JP2007229714A - Apparatus and method of manufacturing carbonated water - Google Patents

Apparatus and method of manufacturing carbonated water Download PDF

Info

Publication number
JP2007229714A
JP2007229714A JP2007134260A JP2007134260A JP2007229714A JP 2007229714 A JP2007229714 A JP 2007229714A JP 2007134260 A JP2007134260 A JP 2007134260A JP 2007134260 A JP2007134260 A JP 2007134260A JP 2007229714 A JP2007229714 A JP 2007229714A
Authority
JP
Japan
Prior art keywords
carbon dioxide
carbonated water
water
dioxide gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007134260A
Other languages
Japanese (ja)
Inventor
Yoshitomo Nagasaka
好倫 長坂
Satoru Takeda
哲 竹田
Masanori Sakakibara
巨規 榊原
Yuichi Morioka
雄一 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007134260A priority Critical patent/JP2007229714A/en
Publication of JP2007229714A publication Critical patent/JP2007229714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for manufacturing carbonated water with a constant concentration of carbon dioxide inexpensively with a simple operation. <P>SOLUTION: The apparatus for manufacturing carbonated water supplies carbon dioxide while running raw water in a membrane type carbon dioxide dissolution receptacle 3 to dissolve carbon dioxide in raw water, which apparatus is equipped with a means preliminarily recording correlation data of a flow rate of raw water, a supply pressure of carbon dioxide, and a concentration of carbon dioxide of carbonated water to be obtained, detecting the flow rate of raw water upon manufacturing carbonated water, and controlling the supply pressure of carbon dioxide from the correlation data so that the carbonated water to be obtained has a target concentration of carbon dioxide. The method of manufacturing carbonated water employs the apparatus. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば生理的機能改善を目的とした水治療などに有用な炭酸水を製造する為の装置および方法に関する。   The present invention relates to an apparatus and method for producing carbonated water useful for, for example, hydrotherapy for the purpose of improving physiological functions.

炭酸水は、退行性病変、末梢循環障害などの治療に効果があるとされている。炭酸水を人工的に製造する方法としては、例えば、浴槽内に炭酸ガスを気泡の形で送り込む方法(気泡法)があるが、この方法では、溶解率が低く、溶解時間が長くなる。また、炭酸塩と酸とを反応させる化学的方法(薬剤法)があるが、この方法では、薬剤の大量投入が必要で、清浄度を維持できない。また、タンク内に温水と炭酸ガスとを一定期間加圧封入する方法(圧注入法)があるが、この方法では装置が大型化し、実用的でない。   Carbonated water is said to be effective in treating degenerative lesions, peripheral circulation disorders, and the like. As a method for artificially producing carbonated water, for example, there is a method (bubble method) in which carbon dioxide gas is fed into the bathtub in the form of bubbles (bubble method), but this method has a low dissolution rate and a long dissolution time. In addition, there is a chemical method (drug method) in which carbonate and acid are reacted. However, this method requires a large amount of drug and cannot maintain cleanliness. In addition, there is a method (pressure injection method) in which hot water and carbon dioxide gas are pressurized and sealed in a tank for a certain period of time, but this method is not practical because the apparatus becomes large.

また、現在市販されている炭酸水の製造装置は、通常は100〜140ppm程度の低い炭酸ガス濃度の炭酸水を製造するものであり、その炭酸ガス濃度を制御する手段も備えていない。   Moreover, the commercially available apparatus for producing carbonated water is usually for producing carbonated water having a low carbon dioxide concentration of about 100 to 140 ppm, and does not have means for controlling the carbon dioxide concentration.

一方、特許文献1には、中空糸半透膜を通じて炭酸ガスを供給し、温水に吸収させる方法が記載されている。さらに、特許文献2には、浴槽内の炭酸ガス濃度を一定に保つために、浴槽内にpHセンサーを設置して炭酸ガス溶解器への炭酸ガス供給量を調節する方法が記載されている。また、特許文献3には、炭酸水のpH測定値と原水のアルカリ度の値から生成した炭酸水の炭酸ガス濃度データを演算し、炭酸水の炭酸ガス濃度が目標値となるように炭酸ガス供給量を調節する方法が記載されている。これらは、中空膜を備えた炭酸ガス溶解器内に原水を一回通過させることにより炭酸水を製造する、いわゆるワンパス型の装置を用いた方法である。   On the other hand, Patent Document 1 describes a method in which carbon dioxide gas is supplied through a hollow fiber semipermeable membrane and absorbed in warm water. Further, Patent Document 2 describes a method of adjusting the carbon dioxide supply amount to the carbon dioxide dissolver by installing a pH sensor in the bathtub in order to keep the carbon dioxide concentration in the bathtub constant. Further, Patent Document 3 calculates the carbon dioxide concentration data of carbonated water generated from the measured pH value of carbonated water and the alkalinity value of raw water, and the carbon dioxide gas so that the carbon dioxide concentration of carbonated water becomes a target value. A method for adjusting the feed rate is described. These are methods using a so-called one-pass type apparatus that produces carbonated water by passing raw water once through a carbon dioxide gas dissolver equipped with a hollow membrane.

このワンパス型の装置では、生理的な効果(血流増加等)に優れた高濃度の炭酸水を製造する為には、中空膜の膜面積を大きくするか、あるいは炭酸ガスの圧力を高くする必要がある。しかし、膜面積を大きくすると、装置が大型化し、コストも高くなる。また、ガス圧力を高くすると、溶解率が低下してしまう。さらに、ワンパス型の装置では、水道水などの温水と装置との配管・ホース接続が不可欠なので、装置を移動して各場所で使用する場合はその都度セッティングする必要がある。   In this one-pass type device, in order to produce high-concentration carbonated water excellent in physiological effects (such as increased blood flow), the membrane area of the hollow membrane is increased or the pressure of carbon dioxide gas is increased. There is a need. However, when the membrane area is increased, the apparatus becomes larger and the cost increases. Moreover, when a gas pressure is made high, a dissolution rate will fall. Furthermore, in a one-pass type device, piping / hose connection between hot water such as tap water and the device is indispensable, so it is necessary to set each time the device is moved and used in each place.

一方、循環用ポンプにより浴槽中の温水を炭酸ガス溶解器を介して循環させる、いわゆる循環型の装置によれば、高濃度の炭酸水を効率良く、低コストで製造できる。しかも、ワンパス型の装置のような接続作業が不要であり、浴槽にお湯を溜め、装置の炭酸水循環用ホースを投入するだけで使用できるので、セッティングが非常に簡単である。このような循環型の炭酸水装置としては、例えば、特許文献2及び特許文献4に記載されたものがある。   On the other hand, according to a so-called circulation type apparatus in which hot water in a bathtub is circulated through a carbon dioxide dissolver by a circulation pump, highly concentrated carbonated water can be produced efficiently and at low cost. In addition, connection work like a one-pass type device is unnecessary, and since it can be used simply by storing hot water in a bathtub and turning on the carbonated water circulation hose of the device, setting is very simple. Examples of such a circulation type carbonated water device include those described in Patent Document 2 and Patent Document 4.

特開平2−279158号公報JP-A-2-279158 特開平8−215270号公報JP-A-8-215270 国際公開第98/34579号パンフレットWO 98/34579 pamphlet 特開平8−215270号公報JP-A-8-215270

本発明の目的は、より実用的な循環型の炭酸水製造装置を実現することにあり、所望の炭酸ガス濃度(特に生理的効果が得られる高い濃度)の炭酸水を、低コストかつ簡便な操作で製造できる装置および方法を提供することにある。   An object of the present invention is to realize a more practical circulation-type carbonated water production apparatus, and to produce carbonated water having a desired carbon dioxide gas concentration (particularly a high concentration capable of obtaining a physiological effect) at low cost and in a simple manner. It is to provide an apparatus and method that can be manufactured by operation.

本発明は、膜型炭酸ガス溶解器内に原水を流しながら炭酸ガスを供給して、原水中に炭酸ガスを溶解させる炭酸水製造装置において、あらかじめ原水の流量と炭酸ガスの供給圧力と得られる炭酸水の炭酸ガス濃度との相関データが記録してあり、炭酸水の製造時には原水の流量を検出し、前記相関データに基づいて、得られる炭酸水が目標炭酸ガス濃度となるように炭酸ガスの供給圧力を調節する手段を備えることを特徴とする炭酸水製造装置である。   The present invention provides a flow rate of raw water and a supply pressure of carbon dioxide in advance in a carbonated water production apparatus that dissolves carbon dioxide in raw water by supplying carbon dioxide while flowing raw water into the membrane-type carbon dioxide dissolver. Correlation data with the carbon dioxide concentration of carbonated water is recorded, the flow rate of raw water is detected during the production of carbonated water, and based on the correlation data, carbon dioxide gas is obtained so that the obtained carbonated water has a target carbon dioxide gas concentration. It is a carbonated water manufacturing apparatus characterized by including the means to adjust the supply pressure of this.

さらに本発明は、膜型炭酸ガス溶解器内に原水を流しながら炭酸ガスを供給して、原水中に炭酸ガスを溶解させる炭酸水製造方法において、あらかじめ原水の流量と炭酸ガスの供給圧力と得られる炭酸水の炭酸ガス濃度との相関データを記録し、炭酸水の製造時には原水の流量を検出し、前記相関データに基づいて、得られる炭酸水が目標炭酸ガス濃度となるように炭酸ガスの供給圧力を調節することを特徴とする炭酸水の製造方法である。   Furthermore, the present invention provides a carbonated water production method in which carbon dioxide gas is supplied while flowing raw water into a membrane-type carbon dioxide gas dissolver to dissolve the carbon dioxide gas in the raw water. Correlation data with the carbon dioxide concentration of carbonated water is recorded, the flow rate of raw water is detected during the production of carbonated water, and based on the correlation data, the carbon dioxide gas concentration is adjusted so that the obtained carbonated water has the target carbon dioxide concentration. A method for producing carbonated water characterized by adjusting a supply pressure.

本発明によれば、複雑な制御は必要無く、装置の構成も非常に簡素化でき、小型で且つ低コストで、目的とする炭酸ガス濃度の炭酸水を簡単に製造することができる。   According to the present invention, complicated control is not required, the configuration of the apparatus can be greatly simplified, and carbonated water having a target carbon dioxide gas concentration can be easily produced in a small size and at low cost.

特に本発明は、水道の蛇口から原水を供給する場合にも適用でき、しかも装置がコンパクトなので、家庭内の浴槽も含めて、既存の浴槽に簡単に対応できる水治療用の装置として非常に有用である。   In particular, the present invention can be applied to the case where raw water is supplied from a tap, and the apparatus is compact. Therefore, the present invention is very useful as a water treatment apparatus that can easily accommodate existing bathtubs, including bathtubs in the home. It is.

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

図1は、本発明の循環型炭酸水製造装置を用いた場合の一例を示すフローシートである。この例においては、浴槽(水槽)11中の温水を循環させる。なお、本発明において浴槽11中の水の温度は特に制限されない。ただし、炭酸水の生理的効果を発揮させ、かつ体や患部に余計な負担をかけない点から、体温付近またはそれ以下の温度が好ましい。具体的には、32〜42℃程度が好ましい。   FIG. 1 is a flow sheet showing an example when the circulating carbonated water producing apparatus of the present invention is used. In this example, hot water in the bathtub (water tank) 11 is circulated. In the present invention, the temperature of the water in the bathtub 11 is not particularly limited. However, a temperature around or below the body temperature is preferable because the physiological effect of carbonated water is exhibited and an extra burden is not imposed on the body and the affected part. Specifically, about 32-42 degreeC is preferable.

この例では、浴槽11内の水を循環させている。本発明の装置を、このように浴槽に適用するのは非常に有用な例である。しかし、本発明はこれに限定されない。入浴の為の浴槽以外のもの、例えば貯水用または給水用タンクなど、所望の濃度の炭酸水を内部に満たす必要がある水槽の場合であっても、本発明を適用することができる。   In this example, the water in the bathtub 11 is circulated. Applying the device of the present invention to a bathtub in this way is a very useful example. However, the present invention is not limited to this. The present invention can also be applied to water tanks other than bathing baths, for example, water storage tanks or water supply tanks that need to be filled with a desired concentration of carbonated water.

また、本発明において循環させる対象である水は、特に限定されない。循環させる前は炭酸ガスを全く含まない水を循環させる場合は、次第に炭酸ガス濃度が高まった炭酸水が循環することになる。また、炭酸ガス濃度が低くなった炭酸水を循環させることによって、炭酸ガス濃度を高く回復することもできる。   Moreover, the water which is the object to be circulated in the present invention is not particularly limited. If water containing no carbon dioxide gas is circulated before being circulated, carbonated water whose carbon dioxide concentration is gradually increased will circulate. Further, the carbon dioxide concentration can be recovered to a high level by circulating the carbonated water having a low carbon dioxide concentration.

図1に示す例において、この浴槽11中の温水は、循環ポンプ1で吸い上げられ、温水中のゴミをトラップする為のプレフィルター2を経て炭酸ガス溶解器3へ導かれ、再び浴槽11に戻る。一方、炭酸ガスは、炭酸ガスボンベ4から、減圧弁5、炭酸ガスの遮断弁である電磁弁6を経て、炭酸ガス溶解器3内へ供給される。   In the example shown in FIG. 1, the hot water in the bathtub 11 is sucked up by the circulation pump 1, guided to the carbon dioxide gas dissolver 3 through the prefilter 2 for trapping dust in the hot water, and returned to the bathtub 11 again. . On the other hand, carbon dioxide gas is supplied from the carbon dioxide gas cylinder 4 into the carbon dioxide gas dissolver 3 through the pressure reducing valve 5 and the electromagnetic valve 6 which is a carbon dioxide gas cutoff valve.

炭酸ガス溶解器5は、中空糸膜が配設された膜モジュールを内蔵して構成された膜型炭酸ガス溶解器である。この例においては、炭酸ガス溶解器5内に供給された炭酸ガスは、中空糸膜の外表面へ導かれる。一方、炭酸ガス溶解器5内に供給された温水は、中空糸膜の中空部を流れる。ここで、中空糸膜の外表面の炭酸ガスは、中空糸膜の中空部を流れる温水と膜面を介して接触し、炭酸ガスが温水中に溶解して炭酸水が生成し、この炭酸水が浴槽11内に供給される。このように浴槽11内の温水を循環ポンプ1で任意の時間循環させれば、炭酸ガス濃度が高い炭酸水が浴槽11内に満たされることになる。   The carbon dioxide gas dissolver 5 is a membrane-type carbon dioxide gas dissolver configured with a built-in membrane module in which a hollow fiber membrane is disposed. In this example, the carbon dioxide gas supplied into the carbon dioxide dissolver 5 is guided to the outer surface of the hollow fiber membrane. On the other hand, the hot water supplied into the carbon dioxide dissolver 5 flows through the hollow portion of the hollow fiber membrane. Here, the carbon dioxide gas on the outer surface of the hollow fiber membrane comes into contact with the warm water flowing through the hollow portion of the hollow fiber membrane through the membrane surface, and the carbon dioxide gas dissolves in the warm water to produce carbonated water. Is supplied into the bathtub 11. Thus, if the hot water in the bathtub 11 is circulated by the circulation pump 1 for an arbitrary time, the bathtub 11 is filled with carbonated water having a high carbon dioxide gas concentration.

この例のように膜モジュールの膜面を介して炭酸ガスを接触・溶解させる場合は、気液接触面積を大きくとることができ、高い効率で炭酸ガスを溶解させることができる。このような膜モジュールとしては、例えば、中空糸膜モジュール、平膜モジュール、スパイラル型モジュールを使用できる。特に、中空糸膜モジュールは、最も高い効率で炭酸ガスを溶解させることができる。   When the carbon dioxide gas is contacted / dissolved through the membrane surface of the membrane module as in this example, the gas-liquid contact area can be increased, and the carbon dioxide gas can be dissolved with high efficiency. As such a membrane module, for example, a hollow fiber membrane module, a flat membrane module, or a spiral module can be used. In particular, the hollow fiber membrane module can dissolve carbon dioxide gas with the highest efficiency.

浴槽11内の温水は、循環する時間の経過に伴い炭酸ガス濃度が上昇する。そのような循環時間と炭酸ガス濃度の相関データをあらかじめ取っておけば、目的とする炭酸ガス濃度と炭酸ガス供給圧力が決まれば必要な循環時間を決定することができる。ただし、循環水量が常時一定でなければ、この相関データは利用できないので、循環ポンプ1としては、定量ポンプを用いる必要がある。しかし、本発明者らの知見によれば、定量ポンプであっても、渦巻きポンプ等ではプレフィルターの目詰まりなどの揚程の変化により、ポンプ流量も変動してしまい、相関データが利用できない。しかも、炭酸水が高濃度になると、気泡によりポンプが停止してしまう。   The warm water in the bathtub 11 increases in carbon dioxide gas concentration with the passage of time to circulate. If the correlation data between the circulation time and the carbon dioxide gas concentration is obtained in advance, the necessary circulation time can be determined if the target carbon dioxide gas concentration and the carbon dioxide gas supply pressure are determined. However, if the amount of circulating water is not constant at all times, this correlation data cannot be used. Therefore, as the circulation pump 1, it is necessary to use a metering pump. However, according to the knowledge of the present inventors, even in the case of a metering pump, the flow rate of the pump fluctuates due to a change in the head, such as clogging of the prefilter, and the correlation data cannot be used. In addition, when the carbonated water has a high concentration, the pump stops due to bubbles.

そこで、本発明においては、循環ポンプ1として、自吸性能を有する容積式定量ポンプを用いることにより、安定した循環と、常時一定した循環水量を実現させるものである。この容積式定量ポンプは、初期の運転時に呼び水をしなくても起動できる自吸性能を有する。しかも、炭酸水は高濃度になると気泡が発生し易くなるが、この容積式定量ポンプは、気泡リッチな状態でも安定して送水することが可能である。   Therefore, in the present invention, by using a positive displacement metering pump having a self-priming performance as the circulation pump 1, a stable circulation and a constantly constant circulating water amount are realized. This positive displacement metering pump has a self-priming performance that can be started without priming during initial operation. Moreover, although the carbonated water tends to generate bubbles when the concentration is high, the positive displacement metering pump can stably supply water even in a bubble-rich state.

本発明において、この容積式定量ポンプは、特に、あらかじめ容積式定量ポンプの循環流量と、水槽内水量におけるガス供給圧力と水槽内の炭酸水の炭酸ガス濃度と循環時間の相関データを記録し、炭酸水の製造時には前記相関データに基づいて循環時間を調節することにより、水槽内の炭酸水の炭酸ガス濃度を600ppm〜1400ppmの範囲内にする場合に非常に有効である。   In the present invention, this positive displacement metering pump, in particular, records the correlation data of the circulation flow rate of the positive displacement metering pump in advance, the gas supply pressure in the amount of water in the tank, the carbon dioxide concentration of carbonated water in the tank and the circulation time, When producing carbonated water, adjusting the circulation time based on the correlation data is very effective when the carbonated carbon dioxide concentration in the water tank is in the range of 600 ppm to 1400 ppm.

このような自吸性能を有する容積式定量ポンプとしては、例えば、ダイヤフラムポンプ、ねじポンプ、チューブポンプ、ピストンポンプ等が挙げられる。現在の市販品の中では、価格、能力、大きさ等の点から、ダイヤフラムポンプが最適である。具体的には、例えば、SHURflo社(米国)製の3ヘッドダイヤフラムポンプ、Aquatec Water System社(米国)製の5ヘッドダイヤフラムポンプ、FLOJET社(米国)製の4ヘッドダイヤフラムポンプ等が使用できる。なお、これら市販品は、通常は、飲料用ろ過装置におけるブースターポンプとして販売されているものである。すなわち、これら市販品は、炭酸水製造装置とは無関係である。   Examples of the positive displacement metering pump having such a self-priming performance include a diaphragm pump, a screw pump, a tube pump, and a piston pump. Among current commercial products, a diaphragm pump is most suitable in terms of price, capacity, size, and the like. Specifically, for example, a 3-head diaphragm pump manufactured by SHURflo (USA), a 5-head diaphragm pump manufactured by Aquatec Water System (USA), a 4-head diaphragm pump manufactured by FLOJET (USA), and the like can be used. These commercial products are usually sold as booster pumps in beverage filtration devices. That is, these commercially available products are unrelated to the carbonated water production apparatus.

炭酸ガス溶解器3へ供給する炭酸ガスの圧力は、減圧弁5により設定する。この圧力が低いほど、炭酸ガス溶解器3での未溶解ガスの発生が抑えられ、溶解効率が高くなる。また、炭酸ガス溶解器3内の中空糸膜の炭酸ガス透過量は炭酸ガス供給圧力に比例し、その圧力が大きければ透過量も大きくなる。これらの点と、炭酸ガス圧力が低くなるほど製造時間が長くなる点から、その圧力は0.01〜0.3MPa程度が妥当である。なお、循環温水の炭酸ガスの吸収量はその温水の炭酸ガス濃度と循環水量にも依存し、吸収量以上の炭酸ガスを供給すると未溶解ガスとなる。   The pressure of carbon dioxide gas supplied to the carbon dioxide dissolver 3 is set by the pressure reducing valve 5. The lower the pressure, the lower the generation of undissolved gas in the carbon dioxide gas dissolver 3, and the higher the dissolution efficiency. Further, the carbon dioxide gas permeation amount of the hollow fiber membrane in the carbon dioxide gas dissolver 3 is proportional to the carbon dioxide gas supply pressure, and the permeation amount increases as the pressure increases. From these points and the point that the production time becomes longer as the carbon dioxide pressure becomes lower, it is appropriate that the pressure is about 0.01 to 0.3 MPa. The amount of carbon dioxide gas absorbed in the circulating hot water also depends on the carbon dioxide concentration of the warm water and the amount of circulating water. When carbon dioxide gas exceeding the absorption amount is supplied, it becomes undissolved gas.

炭酸ガス溶解器5に中空糸膜を用いる場合、その中空糸膜としては、ガス透過性に優れるものであればどの様なものを用いてもよく、多孔質膜でも非多孔質ガス透過性膜(以下「非多孔質膜」と略称する)でもよい。多孔質中空糸膜としては、その表面の開口孔径が0.01〜10μmのものが好ましい。また、非多孔質膜を含む中空糸膜も好適に用いられる。最も好ましい中空糸膜は、薄膜状の非多孔質層の両側を多孔質層で挟み込んだ三層構造の複合中空糸膜である。その具体例としては、例えば三菱レイヨン(株)製の三層複合中空糸膜(MHF、商品名)が挙げられる。図2はこのような複合中空糸膜の一例を示す模式図である。図3に示す例においては、非多孔質層19がガス透過性に優れたごく薄膜状のものとして形成され、その両面に多孔質層20が形成されており、非多孔質層19が損傷を受けないように保護されている。   When a hollow fiber membrane is used for the carbon dioxide gas dissolver 5, any hollow fiber membrane may be used as long as it has excellent gas permeability, and it may be a porous membrane or a non-porous gas permeable membrane. (Hereinafter abbreviated as “non-porous membrane”). As the porous hollow fiber membrane, those having a surface opening pore diameter of 0.01 to 10 μm are preferable. A hollow fiber membrane including a non-porous membrane is also preferably used. The most preferable hollow fiber membrane is a composite hollow fiber membrane having a three-layer structure in which both sides of a thin non-porous layer are sandwiched between porous layers. Specific examples thereof include a three-layer composite hollow fiber membrane (MHF, trade name) manufactured by Mitsubishi Rayon Co., Ltd. FIG. 2 is a schematic view showing an example of such a composite hollow fiber membrane. In the example shown in FIG. 3, the non-porous layer 19 is formed as a very thin film having excellent gas permeability, and the porous layer 20 is formed on both sides thereof, and the non-porous layer 19 is damaged. It is protected from receiving.

ここで、非多孔質層(膜)とは、気体が膜基質への溶解・拡散機構により透過する膜であり、分子がクヌッセン流れのように気体がガス状で透過できる孔を実質的に含まないものであればいかなるものでもよい。この非多孔質膜を用いると炭酸ガスを温水中に気泡として放出することなくガスを供給、溶解できるので、効率よい溶解が可能になり、しかも任意の濃度に制御性良く、簡単に溶解することができる。また、多孔質膜の場合に稀に生じる逆流、すなわち温水が細孔を経てガス供給側に逆流するような事もない。   Here, the non-porous layer (membrane) is a membrane that allows gas to permeate through a dissolution / diffusion mechanism into the membrane substrate, and substantially includes pores through which gas can pass in a gaseous state like a Knudsen flow. Anything that doesn't exist is acceptable. Using this non-porous membrane, gas can be supplied and dissolved without releasing carbon dioxide as bubbles in warm water, so efficient dissolution is possible, and it can be easily dissolved at any concentration with good controllability. Can do. Further, there is no reverse flow that occurs rarely in the case of a porous membrane, that is, warm water does not flow back to the gas supply side through the pores.

中空糸膜の膜厚は10〜150μmのものが好ましい。膜厚が10μm以上であれば、十分な膜強度を示す傾向にある。また、150μm以下であれば、十分な炭酸ガスの透過速度および溶解効率を示す傾向にある。三層複合中空糸膜の場合は、非多孔質膜の厚みは0.3〜2μmが好ましい。0.3μm以上であれば、膜の劣化が生じ難く、膜劣化によるリークが発生し難い。また、2μm以下であれば、十分な炭酸ガスの透過速度および溶解効率を示す傾向にある。   The film thickness of the hollow fiber membrane is preferably 10 to 150 μm. If the film thickness is 10 μm or more, it tends to show sufficient film strength. Moreover, if it is 150 micrometers or less, it exists in the tendency which shows the permeation | transmission rate and dissolution efficiency of a sufficient carbon dioxide gas. In the case of a three-layer composite hollow fiber membrane, the thickness of the non-porous membrane is preferably 0.3 to 2 μm. When the thickness is 0.3 μm or more, the film is hardly deteriorated, and a leak due to the film deterioration is hardly generated. Moreover, if it is 2 micrometers or less, it exists in the tendency which shows sufficient permeation | transmission rate and dissolution efficiency of a carbon dioxide gas.

また、例えば中空糸膜の膜1本当たりの通水量を0〜30L/min、ガス圧力を0.01Mpa〜0.3Mpaとすると、膜面積は0.1m2〜15m2と程度が好ましい。 Further, for example, a hollow fiber membrane of the membrane one passing water to 0~30L / min per, when the gas pressure and 0.01Mpa~0.3Mpa, membrane area is preferably much as 0.1m 2 ~15m 2.

中空糸膜の膜素材としては、例えば、シリコーン系、ポリオレフィン系、ポリエステル系、ポリアミド系、ポリスルフォン系、セルロース系、ポリウレタン系等の素材が好ましい。三層複合中空糸膜の非多孔質膜の材質としては、ポリウレタン、ポリエチレン、ポリプロピレン、ポリ4−メチルペンテン−1、ポリジメチルシロキサン、ポリエチルセルロース、ポリフェニレンオキサイド等が好ましい。このうち、ポリウレタンは製膜性が良好で、溶出物が少ないので特に好ましい。   As the membrane material of the hollow fiber membrane, for example, materials such as silicone, polyolefin, polyester, polyamide, polysulfone, cellulose, polyurethane and the like are preferable. As the material for the non-porous membrane of the three-layer composite hollow fiber membrane, polyurethane, polyethylene, polypropylene, poly-4-methylpentene-1, polydimethylsiloxane, polyethylcellulose, polyphenylene oxide and the like are preferable. Of these, polyurethane is particularly preferred because it has good film-forming properties and little eluate.

中空糸膜の内径は50〜1000μmが好ましい。内径を50μm以上にすれば、中空糸膜内を流れる流体の流路抵抗が適度に小さくなり、流体の供給が容易になる。また、1000μm以下にすれば、溶解器のサイズを小さくすることが可能になり、装置のコンパクト化の点で有利である。   The inner diameter of the hollow fiber membrane is preferably 50 to 1000 μm. If the inner diameter is 50 μm or more, the flow resistance of the fluid flowing in the hollow fiber membrane is appropriately reduced, and the fluid can be easily supplied. If the thickness is 1000 μm or less, the size of the dissolver can be reduced, which is advantageous in terms of downsizing the apparatus.

炭酸ガス溶解器に中空糸膜を使用する場合、中空糸膜の中空側に炭酸ガスを供給し、外表面側に温水を供給して炭酸ガスを溶解させる方法と、中空糸膜の外表面側に炭酸ガスを供給し、中空側に温水を供給して炭酸ガスを溶解させる方法とがある。このうち、特に後者の方法は、膜モジュールの形態にかかわらず、温水中に炭酸ガスを高濃度で溶解できるので好ましい。   When a hollow fiber membrane is used in a carbon dioxide gas dissolver, carbon dioxide gas is supplied to the hollow side of the hollow fiber membrane, hot water is supplied to the outer surface side to dissolve the carbon dioxide gas, and the outer surface side of the hollow fiber membrane There is a method in which carbon dioxide gas is supplied and hot water is supplied to the hollow side to dissolve the carbon dioxide gas. Among these, the latter method is particularly preferable because carbon dioxide gas can be dissolved at a high concentration in warm water regardless of the form of the membrane module.

本発明に用いる炭酸ガス溶解器として、多孔質体からなる散気部が炭酸ガス溶解器内の底部に設置された散気手段を有するものも使用できる。散気部に配される多孔質体の材質や形状はどのようなものであっても構わないが、その空孔率、すなわち多孔質体自体に存在する空隙の多孔質体全体に対する体積割合が5〜70vol%であるものが好ましい。炭酸ガスの溶解効率をより高めるためには空孔率が低い方が適しており、5〜40vol%であることがより好ましい。空孔率が70vol%以下であれば、炭酸ガスの流量制御が容易になり、ガス流量を適度に小さくでき、散気体から散気される炭酸ガスの気泡が巨大化することなく、溶解効率が低下し難い。また、空孔率が5vol%以上であれば、炭酸ガスの十分な供給量を維持でき、炭酸ガスの溶解が比較的短時間ですむ傾向にある。   As the carbon dioxide dissolver used in the present invention, a carbon dioxide dissolver having an aeration means in which an air diffuser made of a porous material is installed at the bottom of the carbon dioxide dissolver can be used. The material and shape of the porous body arranged in the diffuser portion may be any, but the porosity, that is, the volume ratio of the voids existing in the porous body itself to the whole porous body is What is 5-70 vol% is preferable. In order to further increase the dissolution efficiency of carbon dioxide gas, a lower porosity is suitable, and it is more preferably 5 to 40 vol%. If the porosity is 70 vol% or less, the flow rate of carbon dioxide gas can be easily controlled, the gas flow rate can be reduced appropriately, and the dissolution efficiency can be improved without enlarging the bubbles of carbon dioxide gas diffused from the diffused gas. It is hard to decline. Moreover, if the porosity is 5 vol% or more, a sufficient supply amount of carbon dioxide gas can be maintained, and dissolution of carbon dioxide gas tends to take a relatively short time.

また、多孔質体の表面における開口孔径は、散気する炭酸ガスの流量制御、ならびに微細な気泡を形成する為には、0.01〜10μmであることが好ましい。孔径が10μm以下であれば、水中を上昇する気泡が適度に小さくなり、炭酸ガスの溶解効率が向上する。また、0.01μm以上にすれば、水中への散気量が適度に多くなり、高濃度の炭酸水を得る場合でも比較的短時間で済む。   Moreover, it is preferable that the opening hole diameter in the surface of a porous body is 0.01-10 micrometers in order to control the flow volume of the carbon dioxide gas to diffuse and to form a fine bubble. When the pore diameter is 10 μm or less, bubbles rising in water are appropriately reduced, and the dissolution efficiency of carbon dioxide gas is improved. Further, if the thickness is 0.01 μm or more, the amount of air diffused into the water is increased moderately, and even when a high concentration carbonated water is obtained, a relatively short time is required.

散気手段の散気部に配される多孔質体はその表面積が大きいほど気泡を多数発生させることができ、炭酸ガスと原水との接触が効率良く進み、また気泡が生成する前の溶解も生じるので溶解効率が高くなる。したがって、多孔質体の形状にはこだわらないが、表面積が大きなものが好ましい。表面積を大きくする手段としては、多孔質体を筒状にするとか、平板のような形状にしてその表面に凹凸をつけるなど種々の方法があるが、多孔質中空糸膜を用いることが好ましく、特に多孔質中空糸膜を多数本束ねたようなものを利用することが有効である。   The larger the surface area of the porous body arranged in the air diffuser of the air diffuser, the more bubbles can be generated, the contact between the carbon dioxide gas and the raw water proceeds efficiently, and the dissolution before the bubbles are generated is also possible. As a result, dissolution efficiency increases. Therefore, although it does not stick to the shape of the porous body, one having a large surface area is preferable. As a means for increasing the surface area, there are various methods such as making the porous body into a cylindrical shape or making the surface uneven by making it into a flat plate shape, but it is preferable to use a porous hollow fiber membrane, In particular, it is effective to use a bundle of many porous hollow fiber membranes.

多孔質体の材質は、金属、セラミック、プラスチックなど様々なものが挙げられるが、特に限定はされない。ただし、親水性の材質のものは、炭酸ガスの供給停止時に温水が表面の細孔から散気手段内へ侵入するので好ましくない。   Examples of the material of the porous body include various materials such as metal, ceramic, and plastic, but are not particularly limited. However, a hydrophilic material is not preferable because warm water enters the aeration means from the pores on the surface when the supply of carbon dioxide gas is stopped.

中空糸膜の外表面側に炭酸ガスを供給し、中空側に温水を供給して炭酸ガスを溶解させる場合は、逆流洗浄用の配管を設けてもよい。中空糸膜の中空部への供給口にあたるポッティング開口端部にスケールが蓄積した場合、そのスケールは逆流洗浄によって比較的簡単に除去できる。   In the case where carbon dioxide gas is supplied to the outer surface side of the hollow fiber membrane and hot water is supplied to the hollow side to dissolve the carbon dioxide gas, a pipe for backflow cleaning may be provided. When scale accumulates at the end of the potting opening corresponding to the supply port to the hollow portion of the hollow fiber membrane, the scale can be removed relatively easily by backflow cleaning.

本発明により製造する炭酸水に関して、その炭酸ガス濃度は特に限定されない。先に述べた例においては、希望する炭酸ガス濃度の値を装置に入力し、循環ポンプ1により浴槽11内の温水を循環させれば、あとは希望する炭酸ガス濃度に応じて装置が自動的に循環時間を調節してくれるので、希望する炭酸ガス濃度の炭酸水が浴槽11内に満たされる。   Regarding the carbonated water produced according to the present invention, the concentration of carbon dioxide gas is not particularly limited. In the above-described example, if the desired carbon dioxide concentration value is input to the apparatus, and the hot water in the bathtub 11 is circulated by the circulation pump 1, the apparatus is automatically activated according to the desired carbon dioxide concentration. Since the circulation time is adjusted, carbonated water having a desired carbon dioxide concentration is filled in the bathtub 11.

ただし、医学的な生理的効果を十分得るには、炭酸水の炭酸ガス濃度は、一般的には600ppm以上は必要である。この点から、本発明において製造する炭酸水の炭酸ガス濃度も、600ppm以上であることが好ましい。一方、炭酸ガス濃度が高濃度になるほど、炭酸ガスの溶解効率は低下し、しかも、ある程度の濃度以上では生理的効果も横這いになる。この点から、炭酸ガス濃度の上限は、1400ppm程度が妥当である。   However, in order to obtain a sufficient medical physiological effect, the carbon dioxide concentration of carbonated water generally needs to be 600 ppm or more. From this point, it is preferable that the carbon dioxide concentration of the carbonated water produced in the present invention is 600 ppm or more. On the other hand, the higher the carbon dioxide gas concentration is, the lower the carbon dioxide dissolution efficiency is, and the physiological effect becomes flat at a certain concentration or higher. From this point, the upper limit of the carbon dioxide gas concentration is reasonable about 1400 ppm.

本発明の炭酸水製造装置には、さらに気泡発生装置または圧注装置を設けることができる。気泡発生装置は浴水中にて気泡を発生させることにより、また圧注装置は浴水中にて水流を発生させることにより、体の患部に物理的な刺激を与え、そのマッサージ効果により血行を促進させ、腰痛・肩こり・筋肉疲労などをやわらげる為のものである。このような装置は、現在各社で販売され、病院・老健施設や家庭用に普及している。   The carbonated water production apparatus of the present invention can be further provided with a bubble generating device or a pressure injection device. The bubble generation device generates bubbles in the bath water, and the pressure injection device generates a water flow in the bath water, thereby giving physical stimulation to the affected area of the body and promoting blood circulation by its massage effect. It is intended to relieve back pain, stiff shoulders, and muscle fatigue. Such devices are currently sold by various companies and are widely used in hospitals, health facilities and homes.

一方、本発明により製造する炭酸水は、水中の炭酸ガスが経皮吸収され、血管を拡張し血行促進させる作用を奏するものである。つまり、気泡や圧注による作用を動的作用とすると、炭酸水による作用は静的作用と言える。なお、炭酸水による治療は、気泡発生装置や圧注装置と比べると物理的な刺激が無いので、体や患部に無理な負担が無く副作用が少ないという利点がある。   On the other hand, the carbonated water produced according to the present invention has the effect of transcutaneously absorbing carbon dioxide in the water and expanding blood vessels to promote blood circulation. In other words, if the action by bubbles or pressure injection is a dynamic action, the action by carbonated water can be said to be a static action. The treatment with carbonated water has the advantage that there is no physical irritation compared to the bubble generating device and the pressure injection device, and there is no unreasonable burden on the body and the affected area and there are few side effects.

図1に示す例では、本発明の炭酸水製造装置にさらに気泡発生装置を設け、一つのパッケージにユニット化することによって、両機能を一つの装置で実施できる多機能装置としたものである。気泡発生装置は、少なくとも使用時には浴槽内の下部に配置される散気板9と、その散気板9に空気を供給する為のコンプレッサー8と、両者を連通する配管とからなる。コンプレッサー9を起動することによって、散気板8から気泡が発生し、入浴者の患部に物理的な刺激を与える。   In the example shown in FIG. 1, the apparatus for producing carbonated water according to the present invention is further provided with a bubble generating device and unitized into one package, thereby providing a multi-function device capable of performing both functions with one device. The bubble generating device is composed of a diffuser plate 9 disposed at the lower part of the bathtub at least in use, a compressor 8 for supplying air to the diffuser plate 9, and a pipe communicating the both. By starting the compressor 9, bubbles are generated from the diffuser plate 8 and give physical stimulation to the affected area of the bather.

ただし、このような多機能装置においては、浴槽に炭酸水を満たした時は気泡を発生させない方が好ましい。気泡により浴槽内がかき乱され、炭酸水中に溶解している炭酸ガスが空気中に蒸散し易く、瞬く間に炭酸水の濃度が激減する傾向にあるからである。この為、炭酸水製造の機能と、気泡発生の機能は併用せずに、切替スイッチを設けて別々に実施することが好ましい。   However, in such a multi-function device, it is preferable not to generate bubbles when the bathtub is filled with carbonated water. This is because the inside of the bathtub is disturbed by the bubbles, and the carbon dioxide dissolved in the carbonated water tends to evaporate in the air, and the concentration of the carbonated water tends to drastically decrease in an instant. For this reason, it is preferable that the carbonated water production function and the bubble generation function are not used in combination, but are provided separately with a changeover switch.

また、図3は、本発明の炭酸水製造装置の他の多機能装置の一例を示すものである。この圧注装置は、少なくとも使用時には浴槽11内に配置されるジェットノズル10と、そのジェットノズル10に供給する空気を吸い込むエジェクター12と、両者を連通する配管とからなる。このジェットノズル10から水流または気泡等が発生し、入浴者の患部に物理的な刺激を与える。この水流または気泡発生の機能は炭酸水の製造とは併用せずに、切替弁13により切り替えて、別々に実施する。   FIG. 3 shows an example of another multifunctional device of the carbonated water production apparatus of the present invention. This pressure injection device includes at least a jet nozzle 10 disposed in a bathtub 11 at the time of use, an ejector 12 that sucks in air supplied to the jet nozzle 10, and a pipe that communicates the two. A water flow or bubbles are generated from the jet nozzle 10 to give a physical stimulus to the affected area of the bather. This water flow or bubble generation function is not performed in combination with carbonated water production, but is switched by the switching valve 13 and performed separately.

図1に示した装置においては、さらに自動抜水手段が設けられている。この自動抜水手段は、具体的には、炭酸ガス溶解器3内の中空糸膜のドレイン抜き用配管と、その配管の途中に配された電磁弁(開放弁)7とからなる。炭酸ガス溶解器3内においては、中空糸膜の中空部から蒸発した水蒸気が、中空糸膜外側部で凝縮してドレインが溜まり、このドレインが膜面を塞いで有効なガス透過ができなくなる場合がある。自動抜水手段は、電磁弁(開放弁)7を自動的かつ定期的に開いて、炭酸ガス溶解器3内に溜まったドレインを装置外部へ放出するものである。   In the apparatus shown in FIG. 1, automatic water draining means is further provided. Specifically, the automatic water draining means includes a drain drain pipe for the hollow fiber membrane in the carbon dioxide dissolver 3 and an electromagnetic valve (open valve) 7 arranged in the middle of the pipe. In the carbon dioxide gas dissolver 3, water vapor evaporated from the hollow portion of the hollow fiber membrane is condensed at the outer portion of the hollow fiber membrane and the drain accumulates, and the drain blocks the membrane surface and effective gas permeation cannot be performed. There is. The automatic water draining means automatically and periodically opens the electromagnetic valve (open valve) 7 and discharges the drain accumulated in the carbon dioxide gas dissolver 3 to the outside of the apparatus.

図1に示す例においては、例えば、炭酸ガス溶解器3(中空糸膜面積0.6m2)においては、運転開始時(または終了時)に1秒間電磁弁7を開け、ドレインを外部へ放出する。この時、炭酸ガス電磁弁6を開け、適度なガス圧(0.15Mpa程度)にてドレインを放出する。毎回の運転時に外部放出するのは、頻度が多過ぎ、炭酸ガスの浪費になる。したがって、運転時間を積算し、4時間以上運転毎の次の運転開始時に、自動的に抜水させる。 In the example shown in FIG. 1, for example, in the carbon dioxide dissolver 3 (hollow fiber membrane area 0.6 m 2 ), the electromagnetic valve 7 is opened for 1 second at the start of operation (or at the end), and the drain is discharged to the outside. To do. At this time, the carbon dioxide electromagnetic valve 6 is opened, and the drain is discharged at an appropriate gas pressure (about 0.15 Mpa). The amount of discharge to the outside during each operation is too frequent and wastes carbon dioxide. Therefore, the operation time is integrated and water is automatically drained at the start of the next operation every operation for 4 hours or more.

このように、その装置に合致した時間とガス圧を設定し、自動的にドレイン抜きを行なうことによって、従来技術のようにわざわざ手動でドレイン抜きを実施する必要が無くなり、常時、有効な膜面積が確保され、高濃度の炭酸水を製造することができる。   In this way, by setting the time and gas pressure that match the device and automatically draining, it is not necessary to perform draining manually as in the prior art, and the effective membrane area is always available. Is ensured, and high-concentration carbonated water can be produced.

以下、本発明を、実施例によって更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1>
図1に示したフローシートの装置を用いて、次の通り炭酸水を製造した。炭酸ガス溶解器3には、前述した三層複合中空糸膜[三菱レイヨン(株)製、商品名MHF]を有効総膜面積0.6m2で内蔵する溶解器を使用し、中空糸膜の外表面側に炭酸ガスを供給し、中空側に原水を供給して炭酸ガスを溶解させる手法をとった。また、循環ポンプ1としては、ダイヤフラム式定量ポンプであるSHURflo社製の3ヘッドダイヤフラムポンプを使用した。
<Example 1>
Using the flow sheet apparatus shown in FIG. 1, carbonated water was produced as follows. The carbon dioxide dissolver 3 uses a dissolver containing the above-mentioned three-layer composite hollow fiber membrane (trade name MHF, manufactured by Mitsubishi Rayon Co., Ltd.) with an effective total membrane area of 0.6 m 2 . Carbon dioxide gas was supplied to the outer surface side, and raw water was supplied to the hollow side to dissolve the carbon dioxide gas. As the circulation pump 1, a 3-head diaphragm pump manufactured by SHURflo, which is a diaphragm type metering pump, was used.

そして、浴槽11内に満たした水量10L、温度35℃の温水を、循環ポンプ1により、流量5L/minで循環させ、同時に炭酸ガス溶解器5へ炭酸ガスを0.05MPaの圧力で供給した。この循環により、浴槽11内の温水の炭素ガス濃度は次第に高まっていった。炭酸ガス濃度は、東亜電波工業製のイオンメーターIM40S、炭酸ガス電極CE−235により測定した。この循環時間ごとの炭酸ガス濃度の測定結果を表1に示す。なお、炭酸水の製造においては、自動抜粋機能により自動的にドレイン抜きを実施し、ガス抜きも適宜行なった。   Then, 10 L of water filled in the bathtub 11 and hot water having a temperature of 35 ° C. were circulated by the circulation pump 1 at a flow rate of 5 L / min, and at the same time, carbon dioxide was supplied to the carbon dioxide dissolver 5 at a pressure of 0.05 MPa. Due to this circulation, the carbon gas concentration in the hot water in the bathtub 11 gradually increased. The carbon dioxide concentration was measured with an ion meter IM40S manufactured by Toa Denpa Kogyo Co., Ltd. and a carbon dioxide electrode CE-235. Table 1 shows the measurement results of the carbon dioxide concentration for each circulation time. In addition, in the production of carbonated water, draining was automatically performed by an automatic extraction function, and degassing was also appropriately performed.

さらに、炭酸ガス供給圧力を0.10MPa、0.15MPaに変更したこと以外は、同様にして炭酸水を製造した。この場合の循環時間および炭酸ガス濃度も表2に示す。また、これらをグラフ化したものを図4に示す。   Further, carbonated water was produced in the same manner except that the carbon dioxide supply pressure was changed to 0.10 MPa and 0.15 MPa. The circulation time and carbon dioxide concentration in this case are also shown in Table 2. A graph of these is shown in FIG.

Figure 2007229714
Figure 2007229714

この表1に示すデータから、例えば、製造しようとする炭酸水の目標炭酸ガス濃度が1000ppmであるならば、炭酸ガス供給圧力を0.05MPa、0.10MPa、0.15MPaのそれぞれの場合、循環の為の所要時間は表2に示すように決定される。   From the data shown in Table 1, for example, if the target carbon dioxide concentration to be produced is 1000 ppm, the carbon dioxide supply pressure is 0.05 MPa, 0.10 MPa, and 0.15 MPa. The time required for this is determined as shown in Table 2.

Figure 2007229714
Figure 2007229714

本発明においては、自吸性能を有する容積式定量ポンプを用いているので、1000ppm程度の高濃度の炭酸水であっても安定した循環が可能である。したがって、再度、表2に示す3通りのガス供給圧力で、それぞれ所要時間循環させたところ、1000ppm程度の高濃度の炭酸水を製造することができた。   In the present invention, since a positive displacement metering pump having self-priming performance is used, stable circulation is possible even with carbonated water having a high concentration of about 1000 ppm. Therefore, when the gas was circulated again for the required time at the three gas supply pressures shown in Table 2, carbonated water having a high concentration of about 1000 ppm could be produced.

<比較例1>
循環ポンプ1として、ダイヤフラム式定量ポンプの代わりに渦巻きポンプを使用し、さらにポンプ吸い込み口での圧力を正圧(押し込み)にするために浴槽中の吸い込みホース先端部にも水中ポンプ(渦巻き式)を付けたこと以外は、実施例1と同様にして炭酸水を製造しようとした。しかし、高濃度の炭酸水(1000ppm)に到達する前に、気泡発生によりポンプが停止してしまった。
<Comparative Example 1>
A centrifugal pump is used as the circulation pump 1 instead of the diaphragm metering pump, and a submersible pump (spiral type) is also provided at the tip of the suction hose in the bathtub to make the pressure at the pump suction port positive. An attempt was made to produce carbonated water in the same manner as in Example 1 except that. However, before reaching high concentration carbonated water (1000 ppm), the pump stopped due to the generation of bubbles.

運転開始から渦巻きポンプが気泡巻き込みにより停止してしまう迄の時間と、その停止時の炭酸ガス濃度を表3に示す。   Table 3 shows the time from the start of operation until the vortex pump stops due to bubble entrainment, and the carbon dioxide concentration at the time of stoppage.

Figure 2007229714
Figure 2007229714

表3に示す結果から、渦巻きポンプを用いると、炭酸水が高濃度になって来て気泡によりポンプが停止するので、1000ppm程度の高濃度のものを製造できないことが分かる。   From the results shown in Table 3, it can be seen that when a centrifugal pump is used, carbonated water becomes a high concentration and the pump is stopped by bubbles, so that a high concentration of about 1000 ppm cannot be produced.

本発明の循環型炭酸水製造装置を用いた場合の一例を示すフローシートである。It is a flow sheet which shows an example at the time of using the circulation type carbonated water manufacturing apparatus of the present invention. 三層複合中空糸膜の一例を示す模式図である。It is a schematic diagram which shows an example of a three-layer composite hollow fiber membrane. 本発明の循環型炭酸水製造装置を用いた場合の一例を示すフローシートである。It is a flow sheet which shows an example at the time of using the circulation type carbonated water manufacturing apparatus of the present invention. 実施例1における循環時間と炭酸ガス濃度の関係を示すグラフである。3 is a graph showing the relationship between the circulation time and the carbon dioxide concentration in Example 1.

符号の説明Explanation of symbols

1 循環ポンプ
2 プレフィルター
3 炭酸ガス溶解器
4 炭酸ガスボンベ
5 減圧弁
6 電磁弁
7 電磁弁
8 コンプレッサー
9 散気板
10 ジェットノズル
11 浴槽
12 エジェクター
13 切替弁
19 非多孔質層
20 多孔質層
DESCRIPTION OF SYMBOLS 1 Circulation pump 2 Pre-filter 3 Carbon dioxide gas dissolver 4 Carbon dioxide gas cylinder 5 Pressure reducing valve 6 Electromagnetic valve 7 Electromagnetic valve 8 Compressor 9 Air diffuser plate 10 Jet nozzle 11 Bath 12 Ejector 13 Switching valve 19 Non-porous layer 20 Porous layer

Claims (6)

膜型炭酸ガス溶解器内に原水を流しながら炭酸ガスを供給して、原水中に炭酸ガスを溶解させる炭酸水製造装置において、あらかじめ原水の流量と炭酸ガスの供給圧力と得られる炭酸水の炭酸ガス濃度との相関データが記録してあり、炭酸水の製造時には原水の流量を検出し、前記相関データに基づいて、得られる炭酸水が目標炭酸ガス濃度となるように炭酸ガスの供給圧力を調節する手段を備えることを特徴とする炭酸水製造装置。   In a carbonated water production apparatus that feeds carbon dioxide gas while flowing raw water into the membrane-type carbon dioxide gas dissolver and dissolves carbon dioxide gas in the raw water, the flow rate of the raw water, the supply pressure of the carbon dioxide gas, and the carbonated water of the obtained carbonated water Correlation data with gas concentration is recorded, the flow rate of raw water is detected during the production of carbonated water, and the supply pressure of carbon dioxide gas is adjusted based on the correlation data so that the obtained carbonated water has the target carbon dioxide gas concentration. An apparatus for producing carbonated water, comprising means for adjusting. 膜型炭酸ガス溶解器の膜が、非多孔質ガス透過性膜を含む請求項1記載の炭酸水製造装置。   The carbonated water manufacturing apparatus according to claim 1, wherein the membrane of the membrane-type carbon dioxide gas dissolver includes a non-porous gas permeable membrane. さらに気泡発生装置または圧注装置を備える請求項1記載の炭酸水製造装置。   Furthermore, the carbonated water manufacturing apparatus of Claim 1 provided with a bubble generator or a pressure injection apparatus. さらに自動抜水手段を備える請求項1記載の炭酸水製造装置。   Furthermore, the carbonated water manufacturing apparatus of Claim 1 provided with an automatic water extraction means. 膜型炭酸ガス溶解器内に原水を流しながら炭酸ガスを供給して、原水中に炭酸ガスを溶解させる炭酸水製造方法において、あらかじめ原水の流量と炭酸ガスの供給圧力と得られる炭酸水の炭酸ガス濃度との相関データを記録し、炭酸水の製造時には原水の流量を検出し、前記相関データに基づいて、得られる炭酸水が目標炭酸ガス濃度となるように炭酸ガスの供給圧力を調節することを特徴とする炭酸水の製造方法。   In a carbonated water production method in which carbon dioxide gas is supplied while flowing raw water into a membrane-type carbon dioxide gas dissolver, and carbon dioxide gas is dissolved in the raw water, the flow rate of the raw water, the supply pressure of the carbon dioxide gas, and the carbonated water of the obtained carbonated water Record the correlation data with gas concentration, detect the flow rate of raw water at the time of carbonated water production, and adjust the supply pressure of carbon dioxide gas so that the obtained carbonated water becomes the target carbon dioxide concentration based on the correlation data The manufacturing method of carbonated water characterized by the above-mentioned. 目標炭酸ガス濃度が、600ppm〜1400ppmの範囲内である請求項5記載の炭酸水製造方法。   The method for producing carbonated water according to claim 5, wherein the target carbon dioxide concentration is in the range of 600 ppm to 1400 ppm.
JP2007134260A 2007-05-21 2007-05-21 Apparatus and method of manufacturing carbonated water Pending JP2007229714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134260A JP2007229714A (en) 2007-05-21 2007-05-21 Apparatus and method of manufacturing carbonated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134260A JP2007229714A (en) 2007-05-21 2007-05-21 Apparatus and method of manufacturing carbonated water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000116503A Division JP2001293344A (en) 2000-04-18 2000-04-18 Device and process for preparing carbonated water

Publications (1)

Publication Number Publication Date
JP2007229714A true JP2007229714A (en) 2007-09-13

Family

ID=38550831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134260A Pending JP2007229714A (en) 2007-05-21 2007-05-21 Apparatus and method of manufacturing carbonated water

Country Status (1)

Country Link
JP (1) JP2007229714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535550A (en) * 2007-08-07 2010-11-25 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for keeping the pH of a chemical solution constant when flowing out of a container
JP2012075744A (en) * 2010-10-04 2012-04-19 Nishiken Device:Kk Charging type super-fine bubble generator
WO2022150922A1 (en) * 2021-01-14 2022-07-21 CO2 GRO Inc. Suppression of ethylene production in harvested fruit and other produce using co2-infused water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796156A (en) * 1993-09-28 1995-04-11 Toray Dow Corning Silicone Co Ltd Method for mixing gas into highly viscous liquid and device therefor
JPH08215270A (en) * 1995-02-13 1996-08-27 Mitsubishi Rayon Co Ltd Carbonic acid spring preparing apparatus with cleaning and heat retaining functions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796156A (en) * 1993-09-28 1995-04-11 Toray Dow Corning Silicone Co Ltd Method for mixing gas into highly viscous liquid and device therefor
JPH08215270A (en) * 1995-02-13 1996-08-27 Mitsubishi Rayon Co Ltd Carbonic acid spring preparing apparatus with cleaning and heat retaining functions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535550A (en) * 2007-08-07 2010-11-25 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for keeping the pH of a chemical solution constant when flowing out of a container
JP2012075744A (en) * 2010-10-04 2012-04-19 Nishiken Device:Kk Charging type super-fine bubble generator
WO2022150922A1 (en) * 2021-01-14 2022-07-21 CO2 GRO Inc. Suppression of ethylene production in harvested fruit and other produce using co2-infused water

Similar Documents

Publication Publication Date Title
EP1283069B1 (en) Apparatus and method for producing carbonic water
JP4252841B2 (en) Carbonated water production apparatus and carbonated water production method using the same
CN101349629B (en) Manufacturing apparatus for gas dissolving solution
JP6111029B2 (en) Liquid supply device and biological cleaning device
JP4426596B2 (en) Air diffuser
JP2007229714A (en) Apparatus and method of manufacturing carbonated water
JP2001293344A (en) Device and process for preparing carbonated water
JP2004313749A (en) Apparatus and method for producing carbonated water
JP2002058725A (en) Method for manufacturing carbonated water
JP4709357B2 (en) Portable foot tub
JP4004874B2 (en) Aeration method and apparatus
JP2002052328A (en) Carbonated water manufacturing and supply system
JPH07313855A (en) Production of carbonated spring water
JPH08215271A (en) Apparatus for preparing circulation type carbonic acid spring
JPH07779A (en) Method and device for dissolving gaseous carbon dioxide
KR100819875B1 (en) A carbonated water making device which has a carbonated water making module which uses spg membrane
JP4117058B2 (en) Production method of carbonated spring
JP2001293343A (en) Device and process for preparing carbonated water
JP2001113289A (en) Circulating type carbonated water making apparatus
JP2002066285A (en) Apparatus for manufacturing carburetted spring
KR20050018965A (en) Apparatus for Producing Carbonated Water and Method for Producing Carbonated Water Using The Same
JP2007307114A (en) Carbon dioxide bath and its liquid supply method
JP2005169187A (en) Carbonated water producing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A711 Notification of change in applicant

Effective date: 20100805

Free format text: JAPANESE INTERMEDIATE CODE: A711

A02 Decision of refusal

Effective date: 20100929

Free format text: JAPANESE INTERMEDIATE CODE: A02