JPH07315835A - Acicular particle of oxide of rare-earth element and its production - Google Patents

Acicular particle of oxide of rare-earth element and its production

Info

Publication number
JPH07315835A
JPH07315835A JP6106374A JP10637494A JPH07315835A JP H07315835 A JPH07315835 A JP H07315835A JP 6106374 A JP6106374 A JP 6106374A JP 10637494 A JP10637494 A JP 10637494A JP H07315835 A JPH07315835 A JP H07315835A
Authority
JP
Japan
Prior art keywords
earth element
oxide
rare
rare earth
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6106374A
Other languages
Japanese (ja)
Inventor
Masami Kaneyoshi
正実 金吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6106374A priority Critical patent/JPH07315835A/en
Publication of JPH07315835A publication Critical patent/JPH07315835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To provide acicular particles of a rare-earth metal oxide and useful for a ceramics source, etc. CONSTITUTION:This oxide of a rare-earth element comprises acicular particles having a length of 1-10mum. a diameter of <=1mum and a (length/diameter) ratio of >=10. This method for producing the acicular particles of the rare-earth element is to add urea to a salt solution of the rare-earth element, heat the resulting mixture in an autoclave at >=100 deg.C for >=1 hours and separate and dry the precipitate and bake the product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高融点、高活性を有す
る金属融解用るつぼ等に用いられる希土類元素酸化物焼
結体の原料、セラミックス原料等に適した希土類元素酸
化物針状粒子およびその製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a raw material of a rare earth element oxide sintered body used for a metal melting crucible having a high melting point and a high activity, a rare earth element oxide acicular particle suitable for a ceramic material, and the like. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】希土類元素の塩の水溶液に尿素を加えて
加熱すると、尿素の加水分解によって生成する炭酸イオ
ンと水酸化物イオンによって希土類元素が炭酸塩と水酸
化物の混合物として沈殿する方法が尿素法として知られ
ている。
2. Description of the Related Art When urea is added to an aqueous solution of a salt of a rare earth element and heated, the rare earth element is precipitated as a mixture of a carbonate and a hydroxide by a carbonate ion and a hydroxide ion produced by hydrolysis of urea. It is known as the urea method.

【0003】[0003]

【発明が解決しようとする課題】上記の方法における尿
素の加水分解を開放系、即ち水の沸点以下の温度で行っ
た場合、得られる沈殿およびそれを焼成して得られる酸
化物は、粒子形状が球状で、平均粒径は多くの場合0.5
μm以下である。希土類元素酸化物粒子の用途によって
は球状が常に理想的とは限らず、希土類元素酸化物を主
成分とする燒結体を作る場合などは寧ろ針状の方が成型
密度が上がり易く適している。また、尿素の加水分解を
水の沸点以下の温度で行った場合、尿素の量を希土類元
素1モルに対して50モル程度あるいはそれ以上に増やし
ても、反応が完全には進まず収率があまり良くないとい
う欠点もある。本発明はこのような欠点を解決したもの
で、針状粒子からなる希土類元素酸化物を尿素法により
収率よく製造しようとするものである。
When the hydrolysis of urea in the above method is carried out in an open system, that is, at a temperature below the boiling point of water, the resulting precipitate and the oxide obtained by calcination thereof have a particle shape. Are spherical and the average particle size is often 0.5
μm or less. The spherical shape is not always ideal depending on the use of the rare earth element oxide particles, and when forming a sintered body containing a rare earth element oxide as a main component, the needle shape is more suitable because the molding density is easily increased. Also, when the hydrolysis of urea is carried out at a temperature below the boiling point of water, even if the amount of urea is increased to about 50 mol or more per 1 mol of rare earth element, the reaction does not proceed completely and the yield It also has the drawback of not being very good. The present invention solves such a drawback, and is intended to produce a rare earth element oxide composed of acicular particles by a urea method with a high yield.

【0004】[0004]

【課題を解決するための手段】本発明者等はかかる課題
を解決するために、尿素法による希土類元素の沈殿を圧
力容器(オートクレーブ)中で 100℃以上の温度で行う
ことを検討した結果、針状粒子からなる沈殿が収率良く
得られることを見出し、諸条件を確立して本発明を完成
したもので、その要旨は、長さ1〜10μm、太さ1μm
以下および(長さ/太さ)=10以上の針状粒子からなる
希土類元素酸化物針状粒子、および希土類元素の塩の水
溶液に尿素を加えてオートクレーブ中で 100℃以上の温
度で1 時間以上加熱して得られる沈殿を分離、乾燥後焼
成する希土類元素酸化物針状粒子の製造方法にある。
Means for Solving the Problems In order to solve the above problems, the present inventors have studied that precipitation of rare earth elements by the urea method is performed in a pressure vessel (autoclave) at a temperature of 100 ° C. or higher. The present invention has been completed by establishing various conditions and finding that a precipitate composed of acicular particles can be obtained in good yield. The gist thereof is 1 to 10 μm in length and 1 μm in thickness.
The following and (length / thickness) = needle-like particles of rare earth element oxide consisting of 10 or more needle-like particles, and urea is added to an aqueous solution of a salt of a rare earth element, and the temperature is 100 ° C or more in an autoclave for 1 hour or more. It is a method for producing acicular particles of a rare earth element oxide, in which a precipitate obtained by heating is separated, dried and then calcined.

【0005】以下、本発明を詳細に説明する。希土類元
素の塩の0.01〜0.5mol/L水溶液に、希土類元素1モルあ
たり2〜20モルの尿素を加え、オートクレーブ中で 100
℃以上で1時間以上加熱する。生じた沈殿を濾別し、水
洗した後、700 〜 900℃で1時間程度焼成すれば、長さ
が1〜10μm、太さが1μm以下および長さ/太さの比
が10以上の希土類元素酸化物針状粒子がほぼ定量的に得
られる。希土類元素の塩としては、塩化物、硝酸塩、酢
酸塩等が用いられる。加熱温度が100 ℃未満、あるいは
加熱時間が1時間未満では反応不十分で収率が悪い。温
度の上限は使用するオートクレーブの耐圧強度により決
まるが、通常 170℃程度である。得られた沈殿の組成分
析およびX線回折パターンを測定すると、この沈殿は例
えばイットリウムの場合Y2(CO3)3・2H2 Oで表され
るものに同定される。一方、尿素の加水分解を開放系で
水の沸点以下で行った場合に得られる沈殿はY(CO3)
OHで表されるものであり、この点で大きく異なる。本
発明の適用範囲は、希土類元素としてY、 La、Ce、Pr、
Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb およびLu
から選択される1種の元素、または2種以上の元素混合
物である。
The present invention will be described in detail below. To a 0.01 to 0.5 mol / L aqueous solution of a salt of a rare earth element, add 2 to 20 moles of urea per mole of the rare earth element, and add 100 to 100 in an autoclave.
Heat at ℃ or more for 1 hour or more. Rare earth elements with a length of 1-10 μm, a thickness of 1 μm or less and a length / thickness ratio of 10 or more can be obtained by filtering the formed precipitate, washing it with water, and then baking it at 700 to 900 ° C. for about 1 hour. The oxide acicular particles are obtained almost quantitatively. As the salt of the rare earth element, chloride, nitrate, acetate or the like is used. If the heating temperature is less than 100 ° C or the heating time is less than 1 hour, the reaction is insufficient and the yield is poor. The upper limit of temperature is determined by the pressure resistance of the autoclave used, but is usually around 170 ° C. When the composition analysis and X-ray diffraction pattern of the obtained precipitate are measured, the precipitate is identified as y 2 (CO 3 ) 3 .2H 2 O in the case of yttrium. On the other hand, when urea is hydrolyzed in an open system at a temperature below the boiling point of water, the precipitate obtained is Y (CO 3 ).
It is represented by OH, and differs greatly in this respect. The applicable range of the present invention is Y, La, Ce, Pr, as rare earth elements,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu
One element selected from the above, or a mixture of two or more elements.

【0006】[0006]

【実施例】以下、本発明の実施様態を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)0.25mol/L の硝酸イットリウム水溶液 700
mlに 52.5gの尿素を加えて完全に溶解した。この溶液を
撹拌翼を取付けたオートクレーブに入れ、モーターで約
500rpmで撹拌しながらヒーターで 120℃まで加熱した。
この時圧力は 0.31MPaになった。そのまま 120℃に2時
間保持した。冷却後、ブフナー濾斗で濾別し、500mlづ
つの純水で2回ふりかけ洗浄した。得られた沈殿を風乾
後、大気中 800℃で1時間焼成し、19.67gの酸化イット
リウムが得られた(収率99.6%)。この酸化物のレーザ
ー回折散乱法による中心粒径は2.60μmであった。また
電子顕微鏡で観察したところ、長さ2〜4μm、太さ0.
1 〜0.2 μmの針状粒子からなっていた。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) 0.25 mol / L yttrium nitrate aqueous solution 700
52.5 g of urea was added to ml to dissolve completely. Put this solution in an autoclave equipped with a stirring blade, and use a motor to
The mixture was heated to 120 ° C with a heater while stirring at 500 rpm.
At this time, the pressure became 0.31 MPa. It was kept at 120 ° C for 2 hours. After cooling, the mixture was filtered with a Buchner funnel and sprinkled twice with 500 ml of pure water for washing. The obtained precipitate was air-dried and then calcined in the air at 800 ° C. for 1 hour to obtain 19.67 g of yttrium oxide (yield 99.6%). The center particle size of this oxide as measured by the laser diffraction scattering method was 2.60 μm. Also, when observed with an electron microscope, the length is 2 to 4 μm and the thickness is 0.
It consisted of acicular particles of 1 to 0.2 μm.

【0007】(実施例2)硝酸イットリウムの代わりに
硝酸ガドリニウム水溶液を用いたことの他は、実施例1
と同様に処理して31.57gの酸化ガドリニウムを収率99.5
%で得た。この酸化物のレーザー回折散乱法による中心
粒径は2.75μmであった。また電子顕微鏡で観察したと
ころ、長さ2〜4μm、太さ0.1 〜0.2 μmの針状粒子
からなっていた。
Example 2 Example 1 was repeated except that a gadolinium nitrate aqueous solution was used instead of yttrium nitrate.
And treated in the same manner as above to obtain 31.57 g of gadolinium oxide in a yield of 99.5.
Earned in%. The center particle size of this oxide as measured by the laser diffraction scattering method was 2.75 μm. Further, when observed with an electron microscope, it consisted of needle-shaped particles having a length of 2 to 4 μm and a thickness of 0.1 to 0.2 μm.

【0008】(比較例)0.05mol/L の硝酸イットリウム
水溶液 700mlに 52.5gの尿素を加え完全に溶解した。こ
の溶液を還流冷却器と撹拌翼を取付けた三つ口丸底フラ
スコに入れ、モーターで約500rpmで撹拌しながらマント
ルヒーターで98℃に加熱した。そのまま97〜99℃に2時
間保持した。冷却後ブフナー濾斗で濾別し、 200mlづつ
の純水で2回ふりかけ洗浄した。得られた沈殿を風乾後
大気中 800℃で1時間焼成し、3.66g の酸化イットリウ
ムが得られた(収率92.6%)。この酸化物のレーザー回
折散乱法による中心粒径は0.61μmであった。また電子
顕微鏡で観察したところ球状粒子からなっていた。
(Comparative Example) To 700 ml of a 0.05 mol / L yttrium nitrate aqueous solution, 52.5 g of urea was added and completely dissolved. This solution was put into a three-necked round bottom flask equipped with a reflux condenser and a stirring blade, and heated to 98 ° C. with a mantle heater while stirring with a motor at about 500 rpm. It was kept as it was at 97 to 99 ° C for 2 hours. After cooling, the mixture was filtered with a Buchner funnel and sprinkled with 200 ml of pure water twice for washing. The obtained precipitate was air dried and then calcined in the air at 800 ° C. for 1 hour to obtain 3.66 g of yttrium oxide (yield 92.6%). The center particle size of this oxide as measured by the laser diffraction scattering method was 0.61 μm. Also, when observed with an electron microscope, it consisted of spherical particles.

【0009】[0009]

【発明の効果】本発明によれば、セラミックス原料等と
して有用な希土類元素酸化物の針状粒子が収率良く得ら
れ、産業上その利用価値は極めて高い。
Industrial Applicability According to the present invention, needle-like particles of rare earth element oxide useful as a ceramic raw material and the like can be obtained in high yield, and its utility value is industrially extremely high.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】長さ1〜10μm、太さ1μm以下および
(長さ/太さ)=10以上の針状粒子からなる希土類元素
酸化物針状粒子。
1. Rare earth element oxide acicular particles consisting of acicular particles having a length of 1 to 10 μm, a thickness of 1 μm or less and (length / thickness) = 10 or more.
【請求項2】希土類元素の塩の水溶液に尿素を加えてオ
ートクレーブ中で 100℃以上の温度で1時間以上加熱し
て得られる沈殿を分離、乾燥後焼成する請求項1に記載
の希土類元素酸化物針状粒子の製造方法。
2. The rare earth element oxidation according to claim 1, wherein urea is added to an aqueous solution of a salt of a rare earth element and the precipitate obtained by heating in an autoclave at a temperature of 100 ° C. or higher for 1 hour or more is separated, dried and calcined. A method for producing needle-shaped particles.
JP6106374A 1994-05-20 1994-05-20 Acicular particle of oxide of rare-earth element and its production Pending JPH07315835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106374A JPH07315835A (en) 1994-05-20 1994-05-20 Acicular particle of oxide of rare-earth element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106374A JPH07315835A (en) 1994-05-20 1994-05-20 Acicular particle of oxide of rare-earth element and its production

Publications (1)

Publication Number Publication Date
JPH07315835A true JPH07315835A (en) 1995-12-05

Family

ID=14431952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106374A Pending JPH07315835A (en) 1994-05-20 1994-05-20 Acicular particle of oxide of rare-earth element and its production

Country Status (1)

Country Link
JP (1) JPH07315835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094698A (en) * 2006-10-12 2008-04-24 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing cerium-based oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094698A (en) * 2006-10-12 2008-04-24 Daiichi Kigensokagaku Kogyo Co Ltd Method for producing cerium-based oxide

Similar Documents

Publication Publication Date Title
JP5066090B2 (en) Method of coating metal (M2) oxide ultrafine particles on the surface of metal (M1) oxide particles
JPH02296727A (en) Sinterable zirconium oxide powder and production thereof
JPS63185821A (en) Production of zirconium oxide fine powder
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
KR101121876B1 (en) Process for preparing zirconium oxides and zirconium-based mixed oxides
JP2002029742A (en) Rare earth oxide powder and method for manufacturing the same
JPH07315835A (en) Acicular particle of oxide of rare-earth element and its production
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JPH0238527B2 (en)
JP2580532B2 (en) Production method of highly homogeneous and high purity yttrium-containing zirconia powder
JP3265597B2 (en) Method for producing zirconia fine powder
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JPH0797211A (en) Production of rare earth element oxide
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP4196179B2 (en) Method for producing silicon nitride material
JP4185197B2 (en) Method for producing bismuth (III) oxide
JPS62128924A (en) Production of zirconium oxide series fine powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP2001270714A (en) Method for producing yag fine powder
JP2966724B2 (en) Method for producing rare earth hydroxide and spherical particles of rare earth oxide
JPH0477313A (en) Multiple oxide containing rare earth element and its production
JP2685687B2 (en) Method for producing rare earth element oxide particles
JPS62247505A (en) Manufacture of finely divided particle of barium ferrite for magnetic recording
JPH07309622A (en) Production of fine powder of oxide of rare earth element
JPH0797212A (en) Rare earth element oxide and its production