JPH07313856A - Appratus for producing carbonated spring water - Google Patents

Appratus for producing carbonated spring water

Info

Publication number
JPH07313856A
JPH07313856A JP6115561A JP11556194A JPH07313856A JP H07313856 A JPH07313856 A JP H07313856A JP 6115561 A JP6115561 A JP 6115561A JP 11556194 A JP11556194 A JP 11556194A JP H07313856 A JPH07313856 A JP H07313856A
Authority
JP
Japan
Prior art keywords
hollow fiber
carbon dioxide
hot water
fiber membrane
dissolver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6115561A
Other languages
Japanese (ja)
Inventor
Hideyo Kinoshita
英代 木下
Yuichi Matsuyama
裕一 松山
Tokuji Gotou
篤司 後籐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6115561A priority Critical patent/JPH07313856A/en
Publication of JPH07313856A publication Critical patent/JPH07313856A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce carbonated spring water with a compact structure by fixing both ends of a hollow fiber membrane bundle with a resin and providing one end communicating with the hollow parts of the hollow fiber membranes with a hot water introducing port and the other end with a hot water outlet and providing the outside part of the hollow fiber membranes with a carbon dioxide introducing port in communication therewith. CONSTITUTION:The composite hollow fiber membranes 31, etc., having a three- layered structure obtd. by holding both sides of thin-film-like nonporous layers having excellent gas permeability with porous layers are preferably used. Both ends of such hollow fiber membranes 31 are fixed with the resin to form the bundle. The hot water introducing port 32 is made to communicate with one end of the hollow parts of the hollow fiber membranes 31 and the hot water outlet 37 with the other end. The carbon dioxide introducing pipe 33 is made to communicate with the outside part of the hollow fiber membranes 31. The hot water is then uniformly distributed to the respective hollow fiber membranes 31 through the hot water introducing port 32 and, therefore, the efficiency of dissolving the carbon dioxide is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生理的に効果のある炭
酸泉(=炭酸ガス溶解水)が容易に得られる新規な炭酸
泉の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel carbonated spring production apparatus capable of easily obtaining a physiologically effective carbonated spring (= carbon dioxide gas-dissolved water).

【0002】[0002]

【従来の技術】炭酸泉は優れた保温作用があることか
ら、古くから温泉を利用する浴場等で用いられている。
炭酸泉の保温作用は、基本的に、含有炭酸ガスの末梢血
管拡張作用により身体環境が改善されるためと考えられ
る。また炭酸ガスの経皮進入によって、毛細血管床の増
加及び拡張が起こり、皮膚の血行を改善する。
2. Description of the Related Art Carbonated springs have been used for a long time in bathhouses and the like because they have an excellent heat retaining effect.
It is considered that the heat retaining effect of the carbonated spring is basically because the body environment is improved by the peripheral vasodilatory effect of the contained carbon dioxide gas. In addition, percutaneous infiltration of carbon dioxide causes an increase and dilation of the capillary bed, improving blood circulation in the skin.

【0003】このため退行性病変及び末梢循環障害の治
療に効果があるとされている。このように炭酸泉が優れ
た効果を持つことから、これを人工的に調合する試みが
行われてきた。例えば浴槽内に炭酸ガスを気泡の形で送
り込む方法、炭酸塩と酸とを作用させる化学的方法、タ
ンクに温水と炭酸ガスとを一定期間加圧封入する方法等
により炭酸温水を得ていた。また特開平2−27915
8号公報には中空糸半透膜を通じて炭酸ガスを供給し、
水に吸収させる方法が提案されている。
Therefore, it is said to be effective for treating degenerative lesions and peripheral circulatory disorders. Since carbonated springs have such excellent effects, attempts have been made to artificially mix them. For example, carbonated hot water has been obtained by feeding carbon dioxide gas in the form of bubbles into a bath, a chemical method of acting a carbonate and an acid, and a method of pressurizing hot water and carbon dioxide gas in a tank under pressure for a certain period of time. In addition, JP-A-2-27915
No. 8 publication supplies carbon dioxide gas through a hollow fiber semipermeable membrane,
A method of absorbing it in water has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の炭酸温
水の生成方法、例えば、化学的方法では、炭酸ガス濃度
を300ppm にするには、多量の薬品を投入しなければ
ならず、また浴槽内に炭酸ガスを気泡の形で送り込む方
法では、温水への炭酸ガスの溶解率が10%程度に過ぎ
ず、殆どの炭酸ガスが散逸してしまう。
However, in the conventional method for producing hot carbonic acid water, for example, a chemical method, a large amount of chemicals must be added to bring the concentration of carbon dioxide gas to 300 ppm, and the inside of the bathtub must be charged. In the method in which carbon dioxide gas is sent in the form of bubbles, the dissolution rate of carbon dioxide gas in warm water is only about 10%, and most of the carbon dioxide gas is scattered.

【0005】また特開平2−279158号公報記載の
方法では、溶解効率は化学的方法や気泡の形で送り込む
方法よりは向上しているものの充分なものではない。具
体的には該公報の実施例に開示されている方法では、1
0リットル/min の炭酸ガス流量において200リットルの温水
を600ppm にするのに10分、1000ppm にするの
に30分かかると記載されており、この実験においての
溶解効率は、35%〜60%にすぎない。
In the method described in Japanese Patent Laid-Open No. 2-279158, the dissolution efficiency is higher than that of the chemical method or the method of feeding in the form of bubbles, but it is not sufficient. Specifically, in the method disclosed in the examples of the publication, 1
It is stated that it takes 10 minutes to make 600 liters of hot water of 200 liters and 30 minutes to make 1000 ppm at a carbon dioxide flow rate of 0 liters / min, and the dissolution efficiency in this experiment is 35% to 60%. Only.

【0006】この場合の溶解効率とは、使用した炭酸ガ
スの何%が溶解したかを示す値である。溶解効率が低い
と炭酸ガスが無駄になるだけではなく、空気中に放出さ
れた炭酸ガスが特定箇所に堆積して呼吸困難を引き起こ
す危険性も生じる。実施例がかかる不十分な値となる理
由としては、分散器の構造が不適切であると考えられ
る。
The dissolution efficiency in this case is a value indicating what percentage of the carbon dioxide gas used has been dissolved. If the dissolution efficiency is low, not only carbon dioxide gas is wasted, but there is a risk that carbon dioxide gas released into the air will accumulate at a specific place and cause respiratory distress. The reason why the embodiment has such an insufficient value is that the structure of the disperser is inappropriate.

【0007】該公報の図2によると、中空糸の内側に炭
酸ガスを流し、外側に水を流している。この方法では、
水の流れが偏流を起こし、炭酸ガスの溶解効率が低下す
る。また他の理由としては引例の膜が半透膜であるた
め、即ち多孔質膜であるため気泡となって炭酸ガスは膜
内を通過し、その気泡が完全に水に溶解するのではない
ため、ガスとなって抜けていくことが推定される。本発
明の目的は、効率よく炭酸ガスを温水に溶解することで
ある。
According to FIG. 2 of the publication, carbon dioxide gas is flown inside the hollow fiber and water is flown outside. in this way,
The flow of water causes uneven flow, and the dissolution efficiency of carbon dioxide gas decreases. Another reason is that the membrane of the reference is a semipermeable membrane, that is, since it is a porous membrane, it becomes bubbles and carbon dioxide gas passes through the membrane, and the bubbles are not completely dissolved in water. It is estimated that the gas will escape. An object of the present invention is to efficiently dissolve carbon dioxide in warm water.

【0008】[0008]

【課題を解決するための手段】このような目的は、以下
の発明により達成される。 (1) 温水に炭酸ガスを溶解する溶解器、炭酸ガスを
供給するガスボンベ、炭酸ガス圧を一定に保つ減圧弁及
び開閉弁からなる装置に於て、溶解器が中空糸膜束の両
端を樹脂で固定し、中空糸膜の中空部と連通した一端に
温水導入口を他端に温水出口を設け、中空糸膜外側部に
連通した位置に炭酸ガス導入口を設けた構造であること
を特徴とする炭酸泉の製造装置。
Such objects are achieved by the following inventions. (1) In a device comprising a dissolver for dissolving carbon dioxide in warm water, a gas cylinder for supplying carbon dioxide, a pressure reducing valve for maintaining a constant carbon dioxide pressure, and an opening / closing valve, the dissolver is a resin on both ends of the hollow fiber membrane bundle. The hot water inlet is provided at one end communicating with the hollow portion of the hollow fiber membrane, the hot water outlet is provided at the other end, and the carbon dioxide gas inlet is provided at a position communicating with the outer portion of the hollow fiber membrane. Carbonated spring manufacturing equipment.

【0009】(2) 溶解器が中空糸膜外側部に連通し
た位置にドレイン抜き部を有することを特徴とする上記
(1)1記載の製造装置。
(2) The manufacturing apparatus according to (1) 1, wherein the dissolver has a drain outlet at a position communicating with the outer portion of the hollow fiber membrane.

【0010】(3) 開閉弁が温水の流れを検知して開
く機能を有することを特徴とする上記(1)記載の製造
装置。
(3) The manufacturing apparatus according to (1) above, wherein the on-off valve has a function of detecting the flow of hot water and opening it.

【0011】(4) 溶解器が温水導入側樹脂固定面の
直前にフィルターを設けたことを特徴とする上記(1)
記載の製造装置。
(4) The above-mentioned (1), wherein the dissolver is provided with a filter immediately before the hot water introduction side resin fixing surface.
The manufacturing apparatus described.

【0012】(5) 中空糸膜が、ガス透過性に優れる
薄膜状の非多孔質層の両側を多孔質層で挟み込んだ三層
構造の複合中空糸膜であることを特徴とする上記(1)
記載の製造装置。
(5) The hollow fiber membrane is a composite hollow fiber membrane having a three-layer structure in which both sides of a thin film-like non-porous layer having excellent gas permeability are sandwiched between porous layers. )
The manufacturing apparatus described.

【0013】以下、図面により本発明をより詳細に説明
する。図1は本発明の装置の一例である。1はケーシン
グ、2は温水導入管、3は溶解器、4は炭酸ガスの導入
管、5は炭酸ガスボンベ、6はセンサー、7は炭酸ガス
制御弁、8は出力信号、9は温水導出管である。
The present invention will now be described in more detail with reference to the drawings. FIG. 1 is an example of the device of the present invention. 1 is a casing, 2 is a hot water inlet pipe, 3 is a dissolver, 4 is a carbon dioxide gas inlet pipe, 5 is a carbon dioxide gas cylinder, 6 is a sensor, 7 is a carbon dioxide control valve, 8 is an output signal, and 9 is a hot water outlet pipe. is there.

【0014】温水は熱交換器等によって作られ、溶解器
に導かれ、中空糸膜の内部を経て、浴槽に供給される。
その際炭酸ガスは中空糸膜の外側より中空糸膜を透過し
て、膜内を流れる温水に溶解される。また温水の流量を
センサーによって検知し、制御弁を開閉することによっ
て炭酸ガスの流量が制御される。
Hot water is produced by a heat exchanger or the like, guided to the dissolver, and supplied to the bath through the inside of the hollow fiber membrane.
At that time, carbon dioxide gas permeates the hollow fiber membrane from the outside of the hollow fiber membrane and is dissolved in the warm water flowing through the membrane. In addition, the flow rate of carbon dioxide is controlled by detecting the flow rate of hot water with a sensor and opening and closing the control valve.

【0015】図2は溶解器の構造図である。31は中空
糸膜、32は温水の導入口、33は炭酸ガスの導入管、
34はフィルター、35はポッティング部、36はドレ
イン抜き、37は温水の導出口である。温水は、溶解器
の温水導入口を経て、各々の中空糸膜に一様に分配され
る。
FIG. 2 is a structural diagram of the dissolver. 31 is a hollow fiber membrane, 32 is a hot water inlet, 33 is a carbon dioxide gas inlet pipe,
34 is a filter, 35 is a potting part, 36 is a drain, and 37 is a hot water outlet. The hot water is evenly distributed to each hollow fiber membrane through the hot water inlet of the dissolver.

【0016】従って温水の流速は、各々の中空糸膜内部
において均一であり、前記特開平2−279158号公
報の実施例のように一方に偏ることはなく、溶解効率は
高い値となる。
Therefore, the flow rate of the hot water is uniform inside each hollow fiber membrane, and is not biased to one side as in the embodiment of the above-mentioned JP-A-2-279158, and the dissolution efficiency is a high value.

【0017】本発明の装置は、中空糸膜外側部に連通し
た位置にドレイン抜き部を有し、該ドレイン抜きを通じ
て、中空糸膜外部にたまった水を外部に必要に応じて放
出できる機構を有する。また温水導入側樹脂固定面の直
前にフィルターを設け、温水中に混入するゴミなどをト
ラップし膜端面を閉塞することを防ぐ。
The device of the present invention has a drain outlet at a position communicating with the outer portion of the hollow fiber membrane, and a mechanism capable of discharging water accumulated outside the hollow fiber membrane to the outside through the drain outlet as needed. Have. Further, a filter is provided immediately before the resin fixing surface on the hot water introduction side to prevent dust and the like mixed in the warm water from being blocked and closing the membrane end surface.

【0018】フィルターは、金属製の金網または、焼結
材やプラスチック製の不織布または多孔質体が使用でき
る。孔径は細かい方が良いが、あまり細か過ぎると抵抗
が増大する。具体的には、孔径数10μmから数100
μmの間が望ましい。
For the filter, a metal wire mesh, a sintered material or a non-woven fabric made of plastic or a porous material can be used. The finer the hole diameter, the better, but if it is too small, the resistance will increase. Specifically, the pore diameter is from several 10 μm to several 100
It is preferably in the range of μm.

【0019】図3は中空糸膜の一例でありAは均質層、
Bは多孔質層である。 中空糸膜の内径は50μm以上
1000μm以下が望ましい。50μm以下では中空糸
膜内を流れる温水の抵抗が大きく、充分な水量が得られ
ない、また1000μm以上では、溶解器のサイズが大
きくなり、コンパクトにならない。
FIG. 3 shows an example of a hollow fiber membrane, where A is a homogeneous layer,
B is a porous layer. The inner diameter of the hollow fiber membrane is preferably 50 μm or more and 1000 μm or less. If it is 50 μm or less, the resistance of hot water flowing in the hollow fiber membrane is large and a sufficient amount of water cannot be obtained, and if it is 1000 μm or more, the size of the dissolver becomes large and it cannot be made compact.

【0020】また中空糸膜は、ガス透過性に優れる薄膜
状の非多孔質層の両側を多孔質層で挟み込んだ三層構造
の複合中空糸膜が好ましく、例えば三菱レイヨン(株)
製三層複合中空糸膜(MHF)が挙げられる。
The hollow fiber membrane is preferably a composite hollow fiber membrane having a three-layer structure in which both sides of a thin film-like non-porous layer having excellent gas permeability are sandwiched by porous layers. For example, Mitsubishi Rayon Co., Ltd.
An example is a three-layer composite hollow fiber membrane (MHF).

【0021】非多孔質ガス透過膜とは気体が溶解、拡散
機構により透過する膜であり、分子がクヌッセン流れの
ように気体がガス状で透過できる孔を実質的に含まない
ものであればいかなるものでも良い。
The non-porous gas permeable membrane is a membrane through which gas permeates by a dissolution / diffusion mechanism, and can be any as long as it does not substantially include pores through which gas can permeate in a gaseous state such as Knudsen flow. Anything is fine.

【0022】非多孔質ガス透過膜を用いることにより、
任意の圧力でガスが気泡として放出されることなくガス
を供給、溶解でき、効率よい溶解ができると共に任意の
濃度に制御性良く、簡便に溶解できる。また、膜を介し
て水または水溶液がガス供給側に逆流するようなことも
ない。
By using a non-porous gas permeable membrane,
The gas can be supplied and dissolved at a desired pressure without being released as bubbles, and the gas can be efficiently dissolved, and can be easily dissolved at a desired concentration with good controllability. In addition, water or an aqueous solution does not flow back to the gas supply side through the membrane.

【0023】膜素材としてはシリコ−ン系、ポリオレフ
ィン系、ポリエステル系、ポリアミド系、ポリイミド
系、ポリスルフォン系、セルロ−ス系、ポリウレタン系
等が好ましいものとして挙げられる。
Preferred examples of the film material include silicone-based, polyolefin-based, polyester-based, polyamide-based, polyimide-based, polysulfone-based, cellulose-based and polyurethane-based materials.

【0024】[0024]

【実施例】以下実施例により本発明を具体的に説明す
る。炭酸ガス濃度は、東亜電波工業(株)製 イオンメ
ーターIM40S 炭酸ガス電極CE−235で測定し
た。
The present invention will be described in detail with reference to the following examples. The carbon dioxide concentration was measured with an ion meter IM40S carbon dioxide electrode CE-235 manufactured by Toa Denpa Kogyo Co., Ltd.

【0025】実施例1 図1に示した装置で炭酸泉を製造した。溶解器3は図2
の構造を有し膜面積が1.8m2 である炭酸ガス溶解モ
ジュールを用意した。使用した中空糸膜は3層構造を有
し、内径200μm、内層と外層は厚みがそれぞれ20
μmのポリエチレン多孔質膜、中間層は厚みが0.5μ
mの非多孔質膜セグメント化ポリウレタン膜である。
Example 1 A carbonated spring was produced with the apparatus shown in FIG. The dissolver 3 is shown in FIG.
A carbon dioxide gas dissolving module having the above structure and having a membrane area of 1.8 m 2 was prepared. The hollow fiber membrane used had a three-layer structure with an inner diameter of 200 μm and the inner and outer layers each had a thickness of 20.
μm polyethylene porous membrane, intermediate layer has a thickness of 0.5μ
m is a non-porous membrane segmented polyurethane membrane of m.

【0026】フィルターは100メッシュの不織布を使
用した。溶解器3に40℃の温水を15リットル/min で供
給した。同時に炭酸ガスボンベより、炭酸ガスの圧力を
調整して流量を調整した炭酸ガスを、それぞれ流量を変
えて測定したところ表1のような結果が得られた。
The filter used was a 100-mesh non-woven fabric. Warm water at 40 ° C. was supplied to the dissolver 3 at 15 liters / min. At the same time, when the carbon dioxide gas whose carbon dioxide pressure was adjusted by adjusting the flow rate of the carbon dioxide gas from the carbon dioxide cylinder was measured at different flow rates, the results shown in Table 1 were obtained.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1 図2の溶解器を改良して、温水を炭酸ガスの導入管33
より入れ、ドレイン抜き36より流出させた。一方炭酸
ガスを温水の導入口32より供給し、温水の導出口37
を閉じた。そうすることにより、炭酸ガスは、中空糸膜
の内部に供給され、温水は中空糸膜外部に供給される。
Comparative Example 1 The dissolver shown in FIG. 2 was improved so that hot water was introduced into the carbon dioxide gas introducing pipe 33.
And drained from the drain outlet 36. On the other hand, carbon dioxide gas is supplied from the hot water inlet 32, and the hot water outlet 37
Closed. By doing so, carbon dioxide gas is supplied to the inside of the hollow fiber membrane, and hot water is supplied to the outside of the hollow fiber membrane.

【0029】この溶解器に40℃の温水を15リットル/mi
n で供給した。同時に炭酸ガスボンベより、炭酸ガスの
圧力を調整して流量を調整した炭酸ガスを流量 4リットル
/min 供給した。該溶解器より流出する温水中の炭酸ガ
ス濃度を測定したところ、320ppm となり、溶解効率
は61%と低い値にしかならなかった。
To this dissolver, warm water of 40 ° C. was added at 15 liter / mi.
Supplied with n. At the same time, the carbon dioxide gas was supplied from the carbon dioxide gas cylinder at a flow rate of 4 liters / min by adjusting the carbon dioxide pressure. When the concentration of carbon dioxide in warm water flowing out from the dissolver was measured, it was 320 ppm, and the dissolution efficiency was only 61%, which was a low value.

【0030】[0030]

【発明の効果】本発明の炭酸泉の製造装置によれば、簡
単かつコンパクトな方法で炭酸ガスを水に効率的に溶解
させて高濃度の炭酸泉を得ることができる。
According to the apparatus for producing carbonated spring of the present invention, a high concentration carbonated spring can be obtained by efficiently dissolving carbon dioxide gas in water by a simple and compact method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の概略的な全体構成図である。FIG. 1 is a schematic overall configuration diagram of an apparatus of the present invention.

【図2】本発明に適用するのに好適なモジュールの側面
図である。
FIG. 2 is a side view of a module suitable for applying to the present invention.

【図3】本発明に適用するのに好適な中空糸膜の一例で
ある。
FIG. 3 is an example of a hollow fiber membrane suitable for application to the present invention.

【符合の説明】[Explanation of sign]

1 ケーシング 2 温水導入管 3 溶解器 4 炭酸ガスの導入管 5 炭酸ガスボンベ 6 センサー 7 炭酸ガス制御弁 8 出力信号 9 温水導出管 31 中空糸膜 32 温水の導入口 33 炭酸ガスの導入管 34 フィルター 35 ポッティング部 36 ドレイン抜き 37 温水の導出口 A 均質層 B 多孔質層 1 Casing 2 Hot Water Introducing Pipe 3 Dissolver 4 Carbon Dioxide Introducing Pipe 5 Carbon Dioxide Cylinder 6 Sensor 7 Carbon Dioxide Control Valve 8 Output Signal 9 Hot Water Outlet Pipe 31 Hollow Fiber Membrane 32 Hot Water Introducing Port 33 Carbon Dioxide Introducing Pipe 34 Filter 35 Potting part 36 Drain drain 37 Hot water outlet A A homogeneous layer B Porous layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 温水に炭酸ガスを溶解する溶解器、炭酸
ガスを供給するガスボンベ、炭酸ガス圧を一定に保つ減
圧弁及び開閉弁からなる装置に於て、溶解器が中空糸膜
束の両端を樹脂で固定し、中空糸膜の中空部と連通した
一端に温水導入口を他端に温水出口を設け、中空糸膜外
側部に連通した位置に炭酸ガス導入口を設けた構造であ
ることを特徴とする炭酸泉の製造装置。
1. A device comprising a dissolver for dissolving carbon dioxide in warm water, a gas cylinder for supplying carbon dioxide, a pressure reducing valve for keeping the carbon dioxide pressure constant and an opening / closing valve, wherein the dissolver is at both ends of the hollow fiber membrane bundle. Is fixed with a resin, a hot water inlet is provided at one end communicating with the hollow portion of the hollow fiber membrane, a hot water outlet is provided at the other end, and a carbon dioxide gas inlet is provided at a position communicating with the outer portion of the hollow fiber membrane. Carbon dioxide spring manufacturing equipment.
【請求項2】 溶解器が中空糸膜外側部に連通した位置
にドレイン抜き部を有することを特徴とする請求項1記
載の製造装置。
2. The manufacturing apparatus according to claim 1, wherein the dissolver has a drain outlet at a position communicating with the outer side of the hollow fiber membrane.
【請求項3】 開閉弁が温水の流れを検知して開く機能
を有することを特徴とする請求項記載の製造装置。
3. The manufacturing apparatus according to claim 1, wherein the opening / closing valve has a function of detecting a flow of hot water and opening it.
【請求項4】 溶解器が温水導入側樹脂固定面の直前に
フィルターを設けたことを特徴とする請求項1記載の製
造装置。
4. The manufacturing apparatus according to claim 1, wherein the dissolver is provided with a filter immediately before the hot water introduction side resin fixing surface.
【請求項5】 中空糸膜が、ガス透過性に優れる薄膜状
の非多孔質層の両側を多孔質層で挟み込んだ三層構造の
複合中空糸膜であることを特徴とする請求項1記載の製
造装置。
5. The hollow fiber membrane is a composite hollow fiber membrane having a three-layer structure in which both sides of a thin film-like non-porous layer having excellent gas permeability are sandwiched by porous layers. Manufacturing equipment.
JP6115561A 1994-05-27 1994-05-27 Appratus for producing carbonated spring water Pending JPH07313856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115561A JPH07313856A (en) 1994-05-27 1994-05-27 Appratus for producing carbonated spring water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115561A JPH07313856A (en) 1994-05-27 1994-05-27 Appratus for producing carbonated spring water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001181380A Division JP2002066285A (en) 2001-06-15 2001-06-15 Apparatus for manufacturing carburetted spring

Publications (1)

Publication Number Publication Date
JPH07313856A true JPH07313856A (en) 1995-12-05

Family

ID=14665596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115561A Pending JPH07313856A (en) 1994-05-27 1994-05-27 Appratus for producing carbonated spring water

Country Status (1)

Country Link
JP (1) JPH07313856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164632A (en) * 1997-02-05 2000-12-26 Mitsubishi Rayon Co., Ltd. Method for the preparation of a carbonate spring
JP2003502154A (en) * 1999-06-18 2003-01-21 バイエル アクチェンゲゼルシャフト How to decompose organic compounds in water
JP2007111324A (en) * 2005-10-21 2007-05-10 Chubu Suiken:Kk Carbon dioxide dissolving device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786623U (en) * 1980-11-17 1982-05-28
JPH02279158A (en) * 1989-04-20 1990-11-15 Kao Corp Method and device for forming carbonated water
JPH037908U (en) * 1989-06-12 1991-01-25
JPH03169303A (en) * 1989-11-28 1991-07-23 Mitsubishi Rayon Co Ltd Removal of dissolved gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786623U (en) * 1980-11-17 1982-05-28
JPH02279158A (en) * 1989-04-20 1990-11-15 Kao Corp Method and device for forming carbonated water
JPH037908U (en) * 1989-06-12 1991-01-25
JPH03169303A (en) * 1989-11-28 1991-07-23 Mitsubishi Rayon Co Ltd Removal of dissolved gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164632A (en) * 1997-02-05 2000-12-26 Mitsubishi Rayon Co., Ltd. Method for the preparation of a carbonate spring
JP2003502154A (en) * 1999-06-18 2003-01-21 バイエル アクチェンゲゼルシャフト How to decompose organic compounds in water
JP4641691B2 (en) * 1999-06-18 2011-03-02 バイエル アクチェンゲゼルシャフト Method for decomposing organic compounds in water
JP2007111324A (en) * 2005-10-21 2007-05-10 Chubu Suiken:Kk Carbon dioxide dissolving device

Similar Documents

Publication Publication Date Title
JP4252841B2 (en) Carbonated water production apparatus and carbonated water production method using the same
JP5368767B2 (en) Artificial carbonated spring production equipment
JP3168135B2 (en) Carbonated spring manufacturing equipment with purification and heat retention function
JP3154634B2 (en) Recycling carbonated spring manufacturing equipment
US20020063345A1 (en) Apparatus and method for controlling resistivity of ultra pure water
US6164632A (en) Method for the preparation of a carbonate spring
JPH07313856A (en) Appratus for producing carbonated spring water
JP3048499B2 (en) Carbonated spring manufacturing method
JP2002066285A (en) Apparatus for manufacturing carburetted spring
JP3048501B2 (en) Carbonated spring manufacturing method
JPH0819784A (en) Cock direct connection type carbonated water making apparatus
JP3720686B2 (en) Circulation type carbonated spring production equipment
JPH07779A (en) Method and device for dissolving gaseous carbon dioxide
JP3186428B2 (en) Carbonated spring manufacturing method
JP2001293342A (en) Device and process for carbonated water
JP2002058725A (en) Method for manufacturing carbonated water
JP2001293344A (en) Device and process for preparing carbonated water
EP0968699B1 (en) Method of manufacturing carbonated spring
JP4117058B2 (en) Production method of carbonated spring
JP2007229714A (en) Apparatus and method of manufacturing carbonated water
JP2005087837A (en) Free carbon dioxide enriching method using fine bubble and using method therefor
JPH11179178A (en) Production of carbonic acid spring
JPH0813353B2 (en) Pure water production equipment
JPH08281087A (en) Desk type apparatus for producing carbonated spring
JPS63274488A (en) Controlling device for specific resistance of ultrapure water