JPH07312205A - Light emission tube - Google Patents
Light emission tubeInfo
- Publication number
- JPH07312205A JPH07312205A JP14499695A JP14499695A JPH07312205A JP H07312205 A JPH07312205 A JP H07312205A JP 14499695 A JP14499695 A JP 14499695A JP 14499695 A JP14499695 A JP 14499695A JP H07312205 A JPH07312205 A JP H07312205A
- Authority
- JP
- Japan
- Prior art keywords
- arc tube
- thin film
- solid thin
- excited state
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Luminescent Compositions (AREA)
- Discharge Lamp (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放射源からの入射光を吸
収、励起し、入射光より長い波長に変換して発光する際
に多量子発光する発光管に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc tube which emits multi-quantum light when absorbing and exciting incident light from a radiation source, converting it to a wavelength longer than the incident light and emitting light.
【0002】[0002]
【従来の技術】一般に汎用の蛍光体としては蛍光ランプ
に用いる蛍光体が挙げられる。この蛍光ランプにあって
は発光効率が約80m/Wになり、既存の発光管中では
相対的に高い発光効率を持っている。しかしながら放出
エネルギーの観点から変換効率を考察した場合、蛍光発
光管に於いては入力エネルギーの約1/4を利用するに
とどまっている。即ち当該蛍光発光管では発光管入力電
力としての入力エネルギーの約60%程度が発光管の管
体内の紫外放出エネルギーに変換され、この紫外放出エ
ネルギーの約40%程度が蛍光体によって可視光に変換
されるにとどまっている。2. Description of the Related Art Generally, phosphors used for fluorescent lamps are mentioned as general-purpose phosphors. The fluorescent lamp has a luminous efficiency of about 80 m / W, which is relatively high in the existing arc tube. However, when considering the conversion efficiency from the viewpoint of emission energy, only about 1/4 of the input energy is used in the fluorescent arc tube. That is, in the fluorescent light emitting tube, about 60% of the input energy as the input power of the light emitting tube is converted into ultraviolet emission energy within the tube body of the arc tube, and about 40% of this ultraviolet emission energy is converted into visible light by the phosphor. It is only being done.
【0003】[0003]
【発明が解決しようとする課題】上記の場合発光効率を
倍加することは直接大幅な省エネルギーにつながるか
ら、高い発効効率を持ち得る新たな蛍光体を用いた発光
管が希求されていた。本発明は上述の点に鑑みて為され
たもので、その目的とするところは全く新規な光変換原
理を基礎として、一つの励起光子から二つ以上の光子を
放出する多量子発光を可能にして、発光効率を顕著に上
昇せしめ、大幅な省エネルギーを実現した発光管を提供
するにある。In the above case, since doubling the luminous efficiency directly leads to a great energy saving, there has been a demand for a luminous tube using a new phosphor which can have a high efficiency. The present invention has been made in view of the above points, and its purpose is to enable multi-quantum emission in which two or more photons are emitted from one excitation photon based on a completely new photoconversion principle. Then, the luminous efficiency is remarkably increased, and a luminous energy saving tube is realized.
【0004】[0004]
【課題を解決するための手段】本願発明は、放射源から
の入射光を吸収励起し、入射光より長い波長に変換する
発光管において、発光管の管面に対して可視光を透過す
る母体物質中に少なくとも原子状の性質を有し、入射光
と同等のエネルギレベルの第1の励起状態を持つととも
に第1励起状態とほぼ同等のエネルギレベルの第2の励
起状態を持ち、且つ第2励起状態と基底状態の間に第3
の励起状態が存在し、第2励起状態から第3励起状態、
第3励起状態から基底状態へと段階的に発光遷移する確
率が大きい発光物質が実質的に個々に独立して固定配設
されてなる固体薄膜が付設されて成ることを特徴とす
る。DISCLOSURE OF THE INVENTION According to the present invention, in an arc tube that absorbs and excites incident light from a radiation source and converts it into a wavelength longer than the incident light, a matrix that transmits visible light to the tube surface of the arc tube. The substance has at least an atomic property, has a first excited state having an energy level equivalent to that of incident light, has a second excited state having an energy level almost equal to the first excited state, and has a second Third between the excited state and the ground state
Of the second excited state to the third excited state,
The present invention is characterized in that a solid thin film, which is formed by substantially independently and fixedly arranging light-emitting substances, each of which has a high probability of gradual luminescence transition from the third excited state to the ground state, is attached.
【0005】[0005]
【作用】本発明は、放射源からの入射光を吸収励起し、
入射光より長い波長に変換する発光管において、発光管
の管面に対して可視光を透過する母体物質中に少なくと
も原子状の性質を有し、入射光と同等のエネルギレベル
の第1の励起状態を持つとともに第1励起状態とほぼ同
等のエネルギレベルの第2の励起状態を持ち、且つ第2
励起状態と基底状態の間に第3の励起状態が存在し、第
2励起状態から第3励起状態、第3励起状態から基底状
態へと段階的に発光遷移する確率が大きい発光物質が実
質的に個々に独立して固定配設されてなる固体薄膜が付
設されて成るので、現状の蛍光体を介する発光方式の発
光管に比べて発光効率を大幅に向上でき、延いては大幅
な省電力化が図れるという効果を奏する発光管を提供す
ることができる。The present invention absorbs and excites incident light from a radiation source,
In an arc tube that converts to a wavelength longer than that of incident light, the first excitation having an energy level equivalent to that of incident light, which has at least an atomic property in a host material that transmits visible light to the surface of the arc tube. A second excited state having an energy level almost equal to that of the first excited state, and a second excited state
A third excited state exists between the excited state and the ground state, and a luminescent substance having a large probability of gradual luminescence transition from the second excited state to the third excited state and from the third excited state to the ground state is substantially Since each of them is provided with a solid thin film, which is individually and fixedly mounted, the luminous efficiency can be greatly improved as compared with the current luminous tube of the light emitting system through the fluorescent substance, which leads to a significant power saving. It is possible to provide an arc tube that has the effect of achieving high efficiency.
【0006】[0006]
【実施例】以下本発明を実施例により説明する。 (実施例1)本発明の発光管に用いる蛍光体の原理を示
す図2を参照すると本発明による蛍光体に於いては、当
該蛍光体に例えば紫外放射源からの入射光があったと
き、一つの励起光子から二つ以上( 図には二つの例を示
してあるが) の光子放出を実現し、可視発光する、即
ち、2量子以上の多量子発光を実現し、可視発光するこ
とを根底の技術思想とする。これに対し、従来の蛍光体
の如き蛍光体に於いては図3から明らかなように放射源
からの入射光があって励起されたとき、格子振動等の熱
ロスが生ずるため、1つの励起光子から1つのみしか可
視の光子放出がなされない。従って本発明による多量子
発光は既存の蛍光体の発光原理に比し、全く新規な発光
原理に基づくものであり、本発明による多量子発光を実
現すれば発光効率を倍加できるのである。EXAMPLES The present invention will be described below with reference to examples. (Example 1) Referring to FIG. 2 showing the principle of the phosphor used in the arc tube of the present invention, in the phosphor according to the present invention, when the phosphor receives incident light from, for example, an ultraviolet radiation source, It is possible to realize two or more (two examples are shown in the figure) photon emission from one excitation photon and to emit visible light, that is, to realize multi-quantum emission of two or more quantum and emit visible light. The underlying technical idea. On the other hand, in a conventional phosphor such as a phosphor, when it is excited by the incident light from the radiation source as shown in FIG. There is only one visible photon emission from a photon. Therefore, the multi-quantum light emission according to the present invention is based on a completely new light-emission principle in comparison with the light-emission principle of existing phosphors, and the emission efficiency can be doubled by realizing the multi-quantum light emission according to the present invention.
【0007】当該本発明に用いる蛍光体は層若しくは膜
状体に形成され、かつ、蛍光体には母体物質とこの母体
物質に内包させる発光物質とが含有される。即ち、図4
の本発明による蛍光体のモデルを参照すると、本発明に
よる蛍光体PCSに於いては”×”マークで示す透明の
母体物質IMに”○”マークで示す発光物質EMが個々
に独立して固定され配設せられる。この場合、発光物質
EMは原子そのものの性質を維持する。即ち原子のエネ
ルギー準位状態を維持することが最適であるが、少なく
とも原子状ないしは擬分子状を維持して、母体物質IM
に固定される。ここで" 原子状" とは発光物質EMが必
ずしも完全な孤立の原子の状態ではなく、母体物質IM
に常に隣接しているだけで母体物質IMと分子を形成す
る程には実質的に反応或いは結合はしないが弱い結合状
態をもち、原子のエネルギー準位状態に近い状態を維持
することも含まれる。従って発光物質EMが少なくとも
原子状に維持されることにより蛍光体PCSに対し放射
源からの入射光があったとき、蛍光体PCSに於いては
母体物質IMに少なくとも原子状態様で点在する各発光
物質EMから夫々2又はそれ以上の光子が放出され得る
ことになる。これに対し従来の蛍光体である層或いは膜
状の蛍光体に於いては図5にモデル化して示すように"
──×" マークで示す母体分子の" ×" マークで示す元
素が" ・" マークで示す発光寄与元素に置換されて" ─
─・" マークで示す発光分子となり、これらが" ──
×" マークで示す透明の非発光母体分子間に点在すると
考え得る。このとき" ──・" マークで示す発光分子
の" ・" マークで示す発光寄与元素は、原子若しくは原
子状のエネルギー準位とかけ離れた分子としての励起エ
ネルギー準位を持つに止どまり、蛍光体に対して放射源
から入射光があったとき、蛍光体に於いては発光寄与元
素をも多発光分子から夫々単一の光子が放出されるに止
どまる。The phosphor used in the present invention is formed into a layer or a film, and the phosphor contains a base substance and a luminescent substance to be included in the base substance. That is, FIG.
Referring to the model of the phosphor according to the present invention, in the phosphor PCS according to the present invention, the luminescent material EM indicated by the "○" mark is individually fixed to the transparent host material IM indicated by the "x" mark. Are installed. In this case, the luminescent material EM maintains the properties of the atoms themselves. That is, it is optimal to maintain the energy level state of atoms, but at least maintain the atomic state or the pseudo-molecular state,
Fixed to. Here, "atomic" means that the luminescent material EM is not necessarily in a completely isolated atomic state,
It does not substantially react or bind to form a molecule with the host substance IM only when it is always adjacent to, but has a weak binding state, and also includes maintaining a state close to the energy level state of atoms. . Therefore, when there is incident light from the radiation source on the phosphor PCS by maintaining the luminescent material EM at least in atomic form, in the phosphor PCS, at least atomic states are scattered in the host material IM. Two or more photons can each be emitted from the luminescent material EM. On the other hand, in the case of a conventional phosphor or layered phosphor, as shown by modeling in FIG.
─── The element indicated by the "x" mark in the host molecule indicated by the "x" mark is replaced by the luminescence contributing element indicated by the "・" mark ""
─ ・ "It becomes a luminescent molecule shown by the mark, and these are" ──
It can be considered that the dots are scattered between the transparent non-luminescent host molecules indicated by the "" mark. At this time, the luminescence-contributing element indicated by the "-" mark of the luminescent molecule indicated by the "-" mark is an atom or an atomic energy level. When the phosphor receives incident light from the radiation source, it has only an excitation energy level as a molecule that is distant from the position. Only the photons of are emitted.
【0008】一方、現実に照明としての発光を得るよう
な場合、白色光が好ましく、図6の色度図で示すと周知
のように斜線で囲まれた領域Aが白色ゾーンとなる。更
に本発明による蛍光体PCSを照明用発光管チューブに
適用する実施例に沿って説明する。図1、図7、図8に
示すように、殺菌灯のような紫外線透過の低圧水銀放電
灯に於いて、予熱電極PFを有する発光管チューブLT
の外周面( 若しくは内周面) に膜状の蛍光体層PSLが
付着される。この蛍光体層PSLは図8に断面で示す如
く、固体薄膜STLを包有し、固体薄膜STLは採用可
能な発光物質の1つとしてナトリウムNaを用い、ナト
リウムNaが原子状態を維持して母体物質IMをなすよ
うな基板に固定され、配設されて構成されてなる。また
固体薄膜STLの裏面には紫外線を透過する樹脂皮膜R
F1が被設され、且つ固体薄膜STLの表面には可視光
を透過する樹脂皮膜RF2が被設される。On the other hand, in the case of actually obtaining light emission as illumination, white light is preferable, and as is well known from the chromaticity diagram of FIG. 6, the area A surrounded by diagonal lines is the white zone. Further, an example in which the phosphor PCS according to the present invention is applied to an arc tube for illumination will be described. As shown in FIGS. 1, 7, and 8, in a low-pressure mercury discharge lamp that transmits ultraviolet rays, such as a germicidal lamp, an arc tube LT having a preheating electrode PF.
The film-shaped phosphor layer PSL is attached to the outer peripheral surface (or inner peripheral surface) of the. This phosphor layer PSL includes a solid thin film STL as shown in the cross section of FIG. 8, and the solid thin film STL uses sodium Na as one of the luminescent substances that can be adopted, and the sodium Na maintains the atomic state to form a matrix. It is configured by being fixed and arranged on a substrate that forms the substance IM. On the back surface of the solid thin film STL, a resin film R that transmits ultraviolet rays
F1 is provided, and a resin film RF2 that transmits visible light is provided on the surface of the solid thin film STL.
【0009】この場合、蛍光体層PSLの固体薄膜ST
Lの形成にはラングミア膜形成法、超微粒子形成法、超
合金形成法、超薄膜形成法等が利用できる加工技術が採
用され得る。今、ラングミア膜形成法を採用する例に沿
って説明すると、まず、図9(a) の如く例えばステアリ
ン酸〔CH3(CH2 )16 COOH〕のような分子を浸漬
すると疎水基と親水基fの内、親水基fが水w側となる
ように水w表面に単薄膜で分子層が形成される。次に樹
脂等の好適な基板BPを図9(b) に示すように浸漬した
後、上動すると、分子層が基板BPに密着する。これを
繰り返し行なうことにより図9(c) に示す如く基板BP
上に幾層もの分子層が形成される。In this case, the solid thin film ST of the phosphor layer PSL
For forming L, a processing technique that can utilize a Langmuir film forming method, an ultrafine particle forming method, a superalloy forming method, an ultrathin film forming method, or the like can be adopted. Explaining along the example of adopting the Langmuir film formation method, first, when a molecule such as stearic acid [CH 3 (CH 2 ) 16 COOH] is dipped as shown in FIG. A molecular layer is formed as a single thin film on the surface of the water w so that the hydrophilic group f is located on the water w side. Next, after dipping a suitable substrate BP such as a resin as shown in FIG. 9B, when it is moved upward, the molecular layer is brought into close contact with the substrate BP. By repeating this, as shown in FIG. 9 (c), the substrate BP is
Several molecular layers are formed on top.
【0010】これにより基板BP上に形成した分子層に
対し、ナトリウムNaのような発光母体金属元素を含む
物質と化学処理によって反応させ、金属塩を生成させ
る。次に還元工程で金属塩を還元処理し、イオン化金属
を中和して中性金属とすることにより、透過性の樹脂の
ような基板BPで形成され得る透明の母体物質IMにナ
トリウムNaの原子ATが原子状態を維持して固定さ
れ、互いに実質的に独立して配置せしめられ、上述のよ
うに多量子発光を実現可能な固体薄膜STLが形成され
る( 図10) 。As a result, the molecular layer formed on the substrate BP is reacted with a substance containing a luminescent host metal element such as sodium Na by chemical treatment to generate a metal salt. Next, in the reduction step, the metal salt is subjected to a reduction treatment to neutralize the ionized metal into a neutral metal, thereby forming an atom of sodium Na in the transparent base material IM that can be formed on the substrate BP such as a transparent resin. ATs are fixed while maintaining their atomic state, and are arranged substantially independently of each other to form a solid thin film STL capable of realizing multiquantum emission as described above (FIG. 10).
【0011】この固体薄膜STLを含む蛍光体層PSL
が付設された発光管チューブLTに於いては、水銀Hg
はその原子エネルギー準位を示す図11から明らかなよ
うに40℃近傍の低圧放電領域に於いて、254nm( 2
537Å) の紫外線光が大半であり、これに対し、ナト
リウムNaはその原子エネルギー準位を示す図12から
明らかなように590nm近傍の2本の黄色の共鳴発光が
主であって高励起になるに応じ上位より多くの可視発光
スペクトルが現れるから、水銀放電が行なわれると25
4nmを主とする紫外放射が発光管チューブLT並びに樹
脂皮膜RF1を介して固体薄膜STLに入射される。固
体薄膜STLではナトリウムNaが原子の状態で維持さ
れていて入射された紫外線が吸収され高準位に励起され
る。このとき254nmのエネルギーは約4. 9eVであ
るからナトリウムNaの原子の励起される準位は確率上
2 S1/2 、2 P3/2 、2 P1/2 、2 D5/2 、2 D3/2 系
列等の高準位に集中すると考えられる。これらの励起準
位からは夫々所定の下位準位ないしは基底準位へ放射に
よって遷移し、この放射による遷移は主として後述の如
く支配される確率が高い。即ち、高次の92 S1/2 →3
2 P3/2 、32 P1/ 2 への遷移と高次の2 D5/2 、2 D
5/2 →32 P3/2 、32 P1/2 への遷移と確率が高く、
該高準位と32 P3/2 、32 P1/2 とのエネルギー差が
約2. 8eVであるため、放射光の波長は約450nmと
なる。尚、高次の2 P3/2 、2 P1/2→32 S1/2(基底
準位) への遷移はほぼ吸収光の再放射となって、254
nm〜260nm程度の紫外光となり、再吸収されて最終的
に高次のS1/2 、D5/2 、D3/ 2 へ励起していくことに
なる。Phosphor layer PSL including the solid thin film STL
In the arc tube LT attached with, mercury Hg
Is clear from Fig. 11 showing its atomic energy level.
254 nm (2
537Å) most of the ultraviolet light, in contrast to
From FIG. 12, which shows the atomic energy level of lithium Na
As you can see, the two yellow resonance emissions around 590 nm
More visible emission than the higher depending on the main and high excitation
Since the spectrum appears, it is 25 when a mercury discharge is performed.
Ultraviolet radiation mainly at 4 nm is caused by arc tube LT and trees.
It is incident on the solid thin film STL via the oil film RF1. Solid
In the body thin film STL, sodium Na is maintained in the atomic state.
The incident ultraviolet light is absorbed and excited to a high level.
It At this time, the energy at 254 nm is about 4.9 eV.
Therefore, the excited levels of sodium Na atoms are stochastic.
2S1/2,2P3/2,2P1/2,2DFive/2,2D3/2system
It is thought to concentrate on high levels such as rows. These excitation quasi
Radiation from each position to a predetermined lower level or ground level
Therefore, the transition due to this radiation is mainly described below.
There is a high probability that it will be dominated. That is, the higher 92S1/2→ 3
2P3/2Three2P1/ 2Transition to and higher2DFive/2,2D
Five/2→ 32P3/2Three2P1/2And the probability is high,
The high level and 32P3/2Three2P1/2Energy difference with
Since it is about 2.8 eV, the wavelength of emitted light is about 450 nm.
Become. In addition,2P3/2,2P1/2→ 32S1/2(base
Transition to the level) is almost the re-emission of absorbed light.
It becomes ultraviolet light of about nm to 260 nm and is re-absorbed and finally
To higher S1/2, DFive/2, D3/ 2To be excited to
Become.
【0012】次に32 P3/2 、32 P1/2 →32 S1/
2(基底準位) への2次放射による遷移では約590nm(
約2.1eV) のD線( 黄色) を発光することになる。
しかしてこの場合、約450nm近傍に於ける青色発光
と、約590nm近傍の黄色発光との発光量比はほぼ1;
1となり、視感度補正を行なえばこの2量子発光の色度
は図5のm 点付近となる。かつ、水銀放電による可視光
の加味後の最終的な色度は白色のゾーンA内のスポット
n 付近となり、かつ、従来の蛍光体に於ける発光効率8
0m/Wに対し約2倍の160m/W程度の発光効率を
得ることになる。更に本発明による蛍光体層PSLの固
体薄膜STLには他への数種の発光物質を採用できる。
その1つとしてストロンチウムSrを用いることができ
る。ストロンチウムSrを用いて固体薄膜STLを形成
するには例えば金属吸着用のキレート樹脂にストロンチ
ウムSrを、[0012] The next 3 2 P 3/2, 3 2 P 1/2 → 3 2 S 1 /
The transition due to the secondary radiation to 2 (ground level) is about 590 nm (
It will emit a D line (yellow) of about 2.1 eV).
However, in this case, the emission amount ratio between the blue emission in the vicinity of about 450 nm and the yellow emission in the vicinity of about 590 nm is almost 1;
When the luminosity correction is performed, the chromaticity of these two quantum luminescence becomes near m point in FIG. Moreover, the final chromaticity after the addition of visible light due to mercury discharge is the spot in the white zone A.
It is around n, and the luminous efficiency of conventional phosphors is 8
A luminous efficiency of about 160 m / W, which is about twice that of 0 m / W, can be obtained. Further, several kinds of other luminescent materials can be used for the solid thin film STL of the phosphor layer PSL according to the present invention.
Strontium Sr can be used as one of them. To form a solid thin film STL using strontium Sr, for example, strontium Sr is added to a chelating resin for metal adsorption,
【0013】[0013]
【化1】 [Chemical 1]
【0014】のように捕捉させた後、水素Hの気体若し
くは他への好適な還元剤によりストロンチウムSrを還
元させ、After being trapped as described above, strontium Sr is reduced with a gas of hydrogen H or a suitable reducing agent to the other,
【0015】[0015]
【化2】 [Chemical 2]
【0016】とする。これによりストロンチウムSrは
分子構造空間に閉じ込められた形で、そのまま中性原子
として抽出され固定される。この場合、上述と同様に低
圧水銀放電灯により放電が行なわれると、カルボキシル
基は可視光、紫外線に対し透過性を有しており、紫外放
射によってストロンチウムSrが吸収・励起されること
になる。このとき図13に示すストロンチウムSrのエ
ネルギー準位図から明らかなように、エネルギー準位5
P1 の高準位へ効率よく励起され、この準位から4d 準
位へ655nmのスペクトルの光を放射しつつ遷移し、次
いで461nmのスペクトルの光を放射して基底準位へ遷
移する。[0016] As a result, strontium Sr is confined in the molecular structure space and is extracted and fixed as it is as a neutral atom. In this case, when a low-pressure mercury discharge lamp is discharged in the same manner as described above, the carboxyl group is transparent to visible light and ultraviolet light, and strontium Sr is absorbed and excited by ultraviolet radiation. At this time, as is clear from the energy level diagram of strontium Sr shown in FIG.
It is efficiently excited to the high level of P 1 and transits from this level to the 4d level while emitting light having a spectrum of 655 nm, and then emits light having a spectrum of 461 nm to a ground level.
【0017】また本発明に用いる蛍光体層PSLへの放
射源に他のものを適用できる。その1つとして図14の
エネルギー準位を持つキセノンを用いることができ、こ
の場合蛍光体の固体薄膜STLに図15のエネルギー準
位をもつ亜鉛Zn を発光物質として用いる。しかしてキ
セノン放電されたとき、約8. 2eVのエネルギーを持
つ約147nmの波長の紫外放射が行なわれて亜鉛Zn に
吸収され、4d に強く励起される。次にこのエネルギー
準位から直ちに約330nmのスペクトルを持つ光を放射
しつつ下位準位の4Pへ遷移し、次いで同様に300nm
のスペクトルを持つ光放射を行ないつつ基底準位へ遷移
する。これにより147nmの遠紫外放射を2量子発光し
て約300nm〜330nmのスペクトルの近紫外光に効率
よく変換できる。Other materials can be applied to the radiation source for the phosphor layer PSL used in the present invention. As one of them, xenon having the energy level shown in FIG. 14 can be used. In this case, zinc Zn having the energy level shown in FIG. 15 is used as a light emitting substance in the solid thin film STL of the phosphor. Then, when xenon discharge is performed, ultraviolet radiation having a wavelength of about 147 nm having an energy of about 8.2 eV is emitted, absorbed by zinc Zn, and strongly excited by 4d. Next, from this energy level, light having a spectrum of about 330 nm is immediately emitted and transits to the lower level 4P, and then similarly 300 nm.
It transits to the ground level while emitting light having the spectrum of. As a result, it is possible to efficiently convert two far-ultraviolet radiation of 147 nm into near-ultraviolet light having a spectrum of about 300 nm to 330 nm by emitting two quantum rays.
【0018】また本発明に用いる蛍光体PCSに対する
放射源に高圧水銀放電が固体薄膜STLにセシウムCs
を用いることができ、高圧水銀放電のスペクトルは図1
6に示され、且つセシウムCsのエネルギー準位が図1
7に示されている。この場合、高圧水銀放電が行なわれ
ると、365nm( 約3. 4eV) の近紫外線と、405
nm( 約3. 1eV) 、436nm( 約2. 9eV) 、54
6nm( 約2. 3eV)の各可視光線とが放射されてセシ
ウムCsに吸収される。このときセシウムCsの原子は
図17から明らかなように365nmに対して励起準位が
密集していて有効に放射光を吸収して約1. 3eVの共
鳴準位を挟んで2段で約2. 1eVの黄色と約1. 3e
Vの赤外線を発光する。同様に405nmに対しては約
1. 8eVの赤色発光と約1. 3eVの赤外線発光が、
また436nmに対しては約1. 4〜1. 5eVと約1.
3eVの赤外線発光の2量子発光が得られることにな
る。Further, a high-pressure mercury discharge is used as a radiation source for the phosphor PCS used in the present invention, and cesium Cs is added to the solid thin film STL.
Can be used, and the spectrum of the high pressure mercury discharge is shown in FIG.
6 and the energy level of cesium Cs is shown in FIG.
7 is shown. In this case, when high-pressure mercury discharge is performed, near-ultraviolet light of 365 nm (about 3.4 eV) and 405 nm
nm (about 3.1 eV), 436 nm (about 2.9 eV), 54
Each visible ray of 6 nm (about 2.3 eV) is emitted and absorbed by cesium Cs. At this time, as is clear from FIG. 17, the cesium Cs atoms have dense excitation levels with respect to 365 nm, which effectively absorbs the emitted light, and the resonance level of about 1.3 eV is sandwiched between the two levels for about 2 steps. .1eV yellow and about 1.3e
It emits V infrared rays. Similarly, for 405 nm, red emission of about 1.8 eV and infrared emission of about 1.3 eV,
Also, for 436 nm, it is about 1.4 to 1.5 eV and about 1.
Two quantum emission of infrared emission of 3 eV will be obtained.
【0019】加えて本発明に用いる蛍光体層PSLに対
する放射源に殺菌灯の如き低圧水銀放電灯が、固体薄膜
STLにリチウムLiを夫々用いることができる。この
場合水銀放電が行なわれると、254nmの紫外放射が行
なわれ、リチウムLiに極めて良好に吸収され励起され
て427nmの青色光を発光し、次いで671nmの赤色光
を発光しつつ基底準位へ遷移する。ここでリチウムLi
は固体薄膜STLに、上記ナトリウムNaと実質的に同
様にフィルム状に構成することが好適である。当該リチ
ウムLiを発光物質とする蛍光体層PSLは特に日中外
光を照射し、夜間に人工光を照射して促成栽培するよう
な植物に対し、その人工光を発光するのに有効である。
即ち、植物の成長を促進する波長帯は400〜500nm
の青色光と600〜700nmの赤色光であることが判明
しており、リチウムLiを用いる蛍光体層PSLの2量
子発光の波長がこれに適合する。In addition, a low-pressure mercury discharge lamp such as a germicidal lamp can be used as a radiation source for the phosphor layer PSL used in the present invention, and lithium Li can be used as a solid thin film STL. In this case, when a mercury discharge is carried out, ultraviolet radiation of 254 nm is carried out, which is very well absorbed and excited by lithium Li to emit blue light of 427 nm, and then emits red light of 671 nm while transitioning to the ground level. To do. Where lithium Li
It is preferable that the solid thin film STL is formed into a film substantially like the above-mentioned sodium Na. The phosphor layer PSL using lithium Li as a luminescent substance is effective for emitting artificial light particularly to plants that are irradiated with external light during the daytime and artificial light at night to perform forced cultivation.
That is, the wavelength band that promotes plant growth is 400 to 500 nm.
It has been proved that the blue light and the red light of 600 to 700 nm are present, and the wavelength of 2 quantum emission of the phosphor layer PSL using lithium Li is adapted to this.
【0020】また更に本発明に用いる蛍光体層PSLの
固体薄膜STLには何等かの化学的ないしは物理的な力
が加わって原子の独立化、孤立化が低下することも考え
られる。この場合、10分の数eV程度以下の結合力が
発光物質に働くことが想起されるから、放射源に低圧水
銀放電灯を用い、254nmの紫外放射の入光に対し当該
10分の数eVの結合力を参酌して図18のエネルギー
準位を持つマグネシウムMg、図19のエネルギー準位
を持つマンガンMnを固体薄膜STLに用い得る。例え
ばマグネシウムMgにおいて10分の数eVの結合力が
働くと、4Sでの準位が図中にメッシュEZ1を施して
示すように4. 9eVより若干下がり、且つ幅を持つの
で、ややブロードな青( B) のスペクトルが現れ、また
下位励起準位でも同様にメッシュEZ2を施して示す如
く若干下がり、且つ幅を持つのでややブロードな黄〜赤
( Y−R) のスペクトルが現れて演色性のより良好な合
成白色光が得られる。一方、マンガンMnにおいては1
0分の数eVの結合力が働くと、原子で7eV近傍にあ
る準位は図中左端にメッシュを施して示すように5. 0
eVより若干下がり、かつ、幅を持つのでややブロード
な青〜緑( B〜G)のスペクトルが現れ、また下位励起
準位でも同様にメッシュを施して示す如く若干下がり、
且つ幅を持ち、ややブロードな赤〜黄( R〜Y) のスペ
クトルが現れて、マンガンMnもマグネシウムMgと同
じように良好な合成白色光が現れる。Furthermore, it is conceivable that some chemical or physical force is applied to the solid thin film STL of the phosphor layer PSL used in the present invention to reduce atom independence and isolation. In this case, it is recalled that a binding force of about several tenths eV or less acts on the luminescent material, so a low-pressure mercury discharge lamp is used as a radiation source, and several tenths of eV is applied to the incident light of 254 nm ultraviolet radiation. Taking into account the bonding force of the above, magnesium Mg having the energy level of FIG. 18 and manganese Mn having the energy level of FIG. 19 can be used for the solid thin film STL. For example, in magnesium Mg, when a binding force of several tenths of eV works, the level at 4S is slightly lower than 4.9 eV and has a width as shown by applying mesh EZ1 in the figure, so that the blue is slightly broad. The spectrum of (B) appears, and even in the lower excitation level, it is slightly lowered as shown by applying mesh EZ2, and has a width, so it is slightly broad yellow to red.
The (YR) spectrum appears, and synthetic white light having better color rendering can be obtained. On the other hand, manganese Mn is 1
When a binding force of a few minutes eV works, the level in the vicinity of 7 eV in the atom is 5.0 as shown by the mesh on the left end of the figure.
It is slightly lower than eV and has a broad blue-green (BG) spectrum because it has a width, and it is slightly lowered as shown by applying a mesh in the lower excitation level as well.
In addition, a broad and slightly broad spectrum of red to yellow (R to Y) appears, and manganese Mn also shows good synthetic white light like magnesium Mg.
【0021】更に蛍光体層PSLの形成に真空蒸着法を
採用する例を説明する。図20、図21を参照するに、
当該真空蒸着法では真空ベルジャ100内に適宜透明基
板TBが配設され、かつ、ナトリウムNaの如き発光物
質の蒸着源S1 並びにナトリウムNa等の発光物質或い
は空気、水と不活性で可視光線に透明の蒸着源S2 を夫
々投入したるつぼ101、101a が収容される。この
ときるつぼ101、101a は加熱器102、102a
を制御する温度制御器103により温度調節され、か
つ、蒸着源S1 、S2 からの蒸着量はシャッタ制御器1
04を介して水平の点線で示すシャッタにより適宜調整
され得、また制御器103、104は基板の蒸着程度を
監視する検出器105から出力を受けて作動される。し
かして透明基板TBにはまず蒸着源S2 が蒸発して蒸着
されて薄層TF1が形成され、次いで蒸着源S1 、S2
の密度比が最適になり、蒸着源S1 の発光物質が、母体
物質をなし得るような蒸着源S2 からの物質中に原子状
態又は原子状の状態をもって点在するような比率で蒸発
され蒸着されて図4に示したイメージのようなハイブリ
ッド層HFが形成される。かつ、ハイブリッド層HFの
上には蒸着源S2 からのみ蒸発されて蒸着され薄層TF
2が作られ、これにより蛍光体層PSLが形成される。
89のようなハイブリッド層HFが形成される。かつ、
ハイブリッド層HFは蒸着源S2 からのみ蒸発されて蒸
着され薄層TF2が作られ、これにより蛍光体層PSL
が形成される。Further, an example in which the vacuum evaporation method is adopted for forming the phosphor layer PSL will be described. Referring to FIGS. 20 and 21,
In the vacuum vapor deposition method, a transparent substrate TB is appropriately disposed in the vacuum bell jar 100, and a vapor deposition source S 1 of a luminescent substance such as sodium Na and a luminescent substance such as sodium Na or air, water, and inert to visible light. The crucibles 101 and 101a into which the transparent vapor deposition sources S 2 have been put are housed. At this time, the crucibles 101 and 101a are heaters 102 and 102a.
The temperature is controlled by the temperature controller 103 for controlling the temperature, and the amount of vapor deposition from the vapor deposition sources S 1 and S 2 is controlled by the shutter controller 1.
It can be adjusted accordingly by means of a shutter shown by the horizontal dotted line via 04, and the controllers 103, 104 are operated by receiving an output from a detector 105 which monitors the degree of vapor deposition of the substrate. Then, the evaporation source S 2 is first evaporated and evaporated on the transparent substrate TB to form the thin layer TF 1 , and then the evaporation sources S 1 and S 2 are formed.
Is optimized, and the luminescent substance of the vapor deposition source S 1 is vaporized at a ratio such that the luminescent substance of the vapor deposition source S 1 is scattered in an atomic state or an atomic state in the substance from the vapor deposition source S 2 that can form the host substance. The hybrid layer HF is deposited to form the image shown in FIG. In addition, the thin layer TF is evaporated and vaporized only from the vapor deposition source S 2 on the hybrid layer HF.
2 is formed, and thereby the phosphor layer PSL is formed.
A hybrid layer HF such as 89 is formed. And,
The hybrid layer HF is evaporated and vapor-deposited only from the vapor deposition source S 2 to form a thin layer TF2, which results in the phosphor layer PSL.
Is formed.
【0022】(実施例2)上述のように構成された本発
明は各種の対象物に適用でき、また図1、図7以外の発
光管にも適用可能である。例えば図22のように発光管
の管体LT1、LT2を2重に配設し、外側の発光管の
管体LT1の内周面に蛍光体層PSLを配設できる。(Embodiment 2) The present invention constructed as described above can be applied to various objects, and also applicable to arc tubes other than those shown in FIGS. 1 and 7. For example, as shown in FIG. 22, the tube bodies LT1 and LT2 of the arc tube may be doubly arranged, and the phosphor layer PSL may be arranged on the inner peripheral surface of the tube body LT1 of the outer arc tube.
【0023】尚本発明は上記実施例にとくに限定される
ものでない。The present invention is not limited to the above embodiment.
【0024】[0024]
【発明の効果】本発明は、放射源からの入射光を吸収励
起し、入射光より長い波長に変換する発光管において、
発光管の管面に対して可視光を透過する母体物質中に少
なくとも原子状の性質を有し、入射光と同等のエネルギ
レベルの第1の励起状態を持つとともに第1励起状態と
ほぼ同等のエネルギレベルの第2の励起状態を持ち、且
つ第2励起状態と基底状態の間に第3の励起状態が存在
し、第2励起状態から第3励起状態、第3励起状態から
基底状態へと段階的に発光遷移する確率が大きい発光物
質が実質的に個々に独立して固定配設されてなる固体薄
膜が付設されて成るので、現状の蛍光体を介する発光方
式の発光管に比べて発光効率を大幅に向上でき、延いて
は大幅な省電力化が図れるという効果を奏する発光管を
提供することができる。INDUSTRIAL APPLICABILITY The present invention relates to an arc tube for absorbing and exciting incident light from a radiation source and converting it into a wavelength longer than that of the incident light.
The host material that transmits visible light to the surface of the arc tube has at least an atomic property, has a first excited state with an energy level equivalent to that of the incident light, and is almost equivalent to the first excited state. Has a second excited state at an energy level, and a third excited state exists between the second excited state and the ground state, from the second excited state to the third excited state, and from the third excited state to the ground state It emits light as compared with the current luminous tube of the light emitting system because it has a solid thin film, which is a fixed and independent luminescent material that has a high probability of gradual luminescence transition. It is possible to provide an arc tube that has the effect of significantly improving efficiency and, in turn, achieving significant power saving.
【図1】本発明の実施例1の簡略斜視図である。FIG. 1 is a simplified perspective view of a first embodiment of the present invention.
【図2】本発明に用いる蛍光体の原理図である。FIG. 2 is a principle diagram of a phosphor used in the present invention.
【図3】図2と対照して示す従来の蛍光体の光変換原理
図である。FIG. 3 is a diagram showing the principle of light conversion of a conventional phosphor, which is shown in contrast to FIG.
【図4】本発明に用いる蛍光体のモデル説明図である。FIG. 4 is a model explanatory view of a phosphor used in the present invention.
【図5】図4と対照して示す従来の蛍光体のモデル説明
図である。5 is a model explanatory view of a conventional phosphor shown in contrast to FIG.
【図6】本発明に用いる蛍光体を説明するXY色度図で
ある。FIG. 6 is an XY chromaticity diagram illustrating a phosphor used in the present invention.
【図7】同上の断面図である。FIG. 7 is a sectional view of the above.
【図8】同上の蛍光体の部分拡大断面図である。FIG. 8 is a partially enlarged cross-sectional view of the same phosphor.
【図9】同上に用いる蛍光体をラングミア膜形成法に作
成する工程説明図である。FIG. 9 is an explanatory diagram of a process of forming a phosphor used in the above in a Langmuir film formation method.
【図10】同上の図9の形成法により作成した蛍光体の
説明図である。10 is an explanatory diagram of a phosphor prepared by the forming method of FIG. 9 above.
【図11】同上に適用し得る放射源である水銀放電灯の
水銀のエネルギー準位図である。FIG. 11 is an energy level diagram of mercury in a mercury discharge lamp which is a radiation source applicable to the above.
【図12】同上の蛍光体の発光物質に採用し得るナトリ
ウムNaのエネルギー準位図である。FIG. 12 is an energy level diagram of sodium Na that can be used as the light emitting substance of the above-mentioned phosphor.
【図13】同上の蛍光体の発光物質に採用し得るストロ
ンチウムのエネルギー準位図である。FIG. 13 is an energy level diagram of strontium that can be used as a light emitting substance of the above phosphor.
【図14】同上に適用し得る別の放射源であるキセノン
放電灯のキセノンのエネルギー準位図である。FIG. 14 is an energy level diagram of xenon of a xenon discharge lamp which is another radiation source applicable to the above.
【図15】同上の蛍光体の発光物質に採用し得る亜鉛Z
n のエネルギー準位図である。FIG. 15: Zinc Z which can be adopted as a luminescent substance of the above phosphor
It is the energy level diagram of n.
【図16】同上に適用し得る他の放射源である高圧水銀
放電灯のスペクトル図である。FIG. 16 is a spectrum diagram of a high-pressure mercury discharge lamp which is another radiation source applicable to the above.
【図17】同上の蛍光体の発光物質に採用し得るセシウ
ムCsのエネルギー準位図である。FIG. 17 is an energy level diagram of cesium Cs that can be used as the light emitting substance of the above-mentioned phosphor.
【図18】同上の蛍光体の発光物質として原子状で用い
るマグネシウムMgのエネルギー準位に沿う説明図であ
る。FIG. 18 is an explanatory diagram along an energy level of magnesium Mg used in an atomic state as a light emitting substance of the above phosphor.
【図19】同上の蛍光体の発光物質として原子状で用い
るマンガンMnのエネルギー準位に沿う説明図である。FIG. 19 is an explanatory diagram along the energy level of manganese Mn used in the atomic form as a light emitting substance of the above-mentioned phosphor.
【図20】同上の蛍光体を真空蒸着法により作成する簡
略説明図である。FIG. 20 is a schematic explanatory diagram of forming the above phosphor by a vacuum vapor deposition method.
【図21】同上の図20の形成法により作成した蛍光体
の説明図である。21 is an explanatory diagram of a phosphor prepared by the forming method of FIG. 20 above.
【図22】本発明の実施例2の簡略説明図である。FIG. 22 is a simplified explanatory diagram of Embodiment 2 of the present invention.
PSL 蛍光体層 LT 管体 PF 予熱電極 PSL phosphor layer LT tube body PF preheating electrode
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 61/35 L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01J 61/35 L
Claims (8)
より長い波長に変換する発光管において、発光管の管面
に対して可視光を透過する母体物質中に少なくとも原子
状の性質を有し、入射光と同等のエネルギレベルの第1
の励起状態を持つとともに第1励起状態とほぼ同等のエ
ネルギレベルの第2の励起状態を持ち、且つ第2励起状
態と基底状態の間に第3の励起状態が存在し、第2励起
状態から第3励起状態、第3励起状態から基底状態へと
段階的に発光遷移する確率が大きい発光物質が実質的に
個々に独立して固定配設されてなる固体薄膜が付設され
て成ることを特徴とする発光管。1. An arc tube that absorbs and excites incident light from a radiation source and converts it into a wavelength longer than the incident light. At least an atomic property in a host material that transmits visible light to the surface of the arc tube. With the same energy level as the incident light
And the second excited state having an energy level almost equal to that of the first excited state, and the third excited state exists between the second excited state and the ground state. It is characterized in that it is provided with a solid thin film in which a third excited state and a luminescent substance having a large probability of gradual luminescence transition from the third excited state to the ground state are individually and independently fixedly arranged. And the arc tube.
て成ることを特徴とする特許請求の範囲第1項記載の発
光管。2. The arc tube according to claim 1, wherein a solid thin film is adhered to the outer peripheral surface of the tube body of the arc tube.
て成ることを特徴とする特許請求の範囲第1項記載の発
光管。3. An arc tube according to claim 1, wherein a solid thin film is attached to the outer peripheral surface of the tube body of the arc tube.
膜が接着され、外側に可視光を透過する皮膜が接着され
て成ることを特徴とする特許請求の範囲第2項記載の発
光管。4. The arc tube according to claim 2, wherein a resin film that transmits ultraviolet rays is adhered to the inside of the solid thin film, and a film that transmits visible light is adhered to the outside thereof.
質がナトリウム、リチウム、ストロンチウム又は同等の
金属原子の内に一つから成ることを特徴とする特許請求
の範囲第1項記載の発光管。5. The method of claim 1 wherein the radiation source is a low pressure mercury discharge lamp and the luminescent material comprises one of sodium, lithium, strontium or equivalent metal atoms. Arc tube.
質がマグネシウム、セシウム、亜鉛又は同等の金属原子
の内に一つから成ることを特徴とする特許請求の範囲第
1項記載の発光管。6. The method of claim 1 wherein the radiation source is a low pressure mercury discharge lamp and the luminescent material comprises one of magnesium, cesium, zinc or equivalent metal atoms. Arc tube.
が金属原子であることを特徴とする特許請求の範囲第1
項記載の発光管。7. A radiation source is a rare gas discharge lamp, and the luminescent material is a metal atom.
The arc tube described in the item.
を特徴とする特許請求の範囲第7項記載の発光管。8. The arc tube according to claim 7, wherein the rare gas is xenon and the metal is zinc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14499695A JPH07312205A (en) | 1995-06-12 | 1995-06-12 | Light emission tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14499695A JPH07312205A (en) | 1995-06-12 | 1995-06-12 | Light emission tube |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60263503A Division JPS62176044A (en) | 1984-11-24 | 1985-11-22 | Photo-convertible substance and lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07312205A true JPH07312205A (en) | 1995-11-28 |
Family
ID=15375051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14499695A Pending JPH07312205A (en) | 1995-06-12 | 1995-06-12 | Light emission tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07312205A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259476A (en) * | 2004-03-10 | 2005-09-22 | Institute Of Physical & Chemical Research | Simultaneous generation method of spin polarized electron and spin polarized ion and its device |
-
1995
- 1995-06-12 JP JP14499695A patent/JPH07312205A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005259476A (en) * | 2004-03-10 | 2005-09-22 | Institute Of Physical & Chemical Research | Simultaneous generation method of spin polarized electron and spin polarized ion and its device |
JP4481687B2 (en) * | 2004-03-10 | 2010-06-16 | 独立行政法人理化学研究所 | Method and apparatus for simultaneously generating spin-polarized electrons and spin-polarized ions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100347266C (en) | Yellow light-emitting halophosphate phosphors and light sources incorporating same | |
US4719386A (en) | Photoconverter and lamp utilizing multi-quantum emission | |
JP5952902B2 (en) | Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance | |
US20020158565A1 (en) | Phosphor blends for generating white light from near-UV/blue light-emitting devices | |
JPWO2006025259A1 (en) | Phosphor, method for producing the same, and light emitting device using the same | |
JP2009132928A (en) | Luminescent material | |
JP3975298B2 (en) | High intensity fluorescent material blend for generating white light from near ultraviolet / blue light emitting devices | |
JP2007513469A (en) | Low pressure steam discharge lamp filled with mercury-free gas | |
JPH02299146A (en) | Low pressure mercury vapor discharge lamp | |
WO2010102442A1 (en) | Method for generating white light and lihgting device | |
CN1265420C (en) | Gas discharge lamp with descending-conversion light emitter | |
JPH07312205A (en) | Light emission tube | |
CN1463464A (en) | Gas discharge lamp with sownconversion phosphor | |
JP2002289927A (en) | Light-emitting element | |
US20100148658A1 (en) | Methods for preparation of nanocrystalline rare earth phosphates for lighting applications | |
EP1626078B1 (en) | Quantum-splitting fluoride-based phosphors, method of producing, and devices incorporating the same | |
JPH11172244A (en) | Phosphor, manufacture thereof and fluorescent lamp | |
US20030089889A1 (en) | Oxide-based quantum cutter method and phosphor system | |
JP3566439B2 (en) | Low pressure mercury vapor discharge lamp and lighting device using the same | |
WO2006111902A2 (en) | Low-pressure gas discharge lamp comprising halides of indium and sodium | |
JP2008500690A (en) | Low pressure discharge lamp with discharge sustaining compound | |
JP4431600B2 (en) | Light emitting device | |
JP2001214161A (en) | Red emission phosphor | |
JP2008210633A (en) | Fluorescent lamp and yellow light source device using the same | |
JPH11111028A (en) | Bulb-shaped fluorescent lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000509 |