JPH07312804A - Control circuit for electric braking device of electric car - Google Patents

Control circuit for electric braking device of electric car

Info

Publication number
JPH07312804A
JPH07312804A JP6124221A JP12422194A JPH07312804A JP H07312804 A JPH07312804 A JP H07312804A JP 6124221 A JP6124221 A JP 6124221A JP 12422194 A JP12422194 A JP 12422194A JP H07312804 A JPH07312804 A JP H07312804A
Authority
JP
Japan
Prior art keywords
battery
voltage
charging
electric
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6124221A
Other languages
Japanese (ja)
Inventor
Shigenori Kinoshita
繁則 木下
Takao Yanase
孝雄 柳瀬
Koetsu Fujita
光悦 藤田
Satoshi Kusumoto
敏 楠本
Shinichiro Kitada
眞一郎 北田
Yasutake Ishikawa
泰毅 石川
Masahiko Tawara
雅彦 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nissan Motor Co Ltd
Original Assignee
Fuji Electric Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nissan Motor Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6124221A priority Critical patent/JPH07312804A/en
Publication of JPH07312804A publication Critical patent/JPH07312804A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To obtain a control circuit in which a regenerative braking operation by a battery charging operation is actuated up to a maximum limit by a method wherein a prescribed voltage in the battery charging operation is set on the basis of a permissible maximum voltage computed by the detection value of a physical quantity. CONSTITUTION:In a voltage computation circuit 923, a battery temperature (a physical quantity A) is detected. On the basis of the temperature characteristic of a battery by its result, a prescribed voltage VBm is set, and a charging quantity (a physical Bm quantity B) is detected. According to the charging quantity, the prescribed voltage VB<m> is made variable. Thereby, the charging quantity is increased much more. In addition, the number of charging and discharge operations (a physical quantity C) is detected, the charging quantity of the battery is corrected on the basis of the number of operations, and the prescribed voltage V Bm is computed. Then, after a battery voltage V has reached the B prescribed voltage VBm, a voltage regulator 922 controls a chopper 92 in such a way that a current flowing into the battery until then is made to flow gradually through a resistor so as to reduce a battery current IB finally to zero. As a result, since a regenerative control operation can be utilized to the full, the utilization efficiency of the battery is enhanced. In addition, since the battery can be kept always in an optimum state, the life of the battery can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池を電源とし、順・
逆変換可能な半導体変換装置を介して電動機により車輪
を駆動する電気自動車の電気制動装置用制御回路に関す
る。
BACKGROUND OF THE INVENTION The present invention uses a battery as a power source, and
The present invention relates to a control circuit for an electric braking device of an electric vehicle in which wheels are driven by an electric motor via a semiconductor conversion device capable of reverse conversion.

【0002】[0002]

【従来の技術】図4は、電池を電源とし、インバータを
介して交流電動機により車輪を駆動する電気自動車の公
知のパワートレインである。図において、1は電池であ
り、単位電池10を必要個数、直列接続して構成されて
いる。4はインバータであり、車輪駆動用交流電動機5
を駆動する。3は保護ヒューズであり、必要に応じて用
いられる。2は主スイッチであり、電池1とインバータ
4とを電気的に接続し、または切離すためのものであ
る。電動機5の軸は減速機6を介して差動装置7に連結
され、車輪81,82を駆動する。交流電動機5として
は、価格、性能、保守性の点で優れている誘導電動機が
多く用いられている。
2. Description of the Related Art FIG. 4 shows a known power train of an electric vehicle which uses a battery as a power source and drives wheels by an AC electric motor via an inverter. In the figure, reference numeral 1 denotes a battery, which is configured by connecting a required number of unit batteries 10 in series. An inverter 4 is an AC motor 5 for driving wheels.
To drive. Reference numeral 3 is a protective fuse, which is used as necessary. Reference numeral 2 is a main switch for electrically connecting or disconnecting the battery 1 and the inverter 4. The shaft of the electric motor 5 is connected to the differential device 7 via the speed reducer 6 and drives the wheels 81 and 82. As the AC motor 5, an induction motor that is excellent in price, performance, and maintainability is often used.

【0003】さて、電気自動車はエンジン自動車のそれ
とほぼ同じ性能が要求される。この場合、力行性能はも
とより制動性能も同様であり、電気自動車の場合には、
特にエンジン自動車のエンジンブレーキに相当する電気
制動が要求される。電気自動車の場合の電気制動は、図
4のインバータ4を介して交流電動機5の発生電力を電
池1に戻す回生制動が用いられる。回生制動の場合、電
池1は回生電力を吸収可能、すなわち充電可能な状態で
あることが必要である。換言すれば、充電不可状態(電
池が100%充電された状態に相当する)では回生制動
を作動させることはできない。
An electric vehicle is required to have substantially the same performance as that of an engine vehicle. In this case, the braking performance as well as the power running performance is the same, and in the case of an electric vehicle,
In particular, electric braking equivalent to engine braking of engine vehicles is required. For electric braking in the case of an electric vehicle, regenerative braking is used in which the electric power generated by the AC motor 5 is returned to the battery 1 via the inverter 4 shown in FIG. In the case of regenerative braking, the battery 1 needs to be in a state capable of absorbing regenerative electric power, that is, capable of being charged. In other words, regenerative braking cannot be activated in the unchargeable state (corresponding to the state where the battery is 100% charged).

【0004】このような充電不可状態に備え、電池1以
外に制動電力を吸収する電力吸収装置を設置するのが一
般的になっている。図5は従来の電気制動装置を電気自
動車の主回路と共に示したもので、上記の点に鑑み、電
池1以外の電力吸収装置として抵抗器により制動電力を
吸収(いわば発電制動)するようにしたものである。同
図において、91は抵抗器、92は抵抗器91により発
生する電力を制御する半導体電力変換装置であり、一般
的にはチョッパが多く用いられる。
In preparation for such an unchargeable state, a power absorption device that absorbs braking power is generally installed in addition to the battery 1. FIG. 5 shows a conventional electric braking device together with a main circuit of an electric vehicle. In view of the above points, a resistor is used as a power absorbing device other than the battery 1 to absorb braking power (in other words, dynamic braking). It is a thing. In the figure, 91 is a resistor, 92 is a semiconductor power converter that controls the power generated by the resistor 91, and generally a chopper is often used.

【0005】次に、図6により、電池の充電時の性能に
ついて説明する。同図において、横軸のSOCは電池の
充電量であり、“100”は電池が100〔%〕充電さ
れていることを示す。同図は、この充電量SOCと電池
電圧VB及び電流IBの関係を示している。
Next, referring to FIG. 6, the performance of the battery during charging will be described. In the figure, SOC on the horizontal axis is the charge amount of the battery, and “100” indicates that the battery is charged by 100%. The same figure shows the relationship between the state of charge SOC, the battery voltage V B and the current I B.

【0006】電池が充電され、充電量が増加すると電池
電圧VBも増加する。充電時の電池電圧VBの最大値は規
定されており、この規定電圧以上に電圧を高めることは
許されない。図6では規定電圧をVBmで示してあり、充
電量SOCがAの点で規定電圧VBmに達するので、点A
から充電量SOCが100〔%〕になるまでの領域で
は、電池電圧がVBmを越えないように充電電流IBを同
図の実線のように低減させる。言い換えれば、点Aから
充電量SOCが100〔%〕になるまでの領域におい
て、充電電流IBを図示の一点鎖線のように流すと、電
池電圧VBも一点鎖線のように上昇する結果、規定電圧
Bmを越えてしまう。
When the battery is charged and the amount of charge increases, the battery voltage V B also increases. The maximum value of the battery voltage V B at the time of charging is specified, and it is not allowed to increase the voltage above this specified voltage. In FIG. 6, the specified voltage is indicated by V Bm , and the charge amount SOC reaches the specified voltage V Bm at the point A.
In the region from when the state of charge SOC reaches 100 [%], the charging current I B is reduced as shown by the solid line in the figure so that the battery voltage does not exceed V Bm . In other words, in the region from the point A to the state of charge SOC of 100 [%], when the charging current I B is flown as shown by the dashed line in the figure, the battery voltage V B also rises as shown by the dashed line. The specified voltage V Bm is exceeded .

【0007】回生制動時の充電電流IBが図6によって
示される場合、電池の充電量が点Aに達するまでは回生
制動が充分に機能する。しかし、充電量が点Aを越える
と電池には所要の電流IBが流せなくなる。このため、
所要電流IBと電池の許容電流との差電流(図6におい
て斜線で示した範囲の電流)を図5の抵抗器91に流す
こととし、制動電力の一部を抵抗器91により吸収、消
費させる。この場合、従来では抵抗器91に所要の電流
が流れるようにチョッパ92を制御している。
When the charging current I B during regenerative braking is shown by FIG. 6, the regenerative braking functions sufficiently until the battery charge reaches point A. However, if the charged amount exceeds point A, the required current I B cannot flow through the battery. For this reason,
A difference current between the required current I B and the allowable current of the battery (a current in the hatched range in FIG. 6) is passed through the resistor 91 in FIG. 5, and a part of the braking power is absorbed and consumed by the resistor 91. Let In this case, conventionally, the chopper 92 is controlled so that a required current flows through the resistor 91.

【0008】図7は、電池電圧VB及び電流IBを図6の
実線の特性に制御するための従来の制御回路のブロック
図である。同図において、920は電圧設定器であり、
図6における規定電圧VBmを設定する。921は電圧検
出器であり、電池電圧VBを検出する。また、922は
電圧調節器であり、電圧設定器920及び電圧検出器9
21の出力であるVBm,VBを入力としてその出力によ
りチョッパ92を制御し、抵抗器91の電流を制御す
る。なお、この制御方法は一般的に多く用いられている
電圧制御方法であるため、その詳細な説明は省略する。
FIG. 7 is a block diagram of a conventional control circuit for controlling the battery voltage V B and the current I B to the characteristics shown by the solid line in FIG. In the figure, 920 is a voltage setting device,
The specified voltage V Bm in FIG. 6 is set. A voltage detector 921 detects the battery voltage V B. Further, reference numeral 922 is a voltage regulator, which includes a voltage setter 920 and a voltage detector 9
V Bm and V B which are the outputs of 21 are input and the output controls the chopper 92 to control the current of the resistor 91. Since this control method is a voltage control method which is generally used, detailed description thereof will be omitted.

【0009】[0009]

【発明が解決しようとする課題】電池への回生制動時に
抵抗器による制動電力吸収を併用する従来の電気制動装
置では、規定電圧VBmを常に一定に制御しているため、
次のような問題がある。充電時に制限すべき電池電圧の
最大値は、電池の使用状態や温度等によって変動する。
すなわち、これらの要因によって電池充電時の許容最大
電圧が高いにも関わらず規定電圧VBmが許容最大電圧よ
りも低い場合には、電池への充電量が少なくなり、電池
の利用効率が低下する。一方、予め設定された規定電圧
Bmが許容最大電圧よりも高ければ、電池の寿命短縮等
の障害をもたらすことになる。
In the conventional electric braking device that also uses the braking power absorption by the resistor at the time of regenerative braking to the battery, the specified voltage V Bm is always controlled to be constant.
There are the following problems. The maximum value of the battery voltage that should be limited during charging varies depending on the usage state of the battery, temperature, and the like.
That is, due to these factors, when the specified voltage V Bm is lower than the maximum allowable voltage even though the maximum allowable voltage at the time of charging the battery is high, the amount of charge to the battery decreases and the utilization efficiency of the battery decreases. . On the other hand, if the specified voltage V Bm set in advance is higher than the maximum allowable voltage, it will cause troubles such as shortening of battery life.

【0010】本発明は上記問題点を解決するためになさ
れたもので、その目的とするところは、電池の利用効率
を高め、しかも、電池の寿命を損なわないようにした電
気自動車の電気制動装置用制御回路を提供することにあ
る。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the utilization efficiency of a battery and to prevent the life of the battery from being impaired. It is to provide a control circuit for use.

【0011】[0011]

【課題を解決するための手段及び作用】上記目的を達成
するため、本発明は、電池充電時の許容最大電圧は電池
の作動温度、充電及び放電回数、使用時間、充電量等の
物理量によって変動することに着目したもので、前記物
理量の検出値から算出した許容最大電圧に基づいて電池
充電時の規定電圧を設定することにより、電池の充電に
よる回生制動を最大限度まで作動させると共に、電池電
圧が規定電圧に達した後は電池電流を徐々に減少させる
ように、電池電流と抵抗器等の電力吸収装置への電流と
を制御する。
In order to achieve the above object, according to the present invention, the maximum allowable voltage during battery charging varies depending on the operating temperature of the battery, the number of times of charging and discharging, the operating time, the physical quantity such as the amount of charge. It is noted that by setting the specified voltage for battery charging based on the maximum allowable voltage calculated from the detected value of the physical quantity, regenerative braking by charging the battery is activated to the maximum limit, and the battery voltage After the voltage reaches the specified voltage, the battery current and the current to the power absorbing device such as a resistor are controlled so that the battery current is gradually decreased.

【0012】[0012]

【実施例】以下、図に沿って本発明の実施例を説明す
る。図1はこの実施例の構成を示すブロック図であり、
図7と同一の構成要素には同一番号を付してある。図1
において、923は電圧算出回路であり、充電時の電池
電圧に影響する物理量A,B,C,D,…の検出値を入
力とし、これらの検出値から充電時の許容最大電圧を算
出する電圧算出回路である。また、924は電圧設定回
路であり、電圧算出回路923による算出結果を受けて
電池の規定電圧VBmを設定する。この回路924は図7
における電圧設定回路920に対応する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment,
The same components as those in FIG. 7 are designated by the same reference numerals. Figure 1
In FIG. 9, reference numeral 923 denotes a voltage calculation circuit, which receives the detected values of the physical quantities A, B, C, D, ... Which affect the battery voltage at the time of charging, and calculates the allowable maximum voltage at the time of charging from these detected values. It is a calculation circuit. A voltage setting circuit 924 receives the calculation result of the voltage calculation circuit 923 and sets the specified voltage V Bm of the battery. This circuit 924 is shown in FIG.
Corresponds to the voltage setting circuit 920 in FIG.

【0013】ここで、前記物理量としては、例えば電池
の温度、電池の充電量(放電及び充電深度)、電池の充
放電回数(サイクル数)、電池の使用時間等がある。物
理量として電池の充電量及び端子電圧の関係の温度特性
例を図2に示す。同図から、同一充電量でも電池温度が
低いほど電池電圧が高くなっていることがわかる。例え
ば、SOCが80〔%〕の状態についてみると、50
〔°C〕では14.4〔V〕、10〔°C〕では16.
2〔V〕、−15〔°C〕では17.5〔V〕となる。
このことから、100〔%〕充電させるためには、電池
温度が低ければ電池電圧を高めに設定し、電池温度が高
ければ電池電圧を低めに設定する。図1の電圧算出回路
923では電池温度(物理量A)を検出し、その結果か
ら図2に示すような当該電池の温度特性に基づき規定電
圧VBmを設定する。
Here, the physical quantity includes, for example, the temperature of the battery, the charge amount (discharge and charge depth) of the battery, the number of charge / discharge cycles (the number of cycles) of the battery, the usage time of the battery, and the like. FIG. 2 shows an example of the temperature characteristic of the relationship between the charge amount of the battery and the terminal voltage as the physical quantity. From the figure, it can be seen that the battery voltage is higher as the battery temperature is lower even with the same charge amount. For example, looking at the state where the SOC is 80%,
14.4 [V] at [° C] and 16. at 10 [° C].
It becomes 17.5 [V] at 2 [V] and -15 [° C].
From this, in order to charge 100%, the battery voltage is set higher when the battery temperature is low, and the battery voltage is set lower when the battery temperature is high. The voltage calculation circuit 923 of FIG. 1 detects the battery temperature (physical quantity A), and based on the result, sets the specified voltage V Bm based on the temperature characteristics of the battery as shown in FIG.

【0014】更に、図2に示すように電池電圧は充電量
(SOC)と大きく関係するので、図1の電圧算出回路
923では充電量(物理量B)を検出し、その充電量に
応じて規定電圧VBmを可変とすることにより、充電電圧
が一定の場合に比べて充電量が一層増加する。
Further, as shown in FIG. 2, the battery voltage is greatly related to the charge amount (SOC). Therefore, the voltage calculation circuit 923 of FIG. 1 detects the charge amount (physical amount B) and regulates it according to the charge amount. By making the voltage V Bm variable, the charge amount is further increased as compared with the case where the charge voltage is constant.

【0015】図3は充放電回数(サイクル数)と電池容
量の関係の一例を示すもので、同図から充放電回数が増
加すると取り出せる電池容量が低下することがわかる。
図1の電圧算出回路923では充放電回数(物理量C)
を検出してこの回数から電池の充電量を補正し(図2の
充電量を補正することに相当する)、規定電圧VBmを算
出する。
FIG. 3 shows an example of the relationship between the number of charge / discharge cycles (the number of cycles) and the battery capacity. It can be seen from FIG. 3 that the battery capacity that can be taken out decreases as the number of charge / discharge cycles increases.
In the voltage calculation circuit 923 of FIG. 1, the number of times of charging and discharging (physical quantity C)
Is detected and the amount of charge of the battery is corrected from this number of times (corresponding to correcting the amount of charge in FIG. 2), and the specified voltage V Bm is calculated.

【0016】図1における電圧設定回路924以後の制
御動作は従来と同様であり、電圧調節器922は、電池
電圧VBが規定電圧VBmに達した後に、それまで電池に
流れていた電流を徐々に抵抗器に流し、最終的に電池電
流IBを零にするようにチョッパ92を制御する。
The control operation after the voltage setting circuit 924 in FIG. 1 is the same as the conventional one, and the voltage regulator 922 controls the current flowing through the battery until the battery voltage V B reaches the specified voltage V Bm. The chopper 92 is controlled so as to gradually flow it through the resistor and finally make the battery current I B zero.

【0017】本発明の実施例では、電圧算出回路923
に入力される物理量として電池温度、充電量、充放電回
数(サイクル数)、使用時間等を示したが、電池特性に
寄与する他の物理量も含まれ、利用できることは勿論で
ある。なお、実施例における交流電動機としては、誘導
電動機以外にも永久磁石を用いた同期電動機を使用する
ことができる。また、実施例では順・逆変換動作可能な
半導体電力変換装置としてインバータ、駆動用電動機と
して交流電動機を用いた場合について説明したが、本発
明は、これ以外にも半導体電力変換装置としてチョッ
パ、駆動用電動機として直流電動機を用いたシステムの
電気制動装置にも同様に適用可能である。
In the embodiment of the present invention, the voltage calculation circuit 923 is used.
Although the battery temperature, the amount of charge, the number of times of charging / discharging (cycle number), the usage time, etc. are shown as physical quantities input to the above, other physical quantities that contribute to the battery characteristics are also included and can be used. As the AC motor in the embodiment, a synchronous motor using a permanent magnet can be used in addition to the induction motor. Further, in the embodiment, the case where the inverter is used as the semiconductor power conversion device capable of the forward / reverse conversion operation and the AC electric motor is used as the driving electric motor has been described. The present invention is also applicable to an electric braking device of a system using a DC motor as a driving motor.

【0018】[0018]

【発明の効果】以上のように本発明によれば、電池の使
用状態や使用履歴に対応した最適な許容最大電圧を算出
し、その最大電圧に基づき設定した規定電圧に従って電
池を充電することにより回生制動を行うので、次のよう
な効果がある。 1)回生制動を最大限利用できるため、電池の利用効率
が向上し、電気自動車の一充電走行距離が増大する。 2)電池の利用効率向上により、電池の小形軽量化、低
価格化を図ることができる。 3)電池を規定電圧以上に充電することなく常に最適な
状態に保つことができるので、電池寿命が増大する。
As described above, according to the present invention, the optimum allowable maximum voltage corresponding to the usage state and usage history of the battery is calculated, and the battery is charged according to the specified voltage set based on the maximum voltage. Regenerative braking provides the following effects. 1) Since regenerative braking can be used to the maximum extent, the efficiency of battery utilization is improved and the one-charge mileage of an electric vehicle is increased. 2) By improving the utilization efficiency of the battery, it is possible to reduce the size, weight and cost of the battery. 3) The battery life can be increased because the battery can always be kept in an optimum state without being charged above the specified voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】電池の充電量及び端子電圧の関係の温度特性例
を示す図である。
FIG. 2 is a diagram showing an example of a temperature characteristic of a relationship between a charge amount of a battery and a terminal voltage.

【図3】電池の充放電回数及び公称容量の関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the nominal capacity of a battery.

【図4】電気自動車の公知のパワートレインを示す図で
ある。
FIG. 4 is a diagram showing a known power train of an electric vehicle.

【図5】電気自動車の電気制動装置を示す図である。FIG. 5 is a diagram showing an electric braking device of an electric vehicle.

【図6】充電量と電池電圧及び電池電流の関係を示す図
である。
FIG. 6 is a diagram showing a relationship between a charge amount and a battery voltage and a battery current.

【図7】従来の制御回路を示すブロック図である。FIG. 7 is a block diagram showing a conventional control circuit.

【符号の説明】 92 チョッパ 921 電圧検出器 922 電圧調節器 923 電圧算出回路 924 電圧設定器 A,B,C,D 物理量[Explanation of reference numerals] 92 Chopper 921 Voltage detector 922 Voltage regulator 923 Voltage calculation circuit 924 Voltage setting device A, B, C, D Physical quantity

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 光悦 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 楠本 敏 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 北田 眞一郎 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 石川 泰毅 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 田原 雅彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koetsu Fujita 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 in Fuji Electric Co., Ltd. (72) Inventor Shinichiro Kitada, 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor, Taiki Ishikawa, 2 Takara-cho, Kanagawa, Yokohama 72) Inventor Masahiko Tahara 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電池を電源とし、順・逆変換可能な半導
体電力変換装置を介して車両駆動用電動機を駆動する電
気自動車であって、電動機の発生電力を電池に回生する
回生制動時には、電池電圧が規定電圧以下になるように
他の電力吸収装置に回生制動電力の一部または全部を吸
収させるようにした電気自動車の電気制動装置におい
て、 回生制動時に充電される電池の許容最大電圧を、電池の
充電電圧値に影響する物理量の検出値から算出する電圧
算出回路と、前記許容最大電圧に基づいて電池の規定電
圧を設定する電圧設定回路とを備えたことを特徴とする
電気自動車の電気制動装置用制御回路。
1. An electric vehicle that uses a battery as a power source and drives a vehicle driving electric motor through a semiconductor power conversion device capable of forward / reverse conversion, wherein the battery is used during regenerative braking to regenerate the electric power generated by the electric motor into the battery. In the electric braking device of an electric vehicle in which another power absorbing device absorbs part or all of the regenerative braking power so that the voltage becomes equal to or lower than the specified voltage, the maximum allowable voltage of the battery charged during regenerative braking is Electricity of an electric vehicle, comprising: a voltage calculation circuit that calculates from a detected value of a physical quantity that affects a charging voltage value of a battery; and a voltage setting circuit that sets a specified voltage of the battery based on the allowable maximum voltage. Control circuit for braking device.
【請求項2】 電池の充電電圧値に影響する物理量が、
電池の温度、電池の使用時間、電池の充電及び放電回
数、充電量を含む請求項1記載の電気自動車の電気制動
装置用制御回路。
2. The physical quantity that affects the charging voltage value of the battery is
The control circuit for an electric braking device of an electric vehicle according to claim 1, including the temperature of the battery, the operating time of the battery, the number of times the battery is charged and discharged, and the amount of charge.
JP6124221A 1994-05-13 1994-05-13 Control circuit for electric braking device of electric car Pending JPH07312804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6124221A JPH07312804A (en) 1994-05-13 1994-05-13 Control circuit for electric braking device of electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6124221A JPH07312804A (en) 1994-05-13 1994-05-13 Control circuit for electric braking device of electric car

Publications (1)

Publication Number Publication Date
JPH07312804A true JPH07312804A (en) 1995-11-28

Family

ID=14879998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6124221A Pending JPH07312804A (en) 1994-05-13 1994-05-13 Control circuit for electric braking device of electric car

Country Status (1)

Country Link
JP (1) JPH07312804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045287A1 (en) * 1996-05-24 1997-12-04 Hino Jidosha Kogyo Kabushiki Kaisha Controller for on-vehicle battery
US5939861A (en) * 1996-05-24 1999-08-17 Hino Jidosha Kogyo Kabushiki Kaisha Control system for on-vehicle battery
EP1209021A2 (en) * 2000-11-21 2002-05-29 Nissan Motor Company, Limited Vehicle battery charge control
JP2006230102A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Power supply device, automobile equipped therewith, and control method thereof
JP2010529920A (en) * 2007-05-07 2010-09-02 ゼネラル・エレクトリック・カンパニイ Electric drive carrier retrofit system and related methods
JP2011040349A (en) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc Charging power limit value arithmetic unit
CN110979080A (en) * 2019-12-20 2020-04-10 北京理工大学 BMS self-adaptive control method and system for charging voltage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045287A1 (en) * 1996-05-24 1997-12-04 Hino Jidosha Kogyo Kabushiki Kaisha Controller for on-vehicle battery
US5939861A (en) * 1996-05-24 1999-08-17 Hino Jidosha Kogyo Kabushiki Kaisha Control system for on-vehicle battery
KR100471551B1 (en) * 1996-05-24 2005-04-14 히노지도샤코교 가부시기가이샤 Control System for On-vehicle Batteries
EP1209021A2 (en) * 2000-11-21 2002-05-29 Nissan Motor Company, Limited Vehicle battery charge control
EP1209021A3 (en) * 2000-11-21 2002-07-03 Nissan Motor Company, Limited Vehicle battery charge control
US6509720B2 (en) 2000-11-21 2003-01-21 Nissan Motor Co., Ltd. Vehicle battery charge control apparatus and a vehicle battery charge control method
JP2006230102A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Power supply device, automobile equipped therewith, and control method thereof
JP4609106B2 (en) * 2005-02-17 2011-01-12 トヨタ自動車株式会社 Power supply device, automobile equipped with the same, and control method of power supply device
JP2010529920A (en) * 2007-05-07 2010-09-02 ゼネラル・エレクトリック・カンパニイ Electric drive carrier retrofit system and related methods
JP2011040349A (en) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc Charging power limit value arithmetic unit
CN110979080A (en) * 2019-12-20 2020-04-10 北京理工大学 BMS self-adaptive control method and system for charging voltage

Similar Documents

Publication Publication Date Title
EP0921024B1 (en) A method of operating an electric vehicle with battery regeneration dependant on battery charge state
US5941328A (en) Electric vehicle with variable efficiency regenerative braking depending upon battery charge state
US5929595A (en) Hybrid electric vehicle with traction motor drive allocated between battery and auxiliary source depending upon battery charge state
US5910722A (en) Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking
JP3536581B2 (en) Power generation control device for hybrid electric vehicle
CA2574470C (en) Vehicle propulsion system
CN1976827B (en) Hybrid electric propulsion system and method
JP6744350B2 (en) vehicle
CN110884364A (en) Power tracking-based electric vehicle hybrid power supply control method
CA2355672A1 (en) Hybrid drive system
JP3389324B2 (en) Hybrid power supply for electric vehicles
JP3171217B2 (en) Power supply for motor drive
JPH07312804A (en) Control circuit for electric braking device of electric car
JPH07236203A (en) Controller for electric automobile
JPH04322105A (en) Regenerative energy absorber
JP2004166350A (en) Battery controller
JP2973657B2 (en) Power distribution system for series hybrid vehicles
JP2001292533A (en) Battery management device for electric vehicle
JP3156340B2 (en) Regenerative braking device for electric vehicles
JPH0463639B2 (en)
JPH10215503A (en) Device for controlling hybrid electric vehicle
JPH11113185A (en) Charging apparatus by commercial and regenerative power
US11658502B2 (en) Power supply system
JPH08251711A (en) Battery apparatus for hybrid automobile
JPH07212912A (en) Electric brake control method for electric car

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021031