JPH07312410A - Parallel connection structure of flat type semiconductor switch - Google Patents
Parallel connection structure of flat type semiconductor switchInfo
- Publication number
- JPH07312410A JPH07312410A JP1027595A JP1027595A JPH07312410A JP H07312410 A JPH07312410 A JP H07312410A JP 1027595 A JP1027595 A JP 1027595A JP 1027595 A JP1027595 A JP 1027595A JP H07312410 A JPH07312410 A JP H07312410A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- conductor
- flat
- semiconductor switch
- connection structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、平形構造の半導体ス
イッチの複数を並列に接続して、各半導体スイッチが高
速で時間差を生じることなくオン・オフ動作できる平形
半導体スイッチの並列接続構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parallel connection structure of flat semiconductor switches in which a plurality of flat structure semiconductor switches are connected in parallel and each semiconductor switch can be turned on and off at high speed without causing a time difference.
【0002】[0002]
【従来の技術】半導体スイッチを使えば、直流を交流へ
の電力変換や交流を直流への電力変換を容易に且つ円滑
に行える。しかしながら半導体スイッチの容量には限度
がり、変換する電力も制限されてしまうため、半導体ス
イッチ単体の容量を増大させることあるいは、多数の半
導体スイッチを並列接続することで変換電力の容量増大
を図っている。2. Description of the Related Art If a semiconductor switch is used, it is possible to easily and smoothly convert power from direct current to alternating current and convert alternating current to direct current. However, since the capacity of the semiconductor switch is limited and the power to be converted is also restricted, the capacity of the converted power is increased by increasing the capacity of the semiconductor switch alone or connecting a large number of semiconductor switches in parallel. .
【0003】図5は複数の半導体スイッチを並列接続す
る回路の一般的な例を示した回路図であるが、この図5
の回路は、図6に示す半導体スイッチを3個(2a,2
b,2c)並列接続する場合を図示している。即ち各半
導体スイッチのドレイン極2D同士をドレイン線6で共
通に接続し、ソース極2S同士をソース線7で共通に接
続する。電力変換を行う際は、各半導体スイッチを同時
にオン・オフさせる必要があるので、そこで各半導体ス
イッチ2のゲート極2G同士をゲート線8で共通に接続
し、このゲート線8と前述のソース線7とをゲート駆動
回路5に接続する。ゲート駆動回路5が各半導体スイッ
チのゲート−ソース間にオン電圧を印加してゲート極か
らソース極へオン電流を流せば、これら各半導体スイッ
チは一斉にターンオンするし、オン電圧の印加を中止す
るあるいは逆方向の電圧を印加してオフ電流をソース極
からゲート極へ流せば、各半導体スイッチは一斉にター
ンオフする。FIG. 5 is a circuit diagram showing a general example of a circuit in which a plurality of semiconductor switches are connected in parallel.
The circuit of FIG. 6 has three semiconductor switches (2a, 2a) shown in FIG.
b, 2c) The case of parallel connection is illustrated. That is, the drain electrodes 2D of the respective semiconductor switches are commonly connected by the drain line 6, and the source electrodes 2S are commonly connected by the source line 7. When performing power conversion, it is necessary to turn on / off each semiconductor switch at the same time. Therefore, the gate electrodes 2G of each semiconductor switch 2 are commonly connected by the gate line 8, and the gate line 8 and the source line described above are connected. 7 and 7 are connected to the gate drive circuit 5. When the gate drive circuit 5 applies an on-voltage between the gate and the source of each semiconductor switch and causes an on-current to flow from the gate electrode to the source electrode, all of these semiconductor switches are turned on all at once and the application of the on-voltage is stopped. Alternatively, when a reverse voltage is applied and an off current is passed from the source electrode to the gate electrode, all the semiconductor switches are turned off all at once.
【0004】[0004]
【発明が解決しようとする課題】ところで、ゲート駆動
回路5と半導体スイッチ2a,2b,2cとが前述した
図5で図示した位置関係にあるとすると、ゲート駆動回
路5から半導体スイッチ2bのゲート極までのゲート線
8の長さは、ゲート駆動回路5から半導体スイッチ2a
のゲート極までの距離よりも長くなるし、ゲート駆動回
路5から半導体スイッチ2cまでのゲート線8の長さは
更に長い。If the gate drive circuit 5 and the semiconductor switches 2a, 2b, 2c are in the positional relationship shown in FIG. 5 described above, the gate drive circuit 5 is connected to the gate electrodes of the semiconductor switch 2b. The length of the gate line 8 from the gate drive circuit 5 to the semiconductor switch 2a
Of the gate line 8 from the gate drive circuit 5 to the semiconductor switch 2c.
【0005】例えば、各半導体スイッチのゲート極同士
を接続するゲート線8の長さは数10cmとすると、ゲー
ト線,ソース線の配線インダクタンスLは数百nHとな
る。一方、数百ボルト,数百アンペアのような大容量の
半導体スイッチのゲートの静電容量Cは数百nF程度であ
る。ゲート駆動回路5から各ゲート極への信号(オン電
流)の伝達遅れ時間は、前述した線路インダクタンスL
とゲート静電容量Cとの積の平方根にほぼ等しい。従っ
て半導体スイッチの複数を並列に接続した場合に、ゲー
ト配線のインダクタンスLとゲート静電容量Cとが前述
した値のときの信号伝達遅れ時間は数百ナノ秒となる。For example, if the length of the gate line 8 connecting the gate electrodes of each semiconductor switch is several tens cm, the wiring inductance L of the gate line and the source line is several hundreds nH. On the other hand, the capacitance C of the gate of a semiconductor switch having a large capacity such as several hundreds of volts and several hundreds of amperes is about several hundreds nF. The transmission delay time of the signal (ON current) from the gate drive circuit 5 to each gate pole is determined by the line inductance L described above.
Is approximately equal to the square root of the product of the gate capacitance C. Therefore, when a plurality of semiconductor switches are connected in parallel, the signal transmission delay time becomes several hundred nanoseconds when the inductance L and the gate capacitance C of the gate wiring are the above-mentioned values.
【0006】即ち図5に図示の半導体スイッチ並列接続
回路では、半導体スイッチ2aと半導体スイッチ2cと
は、インダクタンスの影響によって信号伝達時間に差が
生じるため、この信号伝達遅れ時間が原因で、半導体ス
イッチ2a,2cとはそのオン・オフ動作に数百ナノ秒
又はそれ以上の時間差を生じてしまう。オン状態からオ
フ状態へ移行する際に遅れてオフする半導体スイッチに
は電流が集中するので、その半導体スイッチにターンオ
フ損失が集中する。又、オフ状態からオン状態へ移行す
る際に、早くオンする半導体スイッチにターンオン損失
が集中することになる。That is, in the semiconductor switch parallel connection circuit shown in FIG. 5, the semiconductor switch 2a and the semiconductor switch 2c have a difference in signal transmission time due to the influence of the inductance. There is a time difference of several hundreds of nanoseconds or more in the on / off operation with respect to 2a and 2c. Since the current is concentrated in the semiconductor switch that is turned off after the transition from the on state to the off state, the turn-off loss is concentrated in the semiconductor switch. Also, when the off-state shifts to the on-state, turn-on loss concentrates on the semiconductor switch that turns on quickly.
【0007】このようにオン・オフ動作に時間差がある
と、特定の半導体スイッチに損失が集中するので、多数
の半導体スイッチを並列接続することが無意味になって
しまい、半導体スイッチを並列接続しても変換電力があ
まり増加しない不都合を生じる。そこでゲート配線を大
きくしてそのインダクタンスを低減しようとすれば大き
な配線スペースが必要になるし、太い配線を接続するに
も大きなスペースが必要になる。又、太い配線の接続は
簡単にはできない。更に、大電力用半導体スイッチの主
回路導体(即ちアノード側導体とカソード側導体)のイ
ンダクタンスも小さくしなければならないので、半導体
スイッチ周辺に無駄な磁束を通す空間を設けることは許
されない。従って導体を接続するためのねじ締め作業用
やはんだ付け作業用の空間を確保することも困難とな
る。If there is a time difference between the ON / OFF operations as described above, the loss is concentrated on a specific semiconductor switch, so that it becomes meaningless to connect a large number of semiconductor switches in parallel, and the semiconductor switches are connected in parallel. Even so, the converted power does not increase so much. Therefore, if an attempt is made to increase the size of the gate wiring to reduce its inductance, a large wiring space is required, and a large space is required to connect a thick wiring. Also, it is not easy to connect thick wiring. Furthermore, since the inductance of the main circuit conductor (that is, the anode-side conductor and the cathode-side conductor) of the high-power semiconductor switch must also be reduced, it is not allowed to provide a space for passing useless magnetic flux around the semiconductor switch. Therefore, it is difficult to secure a space for screw tightening work or soldering work for connecting the conductors.
【0008】この発明の目的は、複数の半導体スイッチ
を並列に接続する際の各制御極間の配線インダクタンス
を小さくして、各半導体スイッチの動作時間差を低減す
ることにある。An object of the present invention is to reduce the wiring inductance between the control electrodes when a plurality of semiconductor switches are connected in parallel to reduce the operating time difference between the semiconductor switches.
【0009】[0009]
【課題を解決するための手段】前記の目的を達成するた
めに、この発明では、平形構造半導体スイッチの複数を
並列に接続する際に、各半導体スイッチの第1電極を板
状の第1導体に接触させ、この第1電極とは反対の面に
設けている各第2電極には帯状の第2電極用導体を接触
させ、且つ各第3電極と膜状の第3電極用導体とを接触
させるのであるが、これら第2電極用導体と第3電極用
導体との間には、幅が広くて薄い帯状の絶縁体を介在さ
せて重ね合わせる構造、所謂ラミネート構造とする。In order to achieve the above object, according to the present invention, when a plurality of flat structure semiconductor switches are connected in parallel, the first electrode of each semiconductor switch is a plate-shaped first conductor. And a strip-shaped second electrode conductor is brought into contact with each second electrode provided on the surface opposite to the first electrode, and each third electrode and a film-shaped third electrode conductor are provided. Although they are brought into contact with each other, a wide and thin strip-shaped insulator is interposed between the second electrode conductor and the third electrode conductor to form a layered structure, that is, a so-called laminated structure.
【0010】あるいは、第2電極用導体と第3電極用導
体とを前記膜状の絶縁体を介して曲げて交互に重ね、前
記第2電極用導体の帯状部とは反対側の面に第3電極用
導体が露出する構造とする。Alternatively, the second electrode conductors and the third electrode conductors are bent through the film-shaped insulator and alternately stacked, and a second electrode conductor is provided with a second surface on the side opposite to the strip-shaped portion. The structure is such that the conductor for three electrodes is exposed.
【0011】[0011]
【作用】先述の如く第2,第3電極用導体を構成するこ
とにより、第3電極用導体のインダクタンスが、従来よ
りも2桁以上小さくなる。By constructing the second and third electrode conductors as described above, the inductance of the third electrode conductor becomes smaller by two digits or more than that of the conventional one.
【0012】[0012]
【実施例】図1は、本発明の構成を図5と同様に示した
図であって、図3に示す半導体スイッチ20を複数個並
列に接続している。図5と相違する点は、ドレイン,ソ
ース,ゲートの各極の接続を面を持つドレイン導体1
1,ソース導体41,ゲート導体31によって行ってい
て、ソース導体41とゲート導体31とは膜状の絶縁体
51を介して所謂ラミネート構造としている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the configuration of the present invention similarly to FIG. 5, in which a plurality of semiconductor switches 20 shown in FIG. 3 are connected in parallel. The difference from FIG. 5 is that the drain conductor 1 has a plane for connection of the drain, source, and gate poles.
1, the source conductor 41, and the gate conductor 31. The source conductor 41 and the gate conductor 31 have a so-called laminated structure with a film-shaped insulator 51 interposed therebetween.
【0013】図2は本発明の第1実施例を表した図であ
って、図3に図示の構造の半導体スイッチ20の複数を
並列接続した状態を表している。この図3で明らかなよ
うに、半導体スイッチのドレイン極21は、図示しない
加圧装置により矢印方向の加圧され、第1導体としての
板状のドレイン導体11に接触し、ソース極22も矢印
方向の加圧力によって帯状のソース導体41に接触して
いる。更にゲート極23は矢印方向の加圧力によって歪
み、この歪みを復元しようとするばね力によって帯状の
ゲート導体31に接触しているが、このゲート導体31
は薄い絶縁体51によりソース導体41と絶縁されてい
る。ここで、ソース導体41,ゲート導体31,絶縁体
51とで第2導体12が構成される。FIG. 2 is a diagram showing a first embodiment of the present invention, and shows a state in which a plurality of semiconductor switches 20 having the structure shown in FIG. 3 are connected in parallel. As is apparent from FIG. 3, the drain electrode 21 of the semiconductor switch is pressed in the direction of the arrow by a pressurizing device (not shown), contacts the plate-shaped drain conductor 11 as the first conductor, and the source electrode 22 also has the arrow. The strip-shaped source conductor 41 is in contact with the directional force. Further, the gate electrode 23 is distorted by the pressing force in the direction of the arrow, and is in contact with the band-shaped gate conductor 31 by the spring force that tries to restore this strain.
Is insulated from the source conductor 41 by a thin insulator 51. Here, the source conductor 41, the gate conductor 31, and the insulator 51 form the second conductor 12.
【0014】第1実施例のように、1つの半導体スイッ
チ素子が複数のゲート極23を有する素子を用いる場
合、ゲート極23が同一の信号によって駆動されるので
あれば、ゲート導体31をその端部でゲート導体31と
同一の部材で共通に接続すること、つまり、ゲート導体
31を端部で共通に接続された形状に形成することによ
って、ゲート導体のインダクタンスが1/2に低減され
る。When one semiconductor switch element uses an element having a plurality of gate poles 23 as in the first embodiment, if the gate poles 23 are driven by the same signal, the gate conductor 31 is placed at its end. By connecting the gate conductor 31 in common by the same member as the gate conductor 31, that is, by forming the gate conductor 31 in a shape commonly connected at the end, the inductance of the gate conductor is reduced to 1/2.
【0015】複数のゲート極23が別の信号によって別
の動作をする場合、ゲート導体の端部での接続を行わな
ければ、別の信号による別の動作が可能なことはもちろ
んである。第1実施例では、ゲート導体31の端部を共
通に接続した構成とし、ソース導体41とゲート導体3
1との間にゲート駆動回路が接続して、ゲート極23へ
信号を与えている。If the plurality of gate poles 23 behave differently by different signals, it is needless to say that other actions can be made by different signals unless connection is made at the ends of the gate conductors. In the first embodiment, the end portions of the gate conductor 31 are commonly connected, and the source conductor 41 and the gate conductor 3 are connected.
A gate drive circuit is connected between 1 and 1 to give a signal to the gate pole 23.
【0016】ソース導体41とゲート導体31との間に
は膜状の絶縁体51が介在するため、ゲート導体のイン
ダクタンスは配線による接続に比べ小さい値となる。図
4は本発明の第2実施例を表した図であって、図3に図
示の構造の半導体スイッチの複数を並列接続した状態を
表している。この図4の第2実施例において、ソース導
体42はやや肉厚の帯状部42aと帯状部42aより薄
い膜状部42bからなり、膜状部42bと膜状のゲート
導体32とが折り曲げられ膜状の絶縁体52を介して交
互に重ね合わせられ、帯状部42aの加圧面とは反対
側、即ち膜状部42bが設けられた側ではゲート導体3
2の一面が露出するようにして第3導体13を構成して
いる。また、この重ね合わせ部は、半導体スイッチ20
のゲート極23の数と同数が設けられる。Since the film-shaped insulator 51 is interposed between the source conductor 41 and the gate conductor 31, the inductance of the gate conductor has a smaller value than the connection by wiring. FIG. 4 is a diagram showing a second embodiment of the present invention, and shows a state in which a plurality of semiconductor switches having the structure shown in FIG. 3 are connected in parallel. In the second embodiment of FIG. 4, the source conductor 42 is composed of a slightly thick strip 42a and a film portion 42b thinner than the strip 42a, and the film portion 42b and the film gate conductor 32 are bent to form a film. The gate conductors 3 are alternately overlapped with each other via the strip-shaped insulators 52, and the gate conductor 3 is provided on the side opposite to the pressing surface of the strip portion 42a, that is, on the side where the film portion 42b is provided.
The third conductor 13 is configured such that one surface of the second conductor 2 is exposed. In addition, this overlapping portion is the semiconductor switch 20.
The same number as the number of the gate poles 23 of is provided.
【0017】第1実施例と同様に、図示しない加圧装置
により矢印の方向に加圧することにより、ソース導体の
帯状部42aはソース極22と、ドレイン導体11はド
レイン極21と、ゲート導体32の露出面がゲート極2
3とそれぞれ接触する。また、ソース導体42とゲート
導体32との間にゲート駆動回路5が接続されている。Similar to the first embodiment, by applying pressure in the direction of the arrow by a pressurizing device (not shown), the strip portion 42a of the source conductor is the source pole 22, the drain conductor 11 is the drain pole 21, and the gate conductor 32. The exposed surface is the gate pole 2
Contact with 3 respectively. Further, the gate drive circuit 5 is connected between the source conductor 42 and the gate conductor 32.
【0018】第2実施例では、ソース導体42にやや肉
厚の帯状部42aと帯状部42aより薄い膜状部42b
を設け、膜状部42bと膜状のゲート導体32とが折り
曲げられ膜状の絶縁体52を介して交互に重ね合わせる
構成としたので、膜状部42b、ゲート導体32の磁路
が長くなるため、ゲート電流によって膜状部42bに発
生する起磁力とゲート導体32に発生する起磁力とが相
殺されることになり、配線による接続と比較して、ある
いは第1実施例と比較してインダクタンスの低減効果が
顕著である。In the second embodiment, the source conductor 42 has a slightly thick strip 42a and a film 42b thinner than the strip 42a.
And the film-shaped portion 42b and the film-shaped gate conductor 32 are bent and overlapped with each other via the film-shaped insulator 52, the magnetic path of the film-shaped portion 42b and the gate conductor 32 becomes long. Therefore, the magnetomotive force generated in the film-shaped portion 42b and the magnetomotive force generated in the gate conductor 32 are canceled by the gate current, and the inductance is compared with the connection by wiring or compared with the first embodiment. Is remarkable.
【0019】[0019]
【発明の効果】この発明によれば、ゲート駆動回路が出
力するオン・オフ信号がゲート導体とソース導体とを介
して半導体スイッチのゲート極へ流れるが、これらゲー
ト導体とソース導体とは極めて薄い絶縁体を介して密着
しており、且つ幅の広い導体であるから、ゲート電流に
よって発生する起磁力を相殺させることから、平形構造
の半導体スイッチを5〜10個並列に接続する場合でも
配線インダクタンスは数nH程度の小さな値にすることが
できる。According to the present invention, the on / off signal output from the gate drive circuit flows to the gate pole of the semiconductor switch through the gate conductor and the source conductor, but these gate conductor and source conductor are extremely thin. Since it is a conductor with a wide width that is closely attached via an insulator, it cancels the magnetomotive force generated by the gate current, so that even if 5 to 10 flat-structured semiconductor switches are connected in parallel, the wiring inductance Can be as small as a few nH.
【0020】従ってゲート配線のインダクタンスに起因
する信号伝達の遅れ時間は数十ナノ秒以下に短縮できる
ので、従来の配線構造に比して大幅に遅れ時間を短縮で
き、各半導体スイッチのターンオン損失やターンオフ損
失を低減できる。その結果、変換電力を半導体スイッチ
の並列数にほぼ比例して増加させることができるので、
より大形の電力変換装置を実現できる効果が得られる。Therefore, since the delay time of signal transmission due to the inductance of the gate wiring can be shortened to several tens of nanoseconds or less, the delay time can be greatly shortened as compared with the conventional wiring structure, and turn-on loss of each semiconductor switch and Turn-off loss can be reduced. As a result, the converted power can be increased almost in proportion to the number of parallel semiconductor switches.
The effect that a larger-sized power converter can be realized is obtained.
【0021】ソース導体とゲート導体とが膜状の絶縁体
を介して対向する面積を増加させることにより、ゲート
配線のインダクタンスをより一層低減できるので、半導
体スイッチの損失をより低減できる効果が得られる。更
に、多数の半導体スイッチを並列接続する際に、ねじ締
め作業やはんだ付け作業をせずに圧接によって組み立て
ているので、余分な作業空間を必要としないので、装置
を小形にできるだけではなく、配線インダクタンスを低
減している。又、配線接続の手間も省略できる効果が合
わせて得られる。By increasing the area where the source conductor and the gate conductor are opposed to each other through the film-shaped insulator, the inductance of the gate wiring can be further reduced, so that the loss of the semiconductor switch can be further reduced. . Furthermore, when connecting a large number of semiconductor switches in parallel, they are assembled by pressure welding without screwing or soldering work, so no extra work space is required, so not only can the device be made compact, but the wiring can also be reduced. Inductance is reduced. In addition, the effect that the labor of wiring connection can be omitted is also obtained.
【図1】本発明の構成を示す図FIG. 1 is a diagram showing a configuration of the present invention.
【図2】本発明の第1実施例を示す図FIG. 2 is a diagram showing a first embodiment of the present invention.
【図3】本発明の実施例に用いる半導体スイッチの構造
を示す図FIG. 3 is a diagram showing a structure of a semiconductor switch used in an embodiment of the present invention.
【図4】本発明の第2実施例を示す図FIG. 4 is a diagram showing a second embodiment of the present invention.
【図5】従来の構成を示す図FIG. 5 is a diagram showing a conventional configuration.
【図6】従来例に用いる半導体スイッチの構造を示す図FIG. 6 is a diagram showing a structure of a semiconductor switch used in a conventional example.
2,20……半導体スイッチ、5……ゲート駆動回路、
6……ドレイン線、7……ソース線、8……ゲート線、
2D,21……ドレイン極、2S,22……ソース極、
2G,23……ゲート極、11……ドレイン導体、4
1,42……ソース導体、31,32……ゲート導体、
51,52……絶縁体2, 20 ... Semiconductor switch, 5 ... Gate drive circuit,
6 ... drain line, 7 ... source line, 8 ... gate line,
2D, 21 ... Drain pole, 2S, 22 ... Source pole,
2G, 23 ... Gate pole, 11 ... Drain conductor, 4
1, 42 ... Source conductor, 31, 32 ... Gate conductor,
51, 52 ... Insulator
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年2月23日[Submission date] February 23, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Name of item to be corrected] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】図2は本発明の第1実施例を表した図であ
って、図3に図示の構造の半導体スイッチ20の複数を
並列接続した状態を表している。この図2で明らかなよ
うに、半導体スイッチのドレイン極21は、図示しない
加圧装置により矢印方向に加圧され、第1導体としての
板状のドレイン導体11に接触し、ソース極22も矢印
方向の加圧力によって帯状のソース導体41に接触して
いる。更にゲート極23は矢印方向の加圧力によって歪
み、この歪みを復元しようとするばね力によって帯状の
ゲート導体31に接触しているが、このゲート導体31
は薄い絶縁体51によりソース導体41と絶縁されてい
る。ここで、ソース導体41,ゲート導体31,絶縁体
51とで第2導体12が構成される。FIG. 2 is a diagram showing a first embodiment of the present invention, and shows a state in which a plurality of semiconductor switches 20 having the structure shown in FIG. 3 are connected in parallel. As is apparent from FIG. 2, the drain electrode 21 of the semiconductor switch is pressed in the direction of the arrow by a pressurizing device (not shown), contacts the plate-shaped drain conductor 11 as the first conductor, and the source electrode 22 also has the arrow. The strip-shaped source conductor 41 is in contact with the directional force. Further, the gate electrode 23 is distorted by the pressing force in the direction of the arrow, and is in contact with the band-shaped gate conductor 31 by the spring force that tries to restore this strain.
Is insulated from the source conductor 41 by a thin insulator 51. Here, the source conductor 41, the gate conductor 31, and the insulator 51 form the second conductor 12.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Name of item to be corrected] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0015】複数のゲート極23が別の信号によって別
の動作をする場合、ゲート導体の端部での接続を行わな
ければ、別の信号による別の動作が可能なことはもちろ
んである。第1実施例では、ゲート導体31の端部を共
通に接続した構成とし、ソース導体41とゲート導体3
1との間にゲート駆動回路5を接続して、ゲート極23
へ信号を与えている。If the plurality of gate poles 23 behave differently by different signals, it is needless to say that other actions can be made by different signals unless connection is made at the ends of the gate conductors. In the first embodiment, the end portions of the gate conductor 31 are commonly connected, and the source conductor 41 and the gate conductor 3 are connected.
The gate drive circuit 5 is connected between the
Is giving a signal to.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図2[Name of item to be corrected] Figure 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図2】 [Fig. 2]
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図4[Name of item to be corrected] Fig. 4
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図4】 [Figure 4]
Claims (8)
チの第1電極を形成し、他方の平面には突出して形成さ
れた第2電極と、この第2電極とは絶縁され且つ導電性
弾性材料で形成された複数の第3電極とを備えている平
形半導体スイッチの複数を並列に接続する構造におい
て、 板状の第1導体と、 帯状の第2電極用導体と膜状で前記複数の第3電極に対
応した第3電極用導体とこれら第2電極用導体と第3電
極用導体との間に別個に挿入して両者を絶縁する膜状の
絶縁体とで構成した第2導体とを備え、 前記第1導体と第2導体との間に複数の前記平形半導体
スイッチを挿入し、各平形半導体スイッチの第1電極と
第1導体とを接触させ,各平形半導体スイッチの第2電
極と第2電極用導体とを接触させ,且つ各平形半導体ス
イッチの複数の第3電極と複数の第3電極用導体とを別
個に接触させ、これら第1導体と第3導体との間に圧力
をかけて前記各電極と各導体とを圧接することを特徴と
する平形半導体スイッチの並列接続構造。1. A flat electrode having a first electrode of a semiconductor switch formed on one of its flat surfaces, and a second electrode protruding on the other flat surface, and the second electrode being insulated and electrically conductive. In a structure in which a plurality of flat semiconductor switches each including a plurality of third electrodes formed of an elastic material are connected in parallel, a plate-shaped first conductor, a belt-shaped second electrode conductor, and a plurality of film-shaped conductors A second conductor composed of a third electrode conductor corresponding to the third electrode and a film-like insulator which is separately inserted between the second electrode conductor and the third electrode conductor to insulate the two. A plurality of the flat semiconductor switches are inserted between the first conductor and the second conductor, the first electrode of each flat semiconductor switch and the first conductor are brought into contact with each other, and the second electrode of each flat semiconductor switch is provided. Contact the electrode and the conductor for the second electrode, and A plurality of third electrodes and a plurality of third electrode conductors are brought into contact with each other, and a pressure is applied between the first conductor and the third conductor to press-contact each electrode and each conductor. Parallel semiconductor switch parallel connection structure.
列接続構造において、前記第3電極用導体を、その端部
で第3電極導体と同一部材で共通に接続することを特徴
とする平形半導体スイッチの並列接続構造。2. The parallel connection structure of flat type semiconductor switches according to claim 1, wherein the third electrode conductor is connected in common at the end by the same member as the third electrode conductor. Parallel connection structure of semiconductor switches.
チの第1電極を形成し、他方の平面には突出して形成さ
れた第2電極と、この第2電極とは絶縁され且つ導電性
弾性材料で形成された複数の第3電極とを備えている平
形半導体スイッチの複数を並列に接続する構造におい
て、 板状の第1導体と、 帯状の部分と、膜状の部分をもつ第2電極用導体と膜状
で前記複数の第3電極に対応した第3電極用導体と、第
2電極用導体と第3電極用導体とを互いに絶縁するため
の膜状の絶縁体とからなり、前記第2電極用導体の膜状
部と前記第3電極用導体とを前記膜状の絶縁体を介して
曲げて交互に重ね、前記第2電極用導体の帯状部とは反
対側の面に第3電極用導体が露出するようにして第3導
体を構成し、 前記第1導体と第3導体との間に複数の前記平形半導体
スイッチを挿入し、各平形半導体スイッチの第1電極と
第1導体とを接触させ,各平形半導体スイッチの第2電
極と第2電極用導体とを接触させ,且つ各平形半導体ス
イッチの複数の第3電極と複数の第3電極用導体とを別
個に接触させ、これら第1導体と第3導体との間に圧力
をかけて前記各電極と各導体とを圧接する ことを特徴
とする平形半導体スイッチの並列接続構造。3. A flat electrode having a first electrode of a semiconductor switch formed on one of its flat surfaces, and a second electrode formed on the other flat surface so as to project, and the second electrode is insulated and electrically conductive. In a structure in which a plurality of flat semiconductor switches having a plurality of third electrodes formed of an elastic material are connected in parallel, a plate-shaped first conductor, a band-shaped portion, and a film-shaped second conductor are provided. An electrode conductor, a film-shaped third electrode conductor corresponding to the plurality of third electrodes, and a film-shaped insulator for insulating the second electrode conductor and the third electrode conductor from each other, The film-shaped portion of the conductor for the second electrode and the conductor for the third electrode are bent and overlapped with each other through the film-shaped insulator, and are alternately overlapped with each other. A third conductor is configured such that the third electrode conductor is exposed, and a double conductor is provided between the first conductor and the third conductor. Inserting the flat semiconductor switch, contacting the first electrode and the first conductor of each flat semiconductor switch, contacting the second electrode of each flat semiconductor switch and the conductor for the second electrode, and each flat semiconductor switch The plurality of third electrodes and the plurality of third electrode conductors are separately contacted with each other, and a pressure is applied between the first conductor and the third conductor to press-contact each electrode and each conductor. Parallel connection structure of flat semiconductor switches.
列接続構造において、前記第3電極用導体を、その端部
で第3電極導体と同一部材で共通に接続することを特徴
とする平形半導体スイッチの並列接続構造。4. The flat-type semiconductor switch parallel connection structure according to claim 3, wherein the third electrode conductor is connected in common at the end thereof with the same member as the third electrode conductor. Parallel connection structure of semiconductor switches.
スイッチの並列接続構造において、 前記半導体スイッチはMOSFETであり、前記第1電
極はドレイン極であり、前記第2電極はソース極であ
り、前記第3電極はゲート極であることを特徴とする平
形半導体スイッチの並列接続構造。5. The parallel connection structure of flat semiconductor switches according to claim 1, wherein the semiconductor switch is a MOSFET, the first electrode is a drain electrode, and the second electrode is a source electrode. A parallel connection structure of flat semiconductor switches, wherein the third electrode is a gate electrode.
スイッチの並列接続構造において、 前記半導体スイッチはIGBTであり、前記第1電極は
ドレイン極であり、前記第2電極はソース極であり、前
記第3電極はゲート極であることを特徴とする平形半導
体スイッチの並列接続構造。6. The parallel connection structure for flat semiconductor switches according to claim 1, wherein the semiconductor switch is an IGBT, the first electrode is a drain electrode, and the second electrode is a source electrode. A parallel connection structure of flat semiconductor switches, wherein the third electrode is a gate electrode.
スイッチの並列接続構造において、 前記半導体スイッチはサイリスタであり、前記第1電極
はアノード極であり、前記第2電極はカソード極であ
り、前記第3電極はゲート極であることを特徴とする平
形半導体スイッチの並列接続構造。7. The parallel connection structure of flat semiconductor switches according to claim 1, wherein the semiconductor switch is a thyristor, the first electrode is an anode pole, and the second electrode is a cathode pole. A parallel connection structure of flat semiconductor switches, wherein the third electrode is a gate electrode.
スイッチの並列接構造において、 前記半導体スイッチはバイポーラトランジスタであり、
前記第1電極はコレクタ極であり、前記第2電極はエミ
ッタ極であり、前記第3電極はベース極であることを特
徴とする平形半導体スイッチの並列接続構造。8. The parallel connection structure of flat semiconductor switches according to claim 1, wherein the semiconductor switch is a bipolar transistor.
The parallel connection structure of flat semiconductor switches, wherein the first electrode is a collector electrode, the second electrode is an emitter electrode, and the third electrode is a base electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1027595A JP3228043B2 (en) | 1994-03-24 | 1995-01-26 | Parallel connection structure of flat semiconductor switches |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-52397 | 1994-03-24 | ||
JP5239794 | 1994-03-24 | ||
JP1027595A JP3228043B2 (en) | 1994-03-24 | 1995-01-26 | Parallel connection structure of flat semiconductor switches |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07312410A true JPH07312410A (en) | 1995-11-28 |
JP3228043B2 JP3228043B2 (en) | 2001-11-12 |
Family
ID=26345531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1027595A Expired - Fee Related JP3228043B2 (en) | 1994-03-24 | 1995-01-26 | Parallel connection structure of flat semiconductor switches |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3228043B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9209099B1 (en) | 2014-05-20 | 2015-12-08 | Fuji Electric Co., Ltd. | Power semiconductor module |
DE102016203819A1 (en) | 2015-04-01 | 2016-10-06 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device |
DE102016212032A1 (en) | 2015-08-13 | 2017-02-16 | Fuji Electric Co., Ltd. | Semiconductor module |
US9589867B2 (en) | 2014-10-30 | 2017-03-07 | Fuji Electric Co., Ltd. | Semiconductor device |
US9812431B2 (en) | 2014-04-01 | 2017-11-07 | Fuji Electric Co., Ltd. | Power semiconductor module |
-
1995
- 1995-01-26 JP JP1027595A patent/JP3228043B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9812431B2 (en) | 2014-04-01 | 2017-11-07 | Fuji Electric Co., Ltd. | Power semiconductor module |
US9209099B1 (en) | 2014-05-20 | 2015-12-08 | Fuji Electric Co., Ltd. | Power semiconductor module |
US9589867B2 (en) | 2014-10-30 | 2017-03-07 | Fuji Electric Co., Ltd. | Semiconductor device |
DE102016203819A1 (en) | 2015-04-01 | 2016-10-06 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device |
US9524919B2 (en) | 2015-04-01 | 2016-12-20 | Fuji Electric Co., Ltd. | Semiconductor module and semiconductor device |
DE102016212032A1 (en) | 2015-08-13 | 2017-02-16 | Fuji Electric Co., Ltd. | Semiconductor module |
CN106449608A (en) * | 2015-08-13 | 2017-02-22 | 富士电机株式会社 | Semiconductor module |
US9590622B1 (en) | 2015-08-13 | 2017-03-07 | Fuji Electric Co., Ltd. | Semiconductor module |
Also Published As
Publication number | Publication date |
---|---|
JP3228043B2 (en) | 2001-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8017978B2 (en) | Hybrid semiconductor device | |
EP0810672A2 (en) | High voltage MIS field effect transistor | |
CN107004674B (en) | The lamination of semiconductor module and semiconductor module is arranged | |
KR100324802B1 (en) | Power converter device | |
JPS6393126A (en) | Semiconductor device | |
JPH06261556A (en) | Semiconductor switch apparatus | |
US20220108940A1 (en) | Semiconductor device | |
JP2003197861A (en) | Power semiconductor submodule and power semiconductor module | |
JPH07312410A (en) | Parallel connection structure of flat type semiconductor switch | |
JP2007027432A (en) | Semiconductor device | |
US10505489B2 (en) | Power module for an electric motor | |
CN109768039A (en) | A kind of two-side radiation power module | |
EP0674380B1 (en) | Parallel connection structure for flat type semiconductor switches | |
US6445013B1 (en) | Gate commutated turn-off semiconductor device | |
JPH07254699A (en) | Insulated gate semiconductor device and power converter using the same | |
JP3390653B2 (en) | Semiconductor switching device, semiconductor stack device and power conversion device using the same | |
US10153421B1 (en) | Piezoelectric transistors with intrinsic anti-parallel diodes | |
JP2006216730A (en) | Power semiconductor module | |
JP2020038885A (en) | Semiconductor device | |
JP3646043B2 (en) | Self-excited converter | |
JPH10270675A (en) | Compression bonded semiconductor device | |
JP3376245B2 (en) | Semiconductor switching device, semiconductor stack device and power conversion device using the same | |
JPH10248266A (en) | Power conversion device | |
JP2000152646A (en) | Inverter | |
JPH06342872A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070907 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080907 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090907 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20100907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120907 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130907 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |