JPH0731796B2 - Rotating magnetic head fine movement device - Google Patents

Rotating magnetic head fine movement device

Info

Publication number
JPH0731796B2
JPH0731796B2 JP632092A JP632092A JPH0731796B2 JP H0731796 B2 JPH0731796 B2 JP H0731796B2 JP 632092 A JP632092 A JP 632092A JP 632092 A JP632092 A JP 632092A JP H0731796 B2 JPH0731796 B2 JP H0731796B2
Authority
JP
Japan
Prior art keywords
magnetic head
shaft
fine movement
movement device
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP632092A
Other languages
Japanese (ja)
Other versions
JPH0536045A (en
Inventor
明猷 寺田
三郎 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP632092A priority Critical patent/JPH0731796B2/en
Publication of JPH0536045A publication Critical patent/JPH0536045A/en
Publication of JPH0731796B2 publication Critical patent/JPH0731796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は回転磁気ヘッドの微動装
置に係り、特にVTR等磁気記録再生装置等の回転磁気
ヘッドをその回転中に回転軸に平行な方向などに微動さ
せるのに好適な微動装置に関するものである。 【0002】 【従来の技術】従来、ヘリカルスキャンVTR等におい
ては、圧電バイモルフ上に回転磁気ヘッドを載置した構
成とし、この圧電バイモルフを制御変形させ、回転磁気
ヘッドを特殊再生あるいは記録された記録跡の自動追跡
を行うよう微動させることが行われている。 【0003】 【発明が解決しようとする課題】従来のこの種の微動装
置では、上記圧電バイモルフの変形のためには高電圧を
印加しなければならず、家庭用のVTR等にも用いるた
めには、高価で、また、信頼性に欠けるという欠点があ
った。本発明の目的は、上記従来技術の欠点をなくし、
作動に高電圧を必要とせず、小形、高精度で、広範囲の
ヘッド移動も容易に可能で、しかも、信頼性が高く、組
立て易い回転磁気ヘッドの微動装置を提供することにあ
る。 【0004】 【課題を解決するための手段】上記目的を達成するため
に、本発明では、(イ)筒状ヨーク部分(該当一実施例
符号22)を有して成る磁気回路部材と、該磁気回路部
材に挿入される可動部材(該当一実施例符号21,2
5,26)と、該可動部材に取付けられ上記筒状ヨーク
部分の外径よりも外側に配された回転磁気ヘッド(該当
一実施例符号6)と、曲げ変位による弾性復元力で上記
可動部材をその中心軸に平行な方向の互いに離れた位置
で支持した複数のばね部材(該当一実施例符号23,2
4)と、を備えた構成であって、上記磁気回路部材は、
上記筒状ヨーク部分がその筒状側壁部に切欠き状部分
(該当一実施例符号50)を有し、上記ばね部材は、上
記筒状ヨーク部分の上記切欠き状部分の内部にまで伸び
た構成を有し、上記回転磁気ヘッドは、上記筒状ヨーク
部分の中心軸と上記切欠き状部分を結ぶ方向に配されて
いる構成とする。 【0005】 【作用】磁気回路部材は、少なくとも永久磁石等を磁束
源とする磁場を形成し、該磁場で可動部材に対し電磁力
を発生せしめる。筒状ヨーク部分は少なくとも磁路を形
成する。切欠き状部分はばね部材の突出部の方向と一致
されて回転磁気ヘッドの設置方向を間接的に決める。ば
ね部材は可動部材をその中心軸に平行な方向に互いに離
れた位置で弾性支持する。可動部材は上記電磁力で中心
軸に平行な方向に制御変位されることにより、回転磁気
ヘッドを同じ方向に移動変位させる。 【0006】 【実施例】以下、本発明をVTR用回転磁気ヘッドの微
動装置に適用した場合につき、図1ないし図6を用いて
詳細に説明する。図1は電磁コイルを磁気回路部材側に
固定して設けた微動装置の原理構成図で、VTRの回転
シリンダ装置に実装した状態を示し、図2は図1の構成
の下面図である。本構成は、電磁コイルへの制御給電で
発生する電磁力による回転磁気ヘッドの移動動作を説明
するための構成であり、本構成図中、ばね部材はその一
部が省略されている。図1において、1は回転シリンダ
であって、該回転シリンダ1は、回転ディスク2に固定
してあり回転シャフト3と一体となって回転するように
なっている。4は固定された下シリンダである。5は本
発明に係る微動装置である。微動装置5は、回転シリン
ダ1に固定してあり、該回転シリンダ1とともに回転す
る。6はヘッド支持板7に固定した回転磁気ヘッドで、
ヘッド支持板7は、微動装置5のシャフト8に固定して
あり、シャフト8を電磁力によって該シャフト8の軸方
向に微動させることによって、回転磁気ヘッド6をこれ
と同一の方向に微動させるようにしてある。すなわち、
本構成では、シャフト8が可動部材を構成し、回転磁気
ヘッド6の走査方向に対して直角な方向に回転磁気ヘッ
ド6を微動変位させ得るようになっている。本構成で
は、電磁コイル10は、可動部材としてのシャフト8上
には設けずに回転シリンダ1側に固定した磁気回路部材
側に設けてある。9は、微動装置5の電磁コイル10に
電流を供給すべく回転シャフト3に設けたスリップリン
グで、ブラシ11からこのスリップリング9を通して回
転する電磁コイル10に電流を供給する。 【0007】図3及び図4は、上記図1及び図2の構成
に、さらに永久磁石を付加して成る微動装置の単体構造
例を示す図である。本構成図では、ばね部材については
その一部を記載してあり残部は省略してある。本構成に
おいては、磁気回路部材内の平板状ヨーク部分に対し、
外壁状ヨーク部分の形成された側と同じ側に、永久磁石
と、可動部材と、該可動部材支持用ばね部材と、可動部
材に取付けられる回転磁気ヘッドと、を配置してある。
図3はその下面図、図4は断面図である。図4におい
て、12は弾性支持用のばね部材としての板ばねで、そ
の内周部は可動部材としてのシャフト8側に固定され、
外周部は磁気回路部材の外壁状ヨークとしてのヨーク1
3に固定されている。本板ばね12は、例えば燐青銅等
の弾性材で構成してあり、図3に示すようにシャフト8
に固定したヘッド支持板7の先端に取り付けた回転磁気
ヘッド6をシャフト8とともに適切な剛性で支持し、回
転磁気ヘッド6で記録媒体上に信号を記録し、または記
録媒体上から信号を再生する際に、ヘッド先端が受ける
力によって回転磁気ヘッド6が好ましくない変位をして
しまうことのないようにするとともに、シャフト8が受
ける電磁力によってシャフト8及び回転磁気ヘッド6が
必要な距離だけ軸に平行な方向に移動変位できるように
してある。14は、ヨーク13の底面部(平板状ヨーク
部分)40に固定されたヨークであって、その上端面が
シャフト8の下端面と空隙15をはさんで対向するよう
にされている。16,17は、ヨーク13内に固定され
た永久磁石であり、18は磁性材料のホルダーである。
シャフト8も鉄等の磁性材料で構成されている。永久磁
石16,17、ホルダー18、ヨーク13,14、及び
シャフト8で磁気回路が構成され、ヨーク13内に固定
された電磁コイル10がこれを励磁するようにしてあ
る。永久磁石16,17はこの磁気回路に固定バイアス
磁界を与える。19は非磁性材料より成るスペーサであ
ってシャフト8の軸方向移動のガイドとなっており、こ
れに対してシャフト8が低摩擦で摺動できるような材質
のものにされているとともに、摺動面には潤滑剤をも併
用するようにしてある。板ばね12が十分な剛性を有す
る場合は、スペーサ19とシャフト8の空隙を十分大き
くして、スペーサ19とシャフト8が通常状態では接触
しないようにすることもできる。また、場合によっては
スペーサ19をなくしてしまうことも可能である。 【0008】永久磁石16,17による固定のバイアス
磁界によりヨーク14とシャフト8との間に吸引力が働
くが、空隙15の長さ及び板ばね12の剛性を適当に選
ぶことにより、バイアス磁界による吸引力と板ばね12
の剛性による復元力とが釣合ってシャフト8が停止する
位置を調整できる。そして微小な軸方向の外乱によりシ
ャフト8が変位するとき、空隙15の間隔の減少による
吸引力の増加分より板ばね12の復元力の方が大きくな
るようにしてある。このようにすることにより、外乱に
対してシャフト8及び回転磁気ヘッド6を安定に保持す
ることができる。なお、万一、非常に大きな外乱が生じ
た場合は、吸引力が板ばね12の復元力に打ち勝って空
隙15の間隔が零になり、この結果、ヨーク14とシャ
フト8とが吸着してしまって離れなくなるおそれがあ
る。そのため、これを防止するため、シャフト8にスト
ッパ20を固定しシャフト8の空隙15が極端に小さく
なる方向の変位に対しては、ストッパ20がスペーサ1
9またはホルダー18(スペーサがない場合)に当接さ
れシャフト8がヨーク14に接触するまでは変位しない
ようにしてある。 【0009】図4の状態のとき、電磁コイル10に通電
すると、そのときの電流値に比例して発生する磁界が固
定バイアス磁界に重畳され、電流の方向によって合成磁
界が増減する。従って、電磁コイル10に正または逆方
向の制御電流を流すことにより空隙15の磁束密度がバ
イアス磁界による磁束密度を中心値として制御され、ヨ
ーク14とシャフト8間の吸引力が制御される。これに
よりシャフト8が軸に平行な方向に微動する。この結
果、回転磁気ヘッド6がシャフト8とともに同じ方向に
微動変位する。これは、図1より明らかなように、回転
磁気ヘッド6を走査方向に対して直角方向に微動変位さ
せることになる。これにより、ヘリカルスキャン方式の
VTRの記録トラックを再生時に正しくトレースする、
いわゆるオートトラッキング、または可変速再生の機能
を実現することができる。 【0010】以上述べたように、上記構成の微動装置に
よれば、磁気回路部材の平板状ヨーク部分40の片側の
面側に、外壁状ヨーク部分13、永久磁石16,17、
ばね部材12、可動部材18,20、回転磁気ヘッド6
等の全てを配置してあるため、微動装置全体を、小形で
コンパクトで組立てし易いものにできる。また、電磁コ
イル10に正方向または逆方向の制御電流を流すことに
よりシャフト8を微動変位させて回転磁気ヘッド6を走
査方向に対して直角な方向に微動変位させるようにして
あるため、低い電圧かつ少ない電流で動作させることが
でき、かつ、高精度で信頼性が高い微動装置とすること
ができる。これに伴い、ヘリカルスキャンVTRの記録
跡の自動追跡(オートトラッキング)、可変速再生また
は発生する信号の時間軸変動(ジッタ)の低減等を達成
することができ、高記録密度で高画質の家庭用VTR等
の製作も容易に可能になる。なお、上記構成では、磁気
回路部材内に永久磁石16,17を挿入して固定バイア
ス磁界を発生させるようにしてあるが、この代わりに、
電磁コイル10にバイアス磁界を発生させる直流のバイ
アス電流を流しておくようにしてもよい。この場合は、
消費電力が増大するという欠点があるが、永久磁石が不
要になり、構造が簡単になるという新たな効果がある。
その他の効果は上記と同様である。また、上記の構成に
おいては、電磁コイル10への通電電流とシャフト8の
変位との関係が非直線的特性となるが、バイアス磁界に
対する通電電流による磁界を十分小さくとり、また、空
隙15の間隔に対してシャフト8の変位が十分小さくな
るように設計すれば、ほぼ、直線的特性になるようにす
ることができる。 【0011】また、以上の原理構成図では、回転磁気ヘ
ッドを微動せしめる可動部材として鉄片等磁性材料を用
いているが、空心の電磁コイル(非磁性材の巻材(ボビ
ン)を含んでもよい)を可動部材中に含みまたはこれを
可動部材の全部として磁気回路部材中の空隙磁場内にお
いて可動状態で支承し、この可動式電磁コイルを、これ
への制御給電により、その中心軸に平行な方向に移動変
位せしめる構成としてもよい。本構成の場合には、高速
応答性、変位特性の直線性等被制御性等の点で有利とな
る。本発明の一実施例の構成を図5、図6に示す。図5
は下面図、図6はその断面図で、図5及び図6におい
て、可動部材の一部であるシャフト21は、中心軸に平
行な方向に一定距離を隔て筒状ヨーク部分としてのヨー
ク22の高さ方向の中間部の切欠き状部分50及び先端
部にその外周縁を固定された複数の板ばね23、24に
よって、該中心軸に平行な方向に移動自在に支持されて
いる。この場合、シャフト21は、制御応答性の点から
プラスチックのような軽い材料のものとするのが好まし
い。シャフト21には、その先端に回転磁気ヘッド6を
取り付けたヘッド支持板7が固定されている他、下端に
は巻枠25が取り付けられており、この巻枠25の外周
には電磁コイル26が巻きつけられている。そして、電
磁コイル26は、筒状のヨーク22と、該筒状のヨーク
22の底面(平板状ヨーク部分40)に固定された永久
磁石27と、該永久磁石27に結合されたヨーク28と
で形成された磁気回路部中の空隙29中に挿入されてい
る。電磁コイル26に電流を流すと、該電磁コイル26
には軸に平行な方向の電磁力が働き、シャフト21が軸
に平行な方向に移動され、それに伴って回転磁気ヘッド
6がこれと同じ方向に移動変位される。この実施例によ
れば、電磁コイル26への通電電流とシャフト21の変
位とを直線的比例特性の関係にできるし、また、可動部
材を磁性材を用いずに構成できるため該可動部材の質量
を小さくして周波数特性を良好にできるという利点もあ
る。また、電磁コイル26及びシャフト21を含む可動
部材が2個のばね部材でその中心軸に平行な方向に2段
に支持されているため、容易に高精度の支持ができる。
その他、小形化、コンパクト構成化、組立て性の改善等
の効果については前記図3、図4の構成の場合で述べた
と同様である。特に、筒状のヨーク22には切欠き状部
分50が設けられているため、ばね部材や可動部材の組
込みをし易い。 【0012】図5において、2枚の板ばね23,24は
それぞれが電磁コイル26と同心状でかつその中心軸に
対し軸対称な形状となっている。また各ばねの長手方向
は該ばね23,24間で互に直交するようにして配置さ
れ、うち、上記筒状のヨーク22の切欠き状部分にその
外周縁を固定された板ばね23の長手方向は回転磁気ヘ
ッド6が取り付けられた支持板7の方向と一致させてあ
る。これは回転磁気ヘッド6が記録媒体上を走査する際
に受ける外力による該ヘッド6の変位(該ヘッドの回転
の半径方向の変位、回転の接線方向の変位、回転の接線
方向に対するローリング方向の変位等)をできるだけ少
なくする目的でなされている。回転磁気ヘッド6が受け
る外力としては、記録媒体からの接触反力やヘッド6
(取り付けベースも含む)自体や支持板7等に発生する
遠心力等の回転半径方向力、記録媒体上を回転磁気ヘッ
ド6が接触走査する時の摩擦によって生ずる回転の接線
方向の摩擦力、板ばね23,24で支持され電磁コイル
26、回転磁気ヘッド6、支持板7等から成る可動部に
作用する回転時の遠心力に基づき発生する回転接線方向
を軸としたローリング力、等がある。これらの外力に対
する回転磁気ヘッド6の変位は板ばね23,24それぞ
れの平面方向剛性または各ばねの組合わせによる平面方
向剛性を増大することにより大幅に低減化される。 【0013】一方、電磁コイル26の中心軸に平行な方
向に対しては各板ばね23,24は回転磁気ヘッド6の
該方向への移動変位を容易に大きくとれるようにする必
要があるために低剛性であることが望まれている。従っ
て、板ばね23,24はそれぞれ柔らかいものを用い、
これを組み合わせることによって、中心軸に平行な方向
の剛性は低減化する一方、中心軸に垂直な平面方向の剛
性は高めるようにすることが必要である。このためには
図5に示すように板ばね23,24を軸方向に2段に設
けかつ互に直交する方向とする支持構成が安定性にも優
れ有効である。なお、本発明の微動装置は、回転磁気ヘ
ッド6をその走査方向に対して直角な方向に動かして、
記録媒体上の記録トラックを正しくトレースする、いわ
ゆるオートトラッキングばかりでなく、例えば、回転磁
気ヘッド6を走査方向と同じ方向に動かし、ヘッド回転
速度のゆらぎ等に起因する再生信号のジッタを補償する
ためにも用いることもできる。ただし、この場合は、図
1に示す微動装置5のシャフト8の軸方向が回転磁気ヘ
ッド6の走査方向と同一になるように微動装置5を回転
シリンダ1に固定する。 【0014】 【発明の効果】本発明によれば、高電圧を必要とせず、
組立て易く小形でコンパクトかつ高精度な構成で、しか
も、広範囲のヘッド移動変位も容易に可能で、信頼性が
高い回転磁気ヘッドの微動装置とすることができ、高記
録密度で高画質の家庭用VTR等の製作も容易に可能に
するという効果がある。また、磁気漏洩のない微動装置
を構成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement device for a rotary magnetic head, and more particularly to a rotary magnetic head for a magnetic recording / reproducing device such as a VTR which is parallel to the rotary shaft during rotation. The present invention relates to a fine movement device suitable for fine movement in various directions. 2. Description of the Related Art Conventionally, in a helical scan VTR or the like, a rotary magnetic head is mounted on a piezoelectric bimorph, and the piezoelectric bimorph is controlled and deformed so that the rotary magnetic head is specially reproduced or recorded. Fine movements are being used to perform automatic trace tracking. In the conventional fine movement device of this type, a high voltage must be applied in order to deform the piezoelectric bimorph, and it is also used for a home VTR or the like. Has the drawback of being expensive and lacking reliability. The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
It is an object of the present invention to provide a fine movement device for a rotary magnetic head, which does not require a high voltage for its operation, is small in size, has high accuracy, can easily move a wide range of heads, has high reliability, and is easy to assemble. In order to achieve the above object, in the present invention, (a) a magnetic circuit member having a cylindrical yoke portion (corresponding to one embodiment reference numeral 22), and Movable member to be inserted into the magnetic circuit member
5, 26), a rotary magnetic head (corresponding to one embodiment reference numeral 6) mounted on the movable member and outside the outer diameter of the cylindrical yoke portion, and the movable member by elastic restoring force due to bending displacement. A plurality of spring members (corresponding to one embodiment reference numeral 23, 2
4) and, wherein the magnetic circuit member comprises
The tubular yoke portion has a notched portion (corresponding to one embodiment reference numeral 50) on its tubular side wall portion, and the spring member extends to the inside of the notched portion of the tubular yoke portion. The rotary magnetic head is arranged in a direction connecting the central axis of the cylindrical yoke portion and the cutout portion. The magnetic circuit member forms a magnetic field using at least a permanent magnet or the like as a magnetic flux source, and causes the movable member to generate an electromagnetic force by the magnetic field. The tubular yoke portion forms at least a magnetic path. The notch portion is aligned with the direction of the protrusion of the spring member and indirectly determines the installation direction of the rotary magnetic head. The spring member elastically supports the movable member at positions separated from each other in a direction parallel to the central axis thereof. The movable member is controlled and displaced in the direction parallel to the central axis by the electromagnetic force to move and displace the rotary magnetic head in the same direction. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the present invention is applied to a fine moving device of a rotary magnetic head for a VTR will be described in detail with reference to FIGS. 1 to 6. FIG. 1 is a principle configuration diagram of a fine movement device in which an electromagnetic coil is fixedly provided on a magnetic circuit member side, showing a state of being mounted on a rotary cylinder device of a VTR, and FIG. 2 is a bottom view of the configuration of FIG. This configuration is a configuration for explaining the moving operation of the rotary magnetic head by the electromagnetic force generated by the control power supply to the electromagnetic coil, and in the configuration diagram, a part of the spring member is omitted. In FIG. 1, reference numeral 1 is a rotary cylinder, which is fixed to a rotary disk 2 and rotates together with a rotary shaft 3. Reference numeral 4 denotes a fixed lower cylinder. 5 is a fine movement device according to the present invention. The fine movement device 5 is fixed to the rotary cylinder 1 and rotates together with the rotary cylinder 1. 6 is a rotary magnetic head fixed to the head support plate 7,
The head support plate 7 is fixed to the shaft 8 of the fine movement device 5, and the rotary magnetic head 6 is finely moved in the same direction as this by finely moving the shaft 8 in the axial direction of the shaft 8 by an electromagnetic force. I am doing it. That is,
In this configuration, the shaft 8 constitutes a movable member, and the rotary magnetic head 6 can be finely displaced in a direction perpendicular to the scanning direction of the rotary magnetic head 6. In this structure, the electromagnetic coil 10 is not provided on the shaft 8 as a movable member but is provided on the magnetic circuit member side fixed to the rotary cylinder 1 side. Reference numeral 9 denotes a slip ring provided on the rotary shaft 3 for supplying a current to the electromagnetic coil 10 of the fine movement device 5, and supplies a current from the brush 11 to the electromagnetic coil 10 rotating through the slip ring 9. FIG. 3 and FIG. 4 are views showing an example of a single structure of a fine movement device in which a permanent magnet is further added to the structure of FIG. 1 and FIG. In this configuration diagram, a part of the spring member is shown and the rest is omitted. In this configuration, for the flat yoke portion in the magnetic circuit member,
A permanent magnet, a movable member, a spring member for supporting the movable member, and a rotary magnetic head attached to the movable member are arranged on the same side as the side where the outer wall-shaped yoke portion is formed.
3 is a bottom view and FIG. 4 is a sectional view. In FIG. 4, 12 is a leaf spring as a spring member for elastic support, the inner peripheral part of which is fixed to the shaft 8 side as a movable member,
The outer peripheral portion is a yoke 1 as an outer wall yoke of the magnetic circuit member.
It is fixed at 3. The leaf spring 12 is made of, for example, an elastic material such as phosphor bronze, and as shown in FIG.
The rotary magnetic head 6 attached to the tip of the head support plate 7 fixed to the shaft is supported together with the shaft 8 with appropriate rigidity, and the rotary magnetic head 6 records a signal on a recording medium or reproduces a signal from the recording medium. At this time, the rotary magnetic head 6 is prevented from being undesirably displaced by the force received by the tip of the head, and the shaft 8 and the rotary magnetic head 6 are axially moved by a required distance by the electromagnetic force received by the shaft 8. It is designed so that it can be moved and displaced in parallel directions. Reference numeral 14 denotes a yoke fixed to a bottom surface portion (flat plate-shaped yoke portion) 40 of the yoke 13, and an upper end surface of the yoke 14 faces the lower end surface of the shaft 8 with a gap 15 therebetween. Reference numerals 16 and 17 are permanent magnets fixed in the yoke 13, and 18 is a holder made of a magnetic material.
The shaft 8 is also made of a magnetic material such as iron. A magnetic circuit is constituted by the permanent magnets 16 and 17, the holder 18, the yokes 13 and 14, and the shaft 8, and the electromagnetic coil 10 fixed in the yoke 13 excites this. The permanent magnets 16 and 17 provide a fixed bias magnetic field to this magnetic circuit. A spacer 19 made of a non-magnetic material serves as a guide for the axial movement of the shaft 8, and is made of a material that allows the shaft 8 to slide with low friction against the spacer. A lubricant is also used on the surface. When the leaf spring 12 has sufficient rigidity, the gap between the spacer 19 and the shaft 8 can be made sufficiently large so that the spacer 19 and the shaft 8 do not contact in a normal state. It is also possible to eliminate the spacer 19 in some cases. An attractive force acts between the yoke 14 and the shaft 8 due to the fixed bias magnetic field generated by the permanent magnets 16 and 17. Attraction force and leaf spring 12
The position where the shaft 8 stops can be adjusted by balancing the restoring force due to the rigidity of the shaft. Then, when the shaft 8 is displaced by a slight disturbance in the axial direction, the restoring force of the leaf spring 12 is larger than the increase in the suction force due to the decrease in the gap 15 gap. By doing so, the shaft 8 and the rotary magnetic head 6 can be stably held against disturbance. In the unlikely event that a very large disturbance occurs, the suction force overcomes the restoring force of the leaf spring 12 and the gap 15 becomes zero, and as a result, the yoke 14 and the shaft 8 are attracted to each other. There is a risk that they will not come apart. Therefore, in order to prevent this, when the stopper 20 is fixed to the shaft 8 and the displacement of the shaft 8 in the direction in which the gap 15 becomes extremely small, the stopper 20 is used.
9 or the holder 18 (when there is no spacer) so that the shaft 8 is not displaced until it comes into contact with the yoke 14. When the electromagnetic coil 10 is energized in the state of FIG. 4, the magnetic field generated in proportion to the current value at that time is superimposed on the fixed bias magnetic field, and the combined magnetic field increases or decreases depending on the direction of the current. Therefore, the magnetic flux density of the air gap 15 is controlled centering on the magnetic flux density of the bias magnetic field by passing a control current in the electromagnetic coil 10 in the positive or reverse direction, and the attractive force between the yoke 14 and the shaft 8 is controlled. This causes the shaft 8 to slightly move in a direction parallel to the axis. As a result, the rotary magnetic head 6 is finely displaced together with the shaft 8 in the same direction. As is clear from FIG. 1, this causes the rotary magnetic head 6 to be finely displaced in the direction perpendicular to the scanning direction. As a result, the recording track of the VTR of the helical scan system is correctly traced at the time of reproduction,
A so-called auto-tracking or variable speed reproduction function can be realized. As described above, according to the fine movement device having the above-described structure, the outer wall-shaped yoke portion 13, the permanent magnets 16, 17, and the outer wall-shaped yoke portion 13 are provided on one surface side of the flat plate-shaped yoke portion 40 of the magnetic circuit member.
Spring member 12, movable members 18, 20, rotary magnetic head 6
Since all of the above are arranged, the entire fine movement device can be made small, compact and easy to assemble. Further, since the control current in the forward or reverse direction is passed through the electromagnetic coil 10 to cause the shaft 8 to be finely displaced so that the rotary magnetic head 6 is finely displaced in a direction perpendicular to the scanning direction, a low voltage is applied. In addition, the fine movement device can be operated with a small current, and is highly accurate and highly reliable. Along with this, it is possible to achieve automatic tracking of the recording trace of the helical scan VTR (auto tracking), reduction of the time base fluctuation (jitter) of the variable speed reproduction or the generated signal, and a home with high recording density and high image quality. It is also possible to easily manufacture a VTR for use. In the above configuration, the permanent magnets 16 and 17 are inserted in the magnetic circuit member to generate the fixed bias magnetic field, but instead of this,
A DC bias current for generating a bias magnetic field may be passed through the electromagnetic coil 10. in this case,
Although it has a drawback of increasing power consumption, it has a new effect that a permanent magnet is unnecessary and the structure is simple.
Other effects are similar to the above. Further, in the above configuration, the relationship between the current supplied to the electromagnetic coil 10 and the displacement of the shaft 8 has a non-linear characteristic, but the magnetic field due to the current supplied to the bias magnetic field is sufficiently small, and the space between the air gaps 15 is small. On the other hand, if the shaft 8 is designed so that the displacement thereof is sufficiently small, the linear characteristic can be obtained. Further, in the above principle configuration diagram, a magnetic material such as an iron piece is used as a movable member for finely moving the rotary magnetic head, but an air-core electromagnetic coil (a winding material (bobbin) of a non-magnetic material may be included). Is supported in a movable state in the air gap magnetic field in the magnetic circuit member by including this in the movable member or as a whole of the movable member, and the movable electromagnetic coil is fed in a direction parallel to the central axis of the movable electromagnetic coil by control power feeding to the movable electromagnetic coil. It may be configured such that it is moved and displaced. In the case of this configuration, it is advantageous in terms of high-speed response and controllability such as linearity of displacement characteristics. The structure of an embodiment of the present invention is shown in FIGS. Figure 5
FIG. 6 is a bottom view, and FIG. 6 is a cross-sectional view thereof. In FIGS. 5 and 6, a shaft 21 which is a part of a movable member is provided with a yoke 22 as a cylindrical yoke portion at a constant distance in a direction parallel to the central axis. It is movably supported in a direction parallel to the central axis by a notch-like portion 50 at an intermediate portion in the height direction and a plurality of leaf springs 23 and 24 whose outer peripheral edges are fixed to the tip end portion. In this case, the shaft 21 is preferably made of a light material such as plastic from the viewpoint of control response. A head support plate 7 having a rotary magnetic head 6 attached to the tip thereof is fixed to the shaft 21, and a winding frame 25 is attached to the lower end thereof. An electromagnetic coil 26 is provided on the outer periphery of the winding frame 25. It is wrapped around. The electromagnetic coil 26 includes a cylindrical yoke 22, a permanent magnet 27 fixed to the bottom surface (flat plate-shaped yoke portion 40) of the cylindrical yoke 22, and a yoke 28 coupled to the permanent magnet 27. It is inserted in the space 29 in the formed magnetic circuit portion. When a current is applied to the electromagnetic coil 26, the electromagnetic coil 26
An electromagnetic force acts in a direction parallel to the axis, the shaft 21 is moved in a direction parallel to the axis, and the rotary magnetic head 6 is moved and displaced in the same direction as this. According to this embodiment, the current supplied to the electromagnetic coil 26 and the displacement of the shaft 21 can be made to have a linear proportional characteristic relationship, and since the movable member can be configured without using a magnetic material, the mass of the movable member can be increased. There is also an advantage that the frequency characteristic can be improved by reducing Further, since the movable member including the electromagnetic coil 26 and the shaft 21 is supported by the two spring members in two stages in the direction parallel to the central axis, the movable member can be easily supported with high accuracy.
Other effects such as miniaturization, compact structure, and improvement of assembling property are the same as those described in the case of the structures of FIGS. 3 and 4. In particular, since the cylindrical yoke 22 is provided with the cutout portion 50, it is easy to assemble a spring member or a movable member. In FIG. 5, the two leaf springs 23 and 24 are concentric with the electromagnetic coil 26 and axially symmetrical with respect to the central axis thereof. The longitudinal directions of the springs 23 and 24 are arranged so as to be orthogonal to each other, and the longitudinal direction of the leaf spring 23 whose outer peripheral edge is fixed to the cutout portion of the cylindrical yoke 22 is defined. The direction is aligned with the direction of the support plate 7 to which the rotary magnetic head 6 is attached. This is the displacement of the head 6 due to an external force received when the rotary magnetic head 6 scans the recording medium (displacement in the radial direction of rotation of the head, displacement in the tangential direction of rotation, displacement in the rolling direction with respect to the tangential direction of rotation). Etc.) is made for the purpose of minimizing. The external force received by the rotary magnetic head 6 is the contact reaction force from the recording medium or the head 6
Rotational radial force such as centrifugal force generated on itself (including the mounting base), support plate 7 and the like, tangential frictional force of rotation generated by friction when the rotary magnetic head 6 scans the recording medium in contact, plate For example, there is a rolling force centered on the rotational tangential direction generated by centrifugal force at the time of rotation that acts on a movable portion that is supported by the springs 23 and 24 and that includes the electromagnetic coil 26, the rotary magnetic head 6, the support plate 7, and the like. The displacement of the rotary magnetic head 6 with respect to these external forces is greatly reduced by increasing the planar rigidity of each of the leaf springs 23 and 24 or the planar rigidity of a combination of the springs. On the other hand, with respect to the direction parallel to the central axis of the electromagnetic coil 26, the leaf springs 23 and 24 need to be able to easily make a large displacement of the rotary magnetic head 6 in that direction. Low rigidity is desired. Therefore, the leaf springs 23 and 24 should be soft,
By combining these, it is necessary to reduce the rigidity in the direction parallel to the central axis while increasing the rigidity in the plane direction perpendicular to the central axis. For this purpose, as shown in FIG. 5, a supporting structure in which the leaf springs 23 and 24 are provided in two stages in the axial direction and are orthogonal to each other is excellent in stability and effective. The fine movement device of the present invention moves the rotary magnetic head 6 in a direction perpendicular to the scanning direction,
In addition to so-called auto-tracking, which correctly traces the recording track on the recording medium, for example, the rotary magnetic head 6 is moved in the same direction as the scanning direction to compensate the jitter of the reproduction signal due to fluctuations in the head rotation speed. It can also be used for. However, in this case, the fine movement device 5 is fixed to the rotary cylinder 1 such that the axial direction of the shaft 8 of the fine movement device 5 shown in FIG. 1 is the same as the scanning direction of the rotary magnetic head 6. According to the present invention, a high voltage is not required,
Easy to assemble, compact, compact and highly precise structure. Moreover, it is possible to easily move and displace the head in a wide range, and it can be used as a highly reliable rotary magnetic head fine movement device. There is an effect that it is possible to easily manufacture a VTR or the like. Further, it is possible to configure a fine movement device having no magnetic leakage.

【図面の簡単な説明】 【図1】回転磁気ヘッドの微動装置の原理構成を示す断
面図である。 【図2】図1の下面図である。 【図3】図1の微動装置の改良構造を示す下面図であ
る。 【図4】図3の構成の断面図である。 【図5】本発明の装置の一実施例を示す下面図である。 【図6】図5の構成の断面図である。 【符号の説明】 1…回転シリンダ、 5…回転磁気ヘッド微動装置、 6…回転磁気ヘッド、 7…ヘッド支持板、 8,21…シャフト、 10,26…電磁コイル、 12,23,24…板ばね、 13,22,14,28…ヨーク、 15,29…空隙、 16,17,27…永久磁石、 19…スペーサ、 20…ストッパ、 40…平板状ヨーク部分、 50…切欠き状部分。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a principle configuration of a fine moving device of a rotary magnetic head. FIG. 2 is a bottom view of FIG. 3 is a bottom view showing an improved structure of the fine movement device of FIG. 1. FIG. 4 is a cross-sectional view of the configuration of FIG. FIG. 5 is a bottom view showing an embodiment of the device of the present invention. 6 is a cross-sectional view of the configuration of FIG. [Explanation of Codes] 1 ... Rotating cylinder, 5 ... Rotating magnetic head fine moving device, 6 ... Rotating magnetic head, 7 ... Head support plate, 8, 21 ... Shaft, 10, 26 ... Electromagnetic coil, 12, 23, 24 ... Plate Spring, 13, 22, 14, 28 ... Yoke, 15, 29 ... Air gap, 16, 17, 27 ... Permanent magnet, 19 ... Spacer, 20 ... Stopper, 40 ... Flat yoke section, 50 ... Notch section.

Claims (1)

【特許請求の範囲】 1.筒状ヨーク部分を有して成る磁気回路部材と、該磁
気回路部材に挿入される可動部材と、該可動部材に取付
けられ上記筒状ヨーク部分の外径よりも外側に配された
回転磁気ヘッドと、曲げ変位による弾性復元力で上記可
動部材をその中心軸に平行な方向の互いに離れた位置で
支持した複数のばね部材と、を備えた回転磁気ヘッドの
微動装置において、 上記磁気回路部材は、上記筒状ヨーク部分がその筒状側
壁部に貫通した切欠き状部分を有し、上記ばね部材の1
つが、上記切欠き状部分において上記筒状ヨーク部材に
固定されている、ことを特徴とする回転磁気ヘッドの微
動装置。
[Claims] 1. A magnetic circuit member having a tubular yoke portion, a movable member inserted into the magnetic circuit member, and a rotary magnetic head mounted on the movable member and arranged outside the outer diameter of the tubular yoke portion. And a plurality of spring members that support the movable member at positions separated from each other in the direction parallel to the central axis by elastic restoring force due to bending displacement, and the magnetic circuit member includes: , the cylindrical yoke portion has a notched portion which penetrates into the cylindrical sidewall portion, of the spring member 1
In the tubular yoke member at the cutout portion.
A fine movement device for a rotary magnetic head , which is fixed .
JP632092A 1992-01-17 1992-01-17 Rotating magnetic head fine movement device Expired - Lifetime JPH0731796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP632092A JPH0731796B2 (en) 1992-01-17 1992-01-17 Rotating magnetic head fine movement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP632092A JPH0731796B2 (en) 1992-01-17 1992-01-17 Rotating magnetic head fine movement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17326280A Division JPS5798130A (en) 1980-12-10 1980-12-10 Inching device for rotating magnetic head

Publications (2)

Publication Number Publication Date
JPH0536045A JPH0536045A (en) 1993-02-12
JPH0731796B2 true JPH0731796B2 (en) 1995-04-10

Family

ID=11635074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP632092A Expired - Lifetime JPH0731796B2 (en) 1992-01-17 1992-01-17 Rotating magnetic head fine movement device

Country Status (1)

Country Link
JP (1) JPH0731796B2 (en)

Also Published As

Publication number Publication date
JPH0536045A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
US4613962A (en) Tracking device with linear motor
JPH0142053B2 (en)
JPS6350771B2 (en)
EP0302756A2 (en) Movable rotary head assembly
GB2238647A (en) Rotary magnetic head device for magnetic recording and/or reproducing apparatus
JPH0731796B2 (en) Rotating magnetic head fine movement device
JPS6367253B2 (en)
JPH0536043A (en) Fine adjustment for rotary magnetic head
JPH0670847B2 (en) Rotating magnetic head fine movement device
JPS60138743A (en) Objective lens driver
JPS6076039A (en) Objective lens driver
JPH0522297B2 (en)
KR930000041B1 (en) Lenz operating device for optical recording
JP3374084B2 (en) Light spot scanning control device
JPH054732B2 (en)
JP3318061B2 (en) Optical disk drive
JPH0441463Y2 (en)
JP2506180B2 (en) Rotating magnetic head device
JPH0127134Y2 (en)
JPS6327296Y2 (en)
JPS59231743A (en) Objective lens driver
JPS639863Y2 (en)
JPH0827923B2 (en) Magnetic head moving device
JPH0413771B2 (en)
JPS61273754A (en) Objective lens driving device