JPH07318598A - Measuring method of rf pulse frequency - Google Patents

Measuring method of rf pulse frequency

Info

Publication number
JPH07318598A
JPH07318598A JP7155067A JP15506795A JPH07318598A JP H07318598 A JPH07318598 A JP H07318598A JP 7155067 A JP7155067 A JP 7155067A JP 15506795 A JP15506795 A JP 15506795A JP H07318598 A JPH07318598 A JP H07318598A
Authority
JP
Japan
Prior art keywords
frequency
pulse
signal
flow
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7155067A
Other languages
Japanese (ja)
Other versions
JP3630773B2 (en
Inventor
Pei-Hwa Lo
ロー ペイ・ホワ
Elliott J Greene
ジエイ グリーン エリオツト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Publication of JPH07318598A publication Critical patent/JPH07318598A/en
Application granted granted Critical
Publication of JP3630773B2 publication Critical patent/JP3630773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Physics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Abstract

PURPOSE: To enable the frequency of RF pulses to be measured at an RF signal frequency with high precision by computing the RF pulse stream frequency by adding an intermediate pulse stream frequency and a control frequency. CONSTITUTION: An input signal generated by an unit under test UUT device is converted to a pulse stream of a low frequency having an intermediate frequency IF. A mixer 22 receives as input a test signal from a signal supply source 20 and a control frequency generated from a local oscillator 24 and outputs an IF signal as a difference between those frequencies. The IF signal is passed through a BPF26 so as to eliminate undesirable high frequency component. The IF signal is subjected to sampling by means of a digitizer 28, transferred to a signal processor 30 and subjected to frequency analysis. The desirable frequency of the IF signal is about 20 to 30% of a digitized sampling frequency. It is desirable that an least two cycles of the IF signal passed a down converter under the sampling frequency of a selected digitizer exist inside of each captured pulse of test signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はRF信号、特にパルスR
F信号流のRFキヤリア周波数を実質的に実時間で簡潔
に測定する方法に関する。
FIELD OF THE INVENTION The present invention relates to RF signals, especially pulse R.
It relates to a method for simply measuring the RF carrier frequency of an F signal stream substantially in real time.

【0002】[0002]

【従来の技術】一般にレーダ/電子カウンタ測定(EC
M)システムにおいては通常狭いパルス幅及び低いデユ
ーテイサイクルのパルスRF信号が用いられる。この種
のパルスは通常連続RF源を、例えばピンスイツチダイ
オードを用いてオンオフ切り替えすることにより発生さ
れ、このパルスの発生期間は極めて短く、例えば100
ナノ秒にできる。これらのシステムで発せられるRF信
号の周波数はシステム性能の評価のため重要な特性であ
り、正確に測定する要がある。
2. Description of the Related Art Generally, radar / electronic counter measurement (EC
M) In systems, pulsed RF signals of narrow pulse width and low duty cycle are usually used. A pulse of this kind is usually generated by switching a continuous RF source on and off, for example using a pin-switch diode, the duration of which this pulse is very short, for example 100
Can be nanoseconds. The frequency of the RF signal emitted by these systems is an important characteristic for the evaluation of system performance and needs to be measured accurately.

【0003】従来のRF周波数測定法においては、特に
電子カウンタ、スペクトル分析器、同期検出器、デイジ
タル周波数分別器のような高価な装置が使用される。R
Fパルス周波数測定に現在使用される装置の、更に具体
的な例としては、EIPマイクロウエーブ社で製造され
たマイクロウエーブカウンタEIP 1230A 12
31Aおよびヒユーレツト・パツカード電子カウンタが
挙げられる。一方これらの方法では最新のレーザおよび
ECMシステムに対し所定の周波数測定精度を得ること
ができない問題がある。電子カウンタの、100ナノ秒
のパルス幅信号に対し精度が低く、500Khz単位の
精度にとどまる。更に電子カウンタおよびスペクトル分
析器は高価で寸法が大きく、特殊なハードウエアが必要
になる。また同期検出器は100ナノ秒のパルス幅信号
に対し10Khz単位の測定精度に制限され、一方デイ
ジタル周波数分別器では100ナノ秒パルス幅信号に対
し100Khz単位の測定精度しか得られない。これに
対しレーザおよびECMシステムがより進歩されるに伴
い、好適なシステム性能を確実に得るためテスト技術も
改良する要がある。
In the conventional RF frequency measuring method, expensive devices such as an electronic counter, a spectrum analyzer, a synchronous detector, and a digital frequency discriminator are used. R
A more specific example of an apparatus currently used for F pulse frequency measurement is a microwave counter EIP 1230A 12 manufactured by EIP Microwave Company.
31A and a hybrid card electronic counter. On the other hand, these methods have a problem that it is impossible to obtain a predetermined frequency measurement accuracy for the latest laser and ECM systems. The accuracy of the electronic counter is low with respect to the pulse width signal of 100 nanoseconds, and the accuracy is only 500 Khz. In addition, electronic counters and spectrum analyzers are expensive, bulky and require specialized hardware. Also, the synchronous detector is limited to a measurement accuracy of 10 Khz unit for a 100 nanosecond pulse width signal, while the digital frequency discriminator can only obtain a measurement accuracy of 100 Khz unit for a 100 nanosecond pulse width signal. On the other hand, as laser and ECM systems are more advanced, test technology also needs to be improved to ensure good system performance.

【0004】更に、エンド・テウー・エンドテスト環境
でユニツト・アンダー・テスト装置(UUT装置)の性
能を特徴つけるため、UUT装置の内部構造にアクセス
する構成には及んでいない。
Furthermore, in order to characterize the performance of the unit under test device (UUT device) in an end-to-end test environment, it does not reach the configuration for accessing the internal structure of the UUT device.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述の問題点
を克服し、最大40ギガヘルツのRF信号周波数で極め
て高い精度(30キロヘルツ以下)で100ナノ秒の幅
までRFパルスの周波数を測定可能な実時間法を提供す
ることを目的とする。
The present invention overcomes the above-mentioned problems and can measure the frequency of the RF pulse up to a width of 100 nanoseconds with an extremely high accuracy (30 kHz or less) at an RF signal frequency of up to 40 GHz. The purpose is to provide a real-time method.

【0006】[0006]

【課題を解決するための手段】本発明によればこの目的
は、(a)RFパルス流の周波数より低い制御周波数と
RFパルス流の周波数との差を取ることにより中間周波
数を有する中間パルス流にRFパルスを変換する工程
と、(b)中間パルス流をデイジタル化する工程と、
(c)中間パルス流からパルス点およびベースラインデ
ータをサンプルとして抽出する工程と、(d)パルス点
の各々からベースラインデータを減算する工程と、
(e)前記の工程(d)で得られたデータに対し信号補
間法を用いてクロツシング点を決定する工程と、(f)
決定されたゼロークロツシング点から中間パルス流信号
の周期を計算する工程と、(g)計算された周期から中
間パルス流信号の周波数を計算する工程と、(h)計算
された中間パルス流周波数と制御周波数とを加算すると
こによりRFパルス流周波数を計算する工程とを包有す
るRFパルス周波数の測定法により、達成される。
According to the present invention, the object is (a) an intermediate pulse flow having an intermediate frequency by taking the difference between the control frequency lower than the frequency of the RF pulse flow and the frequency of the RF pulse flow. A step of converting the RF pulse into a laser beam;
(C) extracting pulse points and baseline data from the intermediate pulse stream as samples, and (d) subtracting baseline data from each of the pulse points,
(E) a step of determining a crossing point by using a signal interpolation method for the data obtained in the step (d), and (f)
Calculating the period of the intermediate pulse stream signal from the determined zero-crossing point; (g) calculating the frequency of the intermediate pulse stream signal from the calculated period; and (h) the calculated intermediate pulse stream frequency. And calculating the RF pulse flow frequency by adding the control frequency and the control frequency.

【0007】[0007]

【作用】しかして本発明においてはRF信号は制御周波
数と混合され、フイルタがかけられ、次にデイジタル化
され得る。また200パルスからのデータは順次集めら
れ、混合されデイジタル化されて周波数計算精度が向上
され得る。次に測定アルゴリズムにおいてパルス点およ
びベースラインを抽出し、パルス点からベースラインを
減算することにより直流成分を除去し、パルス点をゼロ
補間して周波数分析を行い、周波数領域をフイルタ処理
し第2の周波数分析を行うことを含むデイジタル化され
たデータに適用され得る。且つゼロークロツシング点を
次の線形補間、Sin(X)X補間、および多角形補間
を含む多くの補間法にいずれかを用いて計算し得、波形
の周期が計算されその計算結果から周波数が良好に計算
され得る。
In the present invention, however, the RF signal can be mixed with a control frequency, filtered, and then digitized. Also, data from 200 pulses can be sequentially collected, mixed and digitalized to improve frequency calculation accuracy. Next, in the measurement algorithm, the pulse point and the baseline are extracted, the direct current component is removed by subtracting the baseline from the pulse point, the pulse point is zero-interpolated and frequency analysis is performed, and the frequency domain is filtered and the second processing is performed. Can be applied to digitalized data including performing frequency analysis of Moreover, the zero-crossing point can be calculated using any of a number of interpolation methods including the following linear interpolation, Sin (X) X interpolation, and polygonal interpolation, the period of the waveform is calculated, and the frequency is calculated from the calculated result. It can be calculated well.

【0008】またパルス点およびベースラインのSin
(X)X補間法を用いてゼロークロツシング点が決定さ
れ得、反復検索アルゴリズムにより、約1/100〜約
1/1,000,000の間の任意の精度でゼロークロ
ツシング点を求め得る。且つ波形の周期を計算し、この
計算結果から周波数を計算し得ることになる。
Also, the Sin of the pulse point and the baseline
The (X) X interpolation method can be used to determine the zero-crossing point and the iterative search algorithm can determine the zero-crossing point with any precision between about 1/100 and about 1 / 1,000,000. . Moreover, the period of the waveform can be calculated, and the frequency can be calculated from the calculation result.

【0009】更に本発明によれば入力としてテスト中の
システムのRF出力のみを用いて実質的に実時間でのR
Fパルス周波数の高精度測定を可能にできる。また容易
に入手できる低コストで市販のテスト装置を用いて正確
なRFパルス周波数測定を実現でき、且つ少数のRFパ
ルスのみをサンプリングすることにより測定時間を短縮
せしめ、キヤリア周波数が時間と共に変化するある周波
数の軽快なパルス信号を特徴付けて用いることができ
る。
Further in accordance with the present invention, R is substantially real-time using only the RF output of the system under test as input.
The F pulse frequency can be measured with high accuracy. Further, it is possible to realize accurate RF pulse frequency measurement by using a commercially available test device that is easily available at low cost, and shortens the measurement time by sampling only a small number of RF pulses, and the carrier frequency changes with time. A pulse signal with a light frequency can be characterized and used.

【0010】[0010]

【実施例】以下、本発明の詳細な説明を、実施例に沿つ
て述べる。図示の実施例は本発明における最適の形態で
あることは理解されよう。本発明は他の実施例を採用す
ることも可能であり、図面に沿つた構成に限定されない
ことは理解されよう。
EXAMPLES A detailed description of the present invention will now be given along with examples. It will be appreciated that the illustrated embodiment is the best mode of the invention. It will be understood that the present invention can adopt other embodiments and is not limited to the configuration according to the drawings.

【0011】図1を参照するに本発明の信号獲得機構が
示される。UUT装置により発生される入力信号は中間
周波数(IF)を有する低い周波数のパルス流に変換さ
れる。ミキサ22は信号源20からテスト信号を、また
局部発振器24により発生される制御周波数を入力し、
これらの周波数間の差(例えば周波数RF−制御周波数
=IF)としてIF信号を出力する。IF信号はバンド
パスフイルタ26に通過させ、不都合な高周波数成分が
除去される。IF信号はデイジタイザ28によりサンプ
リングされ信号プロセツサ30へ転送されて、周波数分
析が行われる。好ましいIF信号の周波数はデイジタル
化サンプリング周波数の約20〜30%である。選ばれ
たデイジタイザのサンプリング周波数によりダウンコン
バータを通過させたテスト信号(すなわちIF信号)
の、少なくとも2サイクルがテスト信号の各捕捉された
パルス内に存在することが好ましい。例えば、100メ
ガヘルツ、好ましくはIF周波数でデイジタル化された
100ナノ秒のパルスの場合、IF周波数は約25メガ
ヘルツになる。この場合、図2に示されるようにIF信
号の2.5サイクルがデイジタル化され得る。周波数評
価精度を向上させるため、200個のパルスからのデー
タは順次収集される。
Referring to FIG. 1, the signal acquisition mechanism of the present invention is shown. The input signal generated by the UUT device is converted to a low frequency pulse stream having an intermediate frequency (IF). The mixer 22 inputs the test signal from the signal source 20 and the control frequency generated by the local oscillator 24,
The IF signal is output as the difference between these frequencies (for example, frequency RF-control frequency = IF). The IF signal is passed through the bandpass filter 26 to remove the unwanted high frequency components. The IF signal is sampled by the digitizer 28 and transferred to the signal processor 30 for frequency analysis. The preferred IF signal frequency is about 20-30% of the digitized sampling frequency. Test signal (that is, IF signal) passed through a down-converter at the selected digitizer sampling frequency
Preferably, at least two cycles of are present in each captured pulse of the test signal. For example, for a 100 nanosecond pulse digitized at 100 megahertz, preferably the IF frequency, the IF frequency will be about 25 megahertz. In this case, 2.5 cycles of the IF signal can be digitized as shown in FIG. Data from 200 pulses are collected sequentially to improve frequency estimation accuracy.

【0012】図2の捕獲されたデータは図3に示すパル
ス周波数測定アルゴリズムへの入力として使用される。
この構成により、先ず工程32でパルス点およびべース
ラインデータを抽出することにより信号が補間される。
パルス点はRFパルス内の点を示し、ベースライン点は
RF信号が存在しないパルス点を囲んでいる。パルスサ
イン(sine)波形から直流成分を除去するため、ベ
ースラインはパルス点から抽出して減算し、これにより
ゼロークロツシング点の精度が向上される。次いでこの
構成においては、抽出された点間にゼロ点を追加するこ
とにより入力信号のパルス点をゼロインターレース法が
与えられる(工程34)。インターレース比の好適な範
囲は2〜20である。最適のインターレース比は4であ
る。付加的な機能として、前方迅速フーリエ変換(FF
T)による周波数分析法を適用し(工程36)、ガウス
フイルタを用いて周波数領域をフイルタリング処理し
(工程38)、次にフイルタリング処理された周波数領
域データに逆FFTを行う(工程40)ことが含まれ
る。
The captured data of FIG. 2 is used as input to the pulse frequency measurement algorithm shown in FIG.
With this configuration, the signal is first interpolated in step 32 by extracting the pulse point and base line data.
The pulse points indicate points within the RF pulse and the baseline points surround the pulse points where no RF signal is present. To remove the DC component from the pulse sine waveform, the baseline is extracted from the pulse point and subtracted, which improves the accuracy of the zero-crossing point. Then, in this configuration, a zero interlace method is applied to the pulse points of the input signal by adding zero points between the extracted points (step 34). The preferred range of interlace ratio is 2-20. The optimum interlace ratio is 4. As an additional function, the forward fast Fourier transform (FF
The frequency analysis method according to T) is applied (step 36), the frequency domain is filtered using a Gaussian filter (step 38), and then the inverse FFT is performed on the filtered frequency domain data (step 40). Is included.

【0013】この結果得られるデータを用い信号補間し
てゼロークロツシング点が決定される(工程42)。こ
の構成により高品質の画像信号抑制および平滑な過渡応
答が得られる。別の採用可能な補間法として、線形補間
法、Sin(X)X補間法および多角形補間法が挙げら
れる。ゼロークロツシング時間を用いて波形の周期が決
定され、この周期をデイジタイザのサンプリング速度と
共に使用してIF周波数が計算される(工程44)。こ
の場合は反復してすべてのRFパルスに適用される。最
終のIF周波数の測定は全ての測定結果の平均値であり
(工程46)、この後対象外(好ましくは、1−2標準
偏差)が拒絶される(工程48)。実際のRF周波数は
測定されたIF周波数と局部発振器24の制御周波数と
の和である。
The resulting data is used to interpolate the signal to determine the zero crossing point (step 42). This configuration provides high quality image signal suppression and smooth transient response. Other possible interpolation methods include linear interpolation, Sin (X) X interpolation and polygonal interpolation. The zero-crossing time is used to determine the period of the waveform and this period is used in conjunction with the digitizer sampling rate to calculate the IF frequency (step 44). In this case, it is repeatedly applied to all RF pulses. The final IF frequency measurement is the average of all measurements (step 46), after which non-targets (preferably 1-2 standard deviations) are rejected (step 48). The actual RF frequency is the sum of the measured IF frequency and the control frequency of the local oscillator 24.

【0014】図4には捕獲データに対し直接Sin
(X)X補間法を用いゼロークロツシング点を決定する
本発明による他の実施例が示される。捕捉されたデータ
はパルス周波数測定アルゴリズムへの入力として使用さ
れる。この場合パルス点およびベースライン点を先ず抽
出することにより、信号が補間される(工程46)。パ
ルスサイン波形から直流成分を除去するため、ベースラ
イン点はパルス点から抽出されて減算され、これにより
ゼロークロツシング点の測定精度が向上される。次に時
間期間内で各ゼロークロツシング点前後の最初の点が求
められる(工程48)。この時間期間は次に10個の点
のサブ領域に更に分割され(工程50)、Sin(X)
X補間法を用い補間してサブ領域内のゼロークロツシン
グ点の前後の点が求められる(工程52)。反復検索ア
ルゴリズムにより、デイジタイザのサンプリング期間の
1/100〜約1/1,000,000間の任意の精度
でゼロークロツシング点が求められる(工程54)。任
意の期間を使用できるが、期間が小さいほど精度は高く
なる。一度1点が期間内にあるものと決定されると、こ
の点はゼロークロツシング点のリストに付加される(工
程56)。このとき反復して全てのRFパルスに適用さ
れ得る。ゼロークロツシング回数を用いて波形の周期が
決定され、サンプリング速度と共に使用してIF周波数
が計算される(工程58)。最終のIF周波数測定は全
ての測定結果の平均値であり(工程60)、この後対象
外(好ましくは、1−2標準偏差)が拒絶される(工程
62)。実際のRF周波数は測定されたIF周波数とダ
ウンカウンタの局部発振器24の制御周波数との和にな
る。
In FIG. 4, Sin is directly applied to the captured data.
Another embodiment according to the invention is shown in which the (X) X interpolation method is used to determine the zero-crossing point. The captured data is used as input to the pulse frequency measurement algorithm. In this case, the signal is interpolated (step 46) by first extracting the pulse points and the baseline points. In order to remove the DC component from the pulse sine waveform, the baseline point is extracted from the pulse point and subtracted, which improves the measurement accuracy of the zero-crossing point. The first point before and after each zero crossing point within the time period is then determined (step 48). This time period is then subdivided into sub-regions of 10 points (step 50), Sin (X).
The points before and after the zero-crossing point in the sub-region are obtained by interpolation using the X interpolation method (step 52). The iterative search algorithm determines a zero-crossing point with arbitrary precision between 1/100 and about 1 / 1,000,000 of the digitizer sampling period (step 54). Any time period can be used, but the smaller the time period, the higher the accuracy. Once a point is determined to be within the time period, this point is added to the list of zero-crossing points (step 56). At this time, it can be repeatedly applied to all RF pulses. The zero-crossing number is used to determine the period of the waveform and used in conjunction with the sampling rate to calculate the IF frequency (step 58). The final IF frequency measurement is the average of all measurements (step 60), after which the non-targets (preferably 1-2 standard deviations) are rejected (step 62). The actual RF frequency is the sum of the measured IF frequency and the control frequency of the down-counter local oscillator 24.

【0015】[0015]

【発明の効果】本発明によれば上述したように、特に実
時間で騒音環境下であつても狭いパルス幅の周波数を簡
潔な構成で測定し得、且つ精度が顕著に向上できること
が理解されよう。
As described above, according to the present invention, it is understood that the frequency of a narrow pulse width can be measured with a simple structure and the accuracy can be remarkably improved even in a noisy environment in real time. See.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はRFパルス信号捕獲手順のブロツク図で
ある。
FIG. 1 is a block diagram of an RF pulse signal capture procedure.

【図2】図2はデイジタル化された正弦波を示す図であ
る。
FIG. 2 is a diagram showing a digitalized sine wave.

【図3】図3は本発明の一の実施例のフローチヤートで
ある。
FIG. 3 is a flow chart of one embodiment of the present invention.

【図4】図4は本発明の他の実施例のフローチヤートで
ある。
FIG. 4 is a flow chart of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 信号源 22 ミキサ 24 局部発振器 26 バンドパスフイルタ 28 デイジタイザ 30 信号プロセツサ 32 ベースラインデータ 34 パルス点 20 Signal Source 22 Mixer 24 Local Oscillator 26 Bandpass Filter 28 Digitizer 30 Signal Processor 32 Baseline Data 34 Pulse Point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エリオツト ジエイ グリーン アメリカ合衆国 ニユージヤージイ州 07083,ユニオン,エバーグリーン パー クウエイ 723 ─────────────────────────────────────────────────── ───Continued from the front page (72) Inventor Elliott Toei Ray Green United States New Jersey 07083, Union, Evergreen Parkway 723

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)RFパルス流の周波数より低い制
御周波数とRFパルス流の周波数との差を取ることによ
り中間周波数を有する中間パルス流にRFパルスを変換
する工程と、(b)中間パルス流をデイジタル化する工
程と、(c)中間パルス流からパルス点およびベースラ
インデータをサンプルとして抽出する工程と、(d)パ
ルス点の各々からベースラインデータを減算する工程
と、(e)前記の工程(d)で得られたデータに対し信
号補間法を用いてクロツシング点を決定する工程と、
(f)決定されたゼロークロツシング点から中間パルス
流信号の周期を計算する工程と、(g)計算された周期
から中間パルス流信号の周波数を計算する工程と、
(h)計算された中間パルス流周波数と制御周波数とを
加算するとこによりRFパルス流周波数を計算する工程
とを包有するRFパルス周波数の測定法。
1. A step of converting an RF pulse into an intermediate pulse stream having an intermediate frequency by taking a difference between a control frequency lower than the frequency of the RF pulse stream and a frequency of the RF pulse stream, and (b) an intermediate step. Digitalizing the pulse flow; (c) extracting pulse points and baseline data from the intermediate pulse flow as samples; (d) subtracting baseline data from each of the pulse points; (e) Determining crossing points using a signal interpolation method on the data obtained in step (d) above;
(F) calculating the period of the intermediate pulse stream signal from the determined zero-crossing point, and (g) calculating the frequency of the intermediate pulse stream signal from the calculated period.
(H) A method of measuring an RF pulse frequency, including the step of adding the calculated intermediate pulse flow frequency and the control frequency to calculate the RF pulse flow frequency.
【請求項2】 (a)RFパルス流の周波数より低い制
御周波数とRFパルス流の周波数との差を取ることによ
り中間周波数を有する中間パルス流にRFパルスを変換
する工程と、(b)中間パルス流をデイジタル化する工
程と、(c)中間パルス流からパルス点およびベースラ
インデータをサンプルとして抽出する工程と、(d)パ
ルス点の各々からベースラインデータを減算する工程
と、(e)時間期間内の各ゼロークロツシング点前後の
最初の点を求め、時間期間をサブ領域に分割しSin
(X)X補間法を用いて最初の点を反復し補間して、特
定精度範囲内のゼロークロツシング点前後の点を求める
工程と、(f)決定されたゼロークロツシング点から中
間パルス流信号の周期を計算する工程と、(g)計算さ
れた周期から中間パルス流信号の周波数を計算する工程
と、(h)計算された中間パルス流周波数と制御周波数
とを加算するとこによりRFパルス流周波数を計算する
工程とを包有するRFパルス周波数の測定法。
2. (a) converting the RF pulse into an intermediate pulse flow having an intermediate frequency by taking the difference between the control frequency lower than the frequency of the RF pulse flow and the frequency of the RF pulse flow; and (b) intermediate Digitalizing the pulse flow; (c) extracting pulse points and baseline data from the intermediate pulse flow as samples; (d) subtracting baseline data from each of the pulse points; (e) Find the first point before and after each zero-crossing point in the time period, divide the time period into sub-regions, and then Sin
(X) Iteratively interpolating the first point using the X interpolation method to obtain points before and after the zero-crossing point within the specified accuracy range, and (f) an intermediate pulse flow from the determined zero-crossing point. RF pulse by calculating the period of the signal, (g) calculating the frequency of the intermediate pulse flow signal from the calculated period, and (h) adding the calculated intermediate pulse flow frequency and the control frequency A method of measuring an RF pulse frequency including the step of calculating a flow frequency.
JP15506795A 1994-05-24 1995-05-19 Measuring method of RF pulse frequency Expired - Fee Related JP3630773B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/248,113 US5508605A (en) 1994-05-24 1994-05-24 Method for measuring RF pulse frequency
US08/248,113 1994-05-24

Publications (2)

Publication Number Publication Date
JPH07318598A true JPH07318598A (en) 1995-12-08
JP3630773B2 JP3630773B2 (en) 2005-03-23

Family

ID=22937729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15506795A Expired - Fee Related JP3630773B2 (en) 1994-05-24 1995-05-19 Measuring method of RF pulse frequency

Country Status (2)

Country Link
US (1) US5508605A (en)
JP (1) JP3630773B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515197A (en) * 2005-11-04 2009-04-09 テクトロニクス・インコーポレイテッド Wideband spectrum analysis of transient signals using real-time spectrum analyzer
CN113075450A (en) * 2021-02-22 2021-07-06 中国电子科技集团公司第二十九研究所 Method for analyzing radio frequency and intermediate frequency of broadband frequency compressed signal based on sampling rate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420348C1 (en) * 1994-06-01 1995-09-21 Siemens Ag Determn. of harmonics of fundamental oscillation of electrical signal
US5805460A (en) * 1994-10-21 1998-09-08 Alliedsignal Inc. Method for measuring RF pulse rise time, fall time and pulse width
SE503650C2 (en) * 1994-11-10 1996-07-22 Hans Hellsten Ways to improve radar data on a radar
US6263290B1 (en) * 1995-02-22 2001-07-17 Michael K. Williams Process and machine for signal waveform analysis
US6571186B1 (en) * 1999-09-14 2003-05-27 Textronix, Inc. Method of waveform time stamping for minimizing digitization artifacts in time interval distribution measurements
US6335615B1 (en) * 2000-03-24 2002-01-01 Agilent Technologies, Inc. Mode selection methods for signal analyzers having alternative swept and fast fourier transform modes of operation
US7058377B1 (en) 2003-08-14 2006-06-06 The United States Of America As Represented By The Secretary Of The Navy Dual channel downconverter for pulsed radio frequency measurements
JP2005136910A (en) * 2003-10-31 2005-05-26 Sanyo Electric Co Ltd Interpolator, interpolate method and signal processing circuit
CN100456039C (en) * 2007-03-29 2009-01-28 哈尔滨工程大学 CW pulse narrow band tracking filter and its tracking filter method
WO2009026435A1 (en) * 2007-08-23 2009-02-26 Amherst Systems Associates, Inc. Waveform anomoly detection and notification systems and methods
DE102011004572A1 (en) 2011-02-23 2012-08-23 Rohde & Schwarz Gmbh & Co. Kg Method and apparatus for measuring the phase noise spectrum of a pulsed sine signal
CN102721917B (en) * 2012-07-09 2014-08-13 上海华岭集成电路技术股份有限公司 Test method and device for tag chip without clock circuit
CN105547709A (en) * 2015-12-10 2016-05-04 中国船舶工业系统工程研究院 Marine diesel engine torsional vibration signal processing method and device
CN114034927A (en) * 2021-11-01 2022-02-11 南京国电南自电网自动化有限公司 Signal measurement method and system based on frequency-following interpolation sampling

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942713B1 (en) * 1970-11-09 1974-11-16
US3706095A (en) * 1970-11-23 1972-12-12 Raytheon Co Signal processor
US4045797A (en) * 1975-12-05 1977-08-30 General Motors Corporation Radar doppler frequency measuring apparatus
US4121211A (en) * 1976-11-22 1978-10-17 Rca Corporation Method and apparatus for determining a signal of uniform period
US4324258A (en) * 1980-06-24 1982-04-13 Werner Huebscher Ultrasonic doppler flowmeters
US4424482A (en) * 1981-09-14 1984-01-03 Eaton Corporation Adaptive bandwidth signal encoder
US4611165A (en) * 1984-03-30 1986-09-09 Honeywell Inc. Pulse RF frequency measurement apparatus
DE3854115T2 (en) * 1987-11-30 1996-02-29 Aloka Co Ltd Method and arrangement for ultrasonic measurement of the flow velocity.
US5269308A (en) * 1991-07-25 1993-12-14 Matsushita Electric Industrial Co., Ltd. Ultrasonic doppler imaging apparatus
US5262714A (en) * 1992-02-05 1993-11-16 Vladimir Friedman Sinewave frequency measuring apparatus
US5373236A (en) * 1993-07-01 1994-12-13 The United States Of America As Represented By The Secretary Of The Air Force Highly accurate zero crossings for frequency determination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515197A (en) * 2005-11-04 2009-04-09 テクトロニクス・インコーポレイテッド Wideband spectrum analysis of transient signals using real-time spectrum analyzer
CN113075450A (en) * 2021-02-22 2021-07-06 中国电子科技集团公司第二十九研究所 Method for analyzing radio frequency and intermediate frequency of broadband frequency compressed signal based on sampling rate
CN113075450B (en) * 2021-02-22 2023-04-25 中国电子科技集团公司第二十九研究所 Method for analyzing radio frequency and intermediate frequency of broadband frequency compressed signal based on sampling rate

Also Published As

Publication number Publication date
JP3630773B2 (en) 2005-03-23
US5508605A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US5805460A (en) Method for measuring RF pulse rise time, fall time and pulse width
JPH07318598A (en) Measuring method of rf pulse frequency
KR101348970B1 (en) Realtime spectrum trigger system on realtime oscilloscope
KR100345221B1 (en) Jitter measuring device and method
US4901244A (en) Apparatus for, and method of, analyzing signals
JP2004519678A (en) Jitter measuring apparatus and jitter measuring method
JP2001228187A (en) Phase noise spectrum density estimating method and jitter estimating method for periodic signal
US5528134A (en) AC power analyzer
Lawton et al. Pulse and time-domain measurements
Fritsch et al. A digital envelope detection filter for real-time operation
JPH06342022A (en) Method of gate spectrum analysis
Paulter Jr Method for measuring the phase spectrum of the output of a frequency source used in the calibration of an electroshock weapon characterization system
JP2000180484A (en) Apparatus for measuring harmonic wave
US8575913B2 (en) Pulse analyzer
D'Elia et al. Software customization to provide digital oscilloscope with enhanced period-measurement features
GB2295899A (en) Method for measuring the frequency of continous wave and wide pulse RF signals
Gori et al. Application of a phase measurement algorithm to digitizing oscilloscope characterization
US7783456B2 (en) Wave detection device, method, program, and recording medium
Clarke An electronic probability density machine
GB2295236A (en) Measuring the rise/fall time and pulse width of RF pulses
CN108139435B (en) Method and system for determining phasor components of periodic waveforms
CN115290968A (en) Design method and application of digital vector voltmeter
GB2212619A (en) Analyzing signals
Evenstad et al. A device for phase shift measurement in an advanced phase Doppler velocimeter
Gabriel Analog measurement of the autocorrelation function of Gaussian noise

Legal Events

Date Code Title Description
A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20031211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees