector, and an electrode having low resistance is obtained.

【0050】前記炭素繊維が電極を構成する電池用ケー
スまたはキャップの内面に直接的に静電植毛される場合
には、前記炭素繊維を介して前記電極材料が前記ケース
または前記キャップの内面に密着かつ係止されるため、
電極材料が前記ケースまたは前記キャップから剥離せず
抵抗の小さい電極が得られる。
When the carbon fibers are electrostatically flocked directly on the inner surface of the battery case or the cap forming the electrode, the electrode material is adhered to the inner surface of the case or the cap through the carbon fibers. And because it is locked,
The electrode material does not peel off from the case or the cap, and an electrode with low resistance is obtained.

【0051】前記集電体が導電性樹脂シートである場合
には、炭素繊維の植毛強度を向上でき電極材料と集電体
とをより強固に密着係止できる。
When the current collector is a conductive resin sheet, the flocking strength of carbon fibers can be improved, and the electrode material and the current collector can be more firmly and firmly locked.

【0052】前記導電性炭素繊維が活性炭素繊維である
場合には、電極材料との接触面積が大きくなりさらに抵
抗を小さくできる。
When the conductive carbon fiber is activated carbon fiber, the contact area with the electrode material is increased and the resistance can be further reduced.

【0053】また、前記炭素繊維の繊維長を長くするこ
とにより集電体上に係止される電極材料を厚くでき高容
量化が図れる。
Further, by increasing the fiber length of the carbon fiber, the electrode material locked on the current collector can be made thicker and the capacity can be increased.

【0054】さらに、電極材料と集電体との密着強度が
向上するため電池の落下などによる外的ショックに対す
る耐久性向上が図れる。
Further, since the adhesion strength between the electrode material and the current collector is improved, the durability against external shock due to dropping of the battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシート状電極の一部拡大断面図で
ある。
FIG. 1 is a partially enlarged sectional view of a sheet electrode according to the present invention.

【図2】(a)は本発明に係るシート状電極の断面図で
あり、(b)は従来のシート状電極の断面図である。
FIG. 2A is a sectional view of a sheet electrode according to the present invention, and FIG. 2B is a sectional view of a conventional sheet electrode.

【図3】(a)は本発明に係る扁平形電極の断面図であ
り、(b)は従来の扁平形電極の断面図である。
3A is a sectional view of a flat electrode according to the present invention, and FIG. 3B is a sectional view of a conventional flat electrode.

【符号の説明】[Explanation of symbols]

11 アルミニウム製シート状集電体 12 活性炭素繊維固着層 13 活性炭素繊維 14 電極材料 21 金属ケース 23 活性炭素繊維 24 電極材料 25 ネット状集電体 26 電解液 11 Aluminum Sheet-shaped Current Collector 12 Activated Carbon Fiber Fixing Layer 13 Activated Carbon Fiber 14 Electrode Material 21 Metal Case 23 Activated Carbon Fiber 24 Electrode Material 25 Net Current Collector 26 Electrolyte

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/66 A 4/70 A (72)発明者 須賀 正博 東京都新宿区市ヶ谷左内町11番地 ミヨシ 商工株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01M 4/66 A 4/70 A (72) Inventor Masahiro Suga 11 Ichigaya Sanai-cho, Shinjuku-ku, Tokyo Address Miyoshi Shoko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集電体と該集電体の表面に接合された電
極材料とを備えた電極において、該集電体の該表面には
導電性炭素繊維が静電植毛されるとともに該炭素繊維を
介して該電極材料が該集電体の該表面に密着係止されて
なることを特徴とする電極構造。
1. An electrode comprising a current collector and an electrode material bonded to the surface of the current collector, wherein conductive carbon fibers are electrostatically flocked onto the surface of the current collector and the carbon An electrode structure characterized in that the electrode material is tightly locked to the surface of the current collector through a fiber.
【請求項2】 前記炭素繊維が電極を構成する電池用ケ
ースまたはキャップの内面に直接的に静電植毛されてな
ることを特徴とする請求項1記載の電極構造。
2. The electrode structure according to claim 1, wherein the carbon fibers are electrostatically flocked directly on an inner surface of a battery case or a cap constituting an electrode.
【請求項3】 前記集電体が導電性樹脂シートであるこ
とを特徴とする請求項1記載の電極構造。
3. The electrode structure according to claim 1, wherein the current collector is a conductive resin sheet.
【請求項4】 前記導電性炭素繊維が活性炭素繊維であ
ることを特徴とする請求項1乃至3記載の電極構造。
4. The electrode structure according to claim 1, wherein the conductive carbon fiber is an activated carbon fiber.
JP6114876A 1994-05-27 1994-05-27 Electrode structure Pending JPH07320987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114876A JPH07320987A (en) 1994-05-27 1994-05-27 Electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114876A JPH07320987A (en) 1994-05-27 1994-05-27 Electrode structure

Publications (1)

Publication Number Publication Date
JPH07320987A true JPH07320987A (en) 1995-12-08

Family

ID=14648900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114876A Pending JPH07320987A (en) 1994-05-27 1994-05-27 Electrode structure

Country Status (1)

Country Link
JP (1) JPH07320987A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162374A (en) * 1994-11-30 1996-06-21 Aisin Seiki Co Ltd Electrical energy storage body
WO1999038177A1 (en) * 1998-01-23 1999-07-29 Matsushita Electric Industrial Co., Ltd. Metal electrode material, capacitor using metal electrode material, and method of manufacture
EP0936642A2 (en) * 1998-02-09 1999-08-18 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
US5949637A (en) * 1997-04-08 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Current collector for electric double-layer capacitor
US6198621B1 (en) 1998-02-05 2001-03-06 Nec Corporation Electric double layer capacitor using polarizable electrode of single particle layer
US6493210B2 (en) 1998-01-23 2002-12-10 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
WO2005006469A1 (en) * 2003-07-15 2005-01-20 Itochu Corporation Current collecting structure and electrode structure
US7052741B2 (en) * 2004-05-18 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Method of fabricating a fibrous structure for use in electrochemical applications
EP2006941A1 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd. Battery electrode
US20110149465A1 (en) * 2008-12-08 2011-06-23 Yasuhiro Hashimoto Electric double layer capacitor and method for manufacturing the same
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2013089339A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery
KR101484252B1 (en) * 2013-05-21 2015-01-20 한국과학기술원 Carbon electrode with vertically oriented carbon fiber layer and method for preparing the carbon electrode, unit cell having the carbon electrode and method for preparing the unit cell
JP2017117713A (en) * 2015-12-25 2017-06-29 三洋化成工業株式会社 Collector for lithium ion battery and lithium ion battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162374A (en) * 1994-11-30 1996-06-21 Aisin Seiki Co Ltd Electrical energy storage body
US5949637A (en) * 1997-04-08 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Current collector for electric double-layer capacitor
WO1999038177A1 (en) * 1998-01-23 1999-07-29 Matsushita Electric Industrial Co., Ltd. Metal electrode material, capacitor using metal electrode material, and method of manufacture
AU733738B2 (en) * 1998-01-23 2001-05-24 Matsushita Electric Industrial Co., Ltd. Metal electrode material, capacitor using metal electrode material, and method of manufacture
US6493210B2 (en) 1998-01-23 2002-12-10 Matsushita Electric Industrial Co., Ltd. Electrode metal material, capacitor and battery formed of the material and method of producing the material and the capacitor and battery
US6198621B1 (en) 1998-02-05 2001-03-06 Nec Corporation Electric double layer capacitor using polarizable electrode of single particle layer
EP0936642A2 (en) * 1998-02-09 1999-08-18 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
EP0936642A3 (en) * 1998-02-09 2000-05-03 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
US6185091B1 (en) 1998-02-09 2001-02-06 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
EP1372167A1 (en) * 1998-02-09 2003-12-17 Matsushita Electric Industrial Co., Ltd. Four-terminal capacitor
WO2005006469A1 (en) * 2003-07-15 2005-01-20 Itochu Corporation Current collecting structure and electrode structure
US7052741B2 (en) * 2004-05-18 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Method of fabricating a fibrous structure for use in electrochemical applications
EP2006941A1 (en) * 2007-06-20 2008-12-24 Nissan Motor Co., Ltd. Battery electrode
US8697289B2 (en) 2007-06-20 2014-04-15 Nissan Motor Co., Ltd. Battery electrode having layers of differing bulk densities of conductive additive
US20110149465A1 (en) * 2008-12-08 2011-06-23 Yasuhiro Hashimoto Electric double layer capacitor and method for manufacturing the same
US8531818B2 (en) * 2008-12-08 2013-09-10 Panasonic Corporation Electric double layer capacitor and method for manufacturing the same
JP2012532435A (en) * 2009-07-06 2012-12-13 ゼプター コーポレイション Carbon nanotube composite material structure and manufacturing method thereof
JP2015201434A (en) * 2009-07-06 2015-11-12 ゼプター コーポレイションZeptor Corporation Carbon nanotube composite material structure and method of manufacturing the same
JP2016026375A (en) * 2009-07-06 2016-02-12 ゼプター コーポレイションZeptor Corporation Carbon nanotube composite material structure and method of manufacturing the same
JP2013089339A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery
KR101484252B1 (en) * 2013-05-21 2015-01-20 한국과학기술원 Carbon electrode with vertically oriented carbon fiber layer and method for preparing the carbon electrode, unit cell having the carbon electrode and method for preparing the unit cell
JP2017117713A (en) * 2015-12-25 2017-06-29 三洋化成工業株式会社 Collector for lithium ion battery and lithium ion battery

Similar Documents

Publication Publication Date Title
JP2695684B2 (en) Wound electrode assembly for electrochemical cell
US4626964A (en) Electrical double layer capacitor and production of the same
JPH07320987A (en) Electrode structure
JPS6157661B2 (en)
US5106707A (en) Rechargeable nickel electrode containing electrochemical cell
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
US20030062259A1 (en) Electrochemical device and process for manufacturing same
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JPH03743B2 (en)
JP2002025604A (en) Alkaline secondary battery
JPH11144715A (en) Manufacture of electrode for secondary battery
JPS63279568A (en) Lead storage battery
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
US5141523A (en) Rechargeable nickel electrode containing electrochemical cell and method
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JPS6345755A (en) Layer built dry cell
FR2824187A1 (en) Non-sintered nickel electrode for a secondary alkaline battery includes a paste comprising electrochemically active material containing nickel hydroxide and a binder including a butadiene polymer
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP2754773B2 (en) Manufacturing method of cylindrical lithium battery
JPH0680589B2 (en) Paste type cadmium electrode
JPH0733376Y2 (en) Coin type lithium battery
JPH0636773A (en) Manufacture of flat organic electrolyte battery
JPH0693359B2 (en) Method for producing paste type electrode for battery
JP2009026622A (en) Alkaline storage battery, and manufacturing method thereof
JPH0132633B2 (en)