JPH0731149A - High dc voltage generating circuit - Google Patents

High dc voltage generating circuit

Info

Publication number
JPH0731149A
JPH0731149A JP16318093A JP16318093A JPH0731149A JP H0731149 A JPH0731149 A JP H0731149A JP 16318093 A JP16318093 A JP 16318093A JP 16318093 A JP16318093 A JP 16318093A JP H0731149 A JPH0731149 A JP H0731149A
Authority
JP
Japan
Prior art keywords
capacitor
diode
frequency power
voltage
diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16318093A
Other languages
Japanese (ja)
Inventor
Masato Tabata
政人 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP16318093A priority Critical patent/JPH0731149A/en
Publication of JPH0731149A publication Critical patent/JPH0731149A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To obtain a circuit for generating high DC voltage efficiently using a multistage voltage doubler rectifier circuit. CONSTITUTION:The high DC voltage generating circuit comprises high frequency power supplies 1, 3, 5, first series of diodes 7,..., 59, second series of diodes 9,..., 61, and third series of diodes 11,...,63. The even numbered joints of respective series of diode are connected in common with one ends of a group of smoothing capacitors 25, 45, 65 having the other grounded ends. The odd numbered joints of respective series of diodes are connected with one ends of a group of boost capacitors 25, 45, 65 having the other ends connected with high frequency power supplies 1, 3, 5. With regard to the voltage doubler rectifier function, each phase of the high frequency power supplies 1, 3, 5 is boosted independently and power is fed in parallel to the group of smoothing capacitors 25, 45, 65. This constitution allows efficient boosting while suppressing the voltage fluctuation rate even when the number of stages is large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直流高電圧発生装置,さ
らに詳しくは,多相交流入力で,複数個のコンデンサと
ダイオードとにより構成された多段倍電圧整流回路から
なる直流高電圧発生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC high voltage generator, and more particularly to a DC high voltage generator having a multi-phase AC input and comprising a multi-stage voltage doubler rectifying circuit composed of a plurality of capacitors and diodes. .

【0002】[0002]

【従来技術】例えば粒子加速器のように超高圧の直流高
電圧を必要とする装置の電源としては,複数個のコンデ
ンサとダイオードとにより構成された多段倍電圧整流回
路からなる直流高電圧発生装置が使用されている。この
種の直流高電圧発生装置の回路としては,例えば特公昭
45-39775号公報に示されている。図2はその回路であっ
て,いわゆるコッククロフト回路を三相交流で駆動して
いる。この回路は多段を構成するときに,コンデンサを
互いに直列的に接続しており,整流された直流エネルギ
ーは順次,直列に上段へと伝達されるため,上段に進む
にしたがって浮遊静電容量によって充電電圧が減少する
傾向がある。そこで上記公報ではその充電電圧の減少解
決策として補償コイルを接続することが提案されてい
る。
2. Description of the Related Art As a power source for a device requiring a DC high voltage of ultrahigh voltage such as a particle accelerator, a DC high voltage generator composed of a multistage voltage doubler rectifying circuit composed of a plurality of capacitors and diodes is used. It is used. A circuit of this type of DC high voltage generator is, for example,
45-39775. FIG. 2 shows the circuit, in which a so-called Cockcroft circuit is driven by three-phase AC. When this circuit is configured in multiple stages, the capacitors are connected in series with each other, and the rectified DC energy is sequentially transmitted to the upper stage in series, so as it progresses to the upper stage, it is charged by the stray capacitance. The voltage tends to decrease. Therefore, in the above publication, connecting a compensation coil is proposed as a solution for reducing the charging voltage.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,このよ
うな従来の回路にあっては,構成段数が増加してくる
と,この補償コイルの数も段数に従って増加し,その絶
縁処理も含めて装置が複雑となる。また浮遊静電容量に
より上段に行くにしたがって昇圧率に限界があり,段数
を重ねても出力電圧の上限がでてくることもある。さら
に昇圧の仕組みが下から上へと順次汲み上げていく構造
のため,上段の蓄積エネルギーは少なくなり,全体とし
て電圧変動率が悪化する問題がある。
However, in such a conventional circuit, when the number of constituent stages increases, the number of compensation coils also increases in accordance with the number of stages, and the device including the insulation treatment is It gets complicated. In addition, due to the floating capacitance, there is a limit to the boosting rate toward the upper stage, and even if the number of stages is increased, the upper limit of the output voltage may appear. Furthermore, because the boosting mechanism is a structure that pumps up from the bottom up, the stored energy in the upper stage decreases, and there is a problem that the overall voltage fluctuation rate deteriorates.

【0004】本発明は,多段構成の倍電圧整流回路によ
る直流高電圧発生装置であって,簡素な構成で電圧変動
率が良好で効率よく昇圧できる直流高電圧発生装置を得
ることを課題とする。
An object of the present invention is to obtain a DC high voltage generator using a voltage doubler rectifier circuit having a multi-stage configuration, which has a simple configuration and a good voltage fluctuation rate and which can efficiently boost the voltage. .

【0005】[0005]

【課題を解決するための手段】本発明はこの課題を解決
するために,以下の手段を提案するものである。中性点
が基準電位点に接続されたn相の高周波電源接続用端子
と;それぞれ一端が基準電位点に接続され,2m段のダ
イオードが同一方向に直列接続されてなるn組のダイオ
ード列と;各高周波電源接続用端子に接続されたm個の
コンデンサ手段の一端を共通接続してなる押し上げコン
デンサの枝状群と;それぞれ一端が前記基準電位点に接
続されたm個のコンデンサ手段からなる平滑コンデンサ
群とを備える。そして各ダイオード列の偶数段目の接続
点を共通接続してそれぞれ平滑コンデンサ枝状群の端子
に接続し,各相のダイオード列の奇数番目の接続点には
それぞれ各相の押し上げコンデンサ枝状群の端子に接続
し,平滑コンデンサ枝状群の端子から直流高電圧出力を
得ること提案するものである。
The present invention proposes the following means in order to solve this problem. N-phase high-frequency power source connection terminal whose neutral point is connected to the reference potential point; and n sets of diode rows each having one end connected to the reference potential point and 2m-stage diodes connected in series in the same direction A branch group of push-up capacitors in which one end of m capacitor means connected to each high-frequency power supply connection terminal is commonly connected; and m capacitor means each having one end connected to the reference potential point And a smoothing capacitor group. The even-numbered connection points of each diode string are connected in common and connected to the terminals of the smoothing capacitor branch group, and the odd-numbered connection points of the diode string of each phase are respectively connected to the boost capacitor branch group of each phase. We propose to obtain a DC high-voltage output from the terminals of the smoothing capacitor branch group by connecting to the terminals of.

【0006】[0006]

【実施例】図1により,本発明にかかる直流高電圧発生
装置を説明する。同図において第1相の高周波電源1,
第2相の高周波電源3,第3相の高周波電源5はそれぞ
れ周波数100kHz,電圧波高値e=50kVのインバータによる
高周波電源であり,それぞれ位相が120 度づつずれてお
り,実質的には三相交流となっている。これら高周波電
源1,3,5はそれぞれ端子2,8間,端子4,10間,
端子6,12間に接続されており,このうち端子2,4,
6は共通接続されて接地点14に接続される。いわば三相
スター結線となっている。本発明による倍電圧整流回路
はダイオード列群と,平滑コンデンサ枝状群と,押し上
げコンデンサ枝状群とから構成されて,各段毎に順次に
整流昇圧されて,最終段の平滑コンデンサの端子間には
高周波電源のピーク・ピーク間電圧の段数倍の直流高電
圧出力が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, a DC high voltage generator according to the present invention will be described. In the figure, the first phase high frequency power source 1,
The second-phase high-frequency power supply 3 and the third-phase high-frequency power supply 5 are inverter-based high-frequency power supplies with a frequency of 100 kHz and a voltage peak value e = 50 kV, and their phases are shifted by 120 degrees. It is an exchange. These high frequency power sources 1, 3 and 5 are between terminals 2 and 8, between terminals 4 and 10,
It is connected between terminals 6 and 12, of which terminals 2, 4,
6 are commonly connected and connected to the ground point 14. It is a three-phase star connection, so to speak. The voltage doubler rectifier circuit according to the present invention is composed of a diode string group, a smoothing capacitor branch group, and a boosting capacitor branch group, and is sequentially rectified and boosted for each stage, between the terminals of the smoothing capacitor at the final stage. The DC high voltage output is obtained in the number of stages of the peak-to-peak voltage of the high frequency power source.

【0007】先ずダイオード列群の構成については,ダ
イオード7,19,27,39,47,59は互いに一方向に直列
接続されて,第1のダイオード列を構成する。同様にダ
イオード9,21,29,41,49,61よりなる第2のダイオ
ード列とダイオード11,23,31,43,51,63よりなる第
3のダイオード列とが形成される。そしてこれら3組の
ダイオード列の始点たるダイオード7,9,11のアノー
ドは共通接続されて接地点14に接続される。
First, regarding the configuration of the diode array group, the diodes 7, 19, 27, 39, 47 and 59 are connected in series in one direction to each other to form a first diode array. Similarly, a second diode array including diodes 9, 21, 29, 41, 49, 61 and a third diode array including diodes 11, 23, 31, 43, 51, 63 are formed. The anodes of the diodes 7, 9, 11 which are the starting points of these three sets of diode arrays are commonly connected and connected to the ground point 14.

【0008】次に平滑コンデンサ枝状群について説明す
る。第1,第2,第3のダイオード列の2番目の接続点
(ダイオード19のカソードとダイオード27のアノードと
の接続点,ダイオード21のカソードとダイオード29のア
ノードとの接続点,ダイオード23のカソードとダイオー
ド31のアノードとの接続点)はそれぞれ,共通接続され
てコンデンサ25の一端に接続される。このコンデンサ25
の他端は接地点14に接続される。
Next, the smoothing capacitor branch group will be described. Second connection point of the first, second, and third diode rows (connection point between cathode of diode 19 and anode of diode 27, connection point between cathode of diode 21 and anode of diode 29, cathode of diode 23) And a connection point between the anode of the diode 31) and the anode of the diode 31 are commonly connected to one end of the capacitor 25. This capacitor 25
The other end of is connected to the ground point 14.

【0009】次に第1,第2,第3のダイオード列の4
番目の接続点(ダイオード39のカソードとダイオード47
のアノードとの接続点,ダイオード41のカソードとダイ
オード49のアノードとの接続点,ダイオード43のカソー
ドとダイオード51のアノードとの接続点)はそれぞれ,
共通接続されてコンデンサ45の一端に接続される。この
コンデンサ45の他端は接地点14に接続される。
Next, 4 of the first, second and third diode rows
The second connection point (cathode of diode 39 and diode 47
Connection point between the cathode of the diode 41 and the anode of the diode 49, and the connection point between the cathode of the diode 43 and the anode of the diode 51).
Commonly connected and connected to one end of the capacitor 45. The other end of the capacitor 45 is connected to the ground point 14.

【0010】次に第1,第2,第3のダイオード列の終
点たるたるダイオード59,61,63のカソードは共通接続
されてコンデンサ65の一端に接続されると共に出力端子
99に接続される。コンデンサ65の他端は接地点14に接続
される。
Next, the cathodes of the diodes 59, 61, and 63, which are the end points of the first, second, and third diode arrays, are commonly connected and connected to one end of the capacitor 65, and at the same time output terminals.
Connected to 99. The other end of the capacitor 65 is connected to the ground point 14.

【0011】次に押し上げコンデンサ枝状群について説
明する。第1のダイオード列の1番目の接続点である,
ダイオード7のカソードとダイオード19のアノードとの
接続点にコンデンサ13の一端が接続される。このコンデ
ンサ13の他端は第1相の高周波電源1の一端が接続され
る端子8に接続されている。同様に第2のダイオード列
の1番目の接続点である,ダイオード9のカソードとダ
イオード21のアノードとの接続点にコンデンサ15の一端
が接続される。このコンデンサ15の他端は第2相の高周
波電源3の一端が接続される端子10に接続されている。
また第3のダイオード列の1番目の接続点である,ダイ
オード11のカソードとダイオード23のアノードとの接続
点にコンデンサ17の一端が接続される。このコンデンサ
17の他端は第3相の高周波電源5の一端が接続される端
子12に接続されている。これらで,1段目の押し上げコ
ンデンサ枝状群が構成される。
Next, the push-up capacitor branch group will be described. Is the first connection point of the first diode array,
One end of the capacitor 13 is connected to the connection point between the cathode of the diode 7 and the anode of the diode 19. The other end of the capacitor 13 is connected to a terminal 8 to which one end of the first phase high frequency power supply 1 is connected. Similarly, one end of the capacitor 15 is connected to the connection point between the cathode of the diode 9 and the anode of the diode 21, which is the first connection point of the second diode array. The other end of the capacitor 15 is connected to the terminal 10 to which one end of the second phase high frequency power source 3 is connected.
Further, one end of the capacitor 17 is connected to the connection point between the cathode of the diode 11 and the anode of the diode 23, which is the first connection point of the third diode array. This capacitor
The other end of 17 is connected to a terminal 12 to which one end of the third phase high frequency power source 5 is connected. These make up the first-stage push-up capacitor branch group.

【0012】次に2段目の押し上げコンデンサ枝状群に
ついても同様に構成される。第1のダイオード列の3番
目の接続点である,ダイオード27のカソードとダイオー
ド39のアノードとの接続点にコンデンサ33の一端が接続
される。このコンデンサ33の他端は第1相の高周波電源
1の一端が接続される端子8に接続されている。同様に
第2のダイオード列の3番目の接続点である,ダイオー
ド24のカソードとダイオード41のアノードとの接続点に
コンデンサ35の一端が接続される。このコンデンサ35の
他端は第2相の高周波電源3の一端が接続される端子10
に接続されている。また第3のダイオード列の3番目の
接続点である,ダイオード31のカソードとダイオード43
のアノードとの接続点にコンデンサ37の一端が接続され
る。このコンデンサ37の他端は第3相の高周波電源5の
一端が接続される端子12に接続されている。
Next, the second-stage push-up capacitor branch group is similarly constructed. One end of the capacitor 33 is connected to the third connection point of the first diode row, that is, the connection point between the cathode of the diode 27 and the anode of the diode 39. The other end of the capacitor 33 is connected to the terminal 8 to which one end of the first phase high frequency power supply 1 is connected. Similarly, one end of the capacitor 35 is connected to the third connection point of the second diode array, that is, the connection point between the cathode of the diode 24 and the anode of the diode 41. The other end of this capacitor 35 is a terminal 10 to which one end of the second phase high frequency power supply 3 is connected.
It is connected to the. In addition, the cathode of the diode 31 and the diode 43, which is the third connection point of the third diode row,
One end of the capacitor 37 is connected to the connection point with the anode of the. The other end of the capacitor 37 is connected to the terminal 12 to which one end of the third phase high frequency power source 5 is connected.

【0013】次に3段目の押し上げコンデンサ枝状群に
ついても同様に構成される。第1のダイオード列の5番
目の接続点である,ダイオード47のカソードとダイオー
ド59のアノードとの接続点にコンデンサ53の一端が接続
される。このコンデンサ53の他端は第1相の高周波電源
1の一端が接続される端子8に接続されている。同様に
第2のダイオード列の5番目の接続点である,ダイオー
ド49のカソードとダイオード61のアノードとの接続点に
コンデンサ55の一端が接続される。このコンデンサ55の
他端は第2相の高周波電源3の一端が接続される端子10
に接続されている。また第3のダイオード列の5番目の
接続点である,ダイオード51のカソードとダイオード63
のアノードとの接続点にコンデンサ57の一端が接続され
る。このコンデンサ57の他端は第3相の高周波電源5の
一端が接続される端子12に接続されている。
Next, the push-up capacitor branch group of the third stage is similarly constructed. One end of the capacitor 53 is connected to the connection point between the cathode of the diode 47 and the anode of the diode 59, which is the fifth connection point of the first diode array. The other end of the capacitor 53 is connected to a terminal 8 to which one end of the first phase high frequency power supply 1 is connected. Similarly, one end of the capacitor 55 is connected to the fifth connection point of the second diode array, which is the connection point between the cathode of the diode 49 and the anode of the diode 61. The other end of the capacitor 55 is a terminal 10 to which one end of the second phase high frequency power supply 3 is connected.
It is connected to the. In addition, the cathode of the diode 51 and the diode 63, which is the fifth connection point of the third diode array.
One end of the capacitor 57 is connected to the connection point with the anode of the. The other end of the capacitor 57 is connected to the terminal 12 to which one end of the high frequency power source 5 of the third phase is connected.

【0014】次に動作を説明する。まず第1相の高周波
電源1に関連して説明する。高周波電源1の端子2の側
が正のときは,ダイオード7がオンしてコンデンサ13を
図示の極性で,波高値e に充電する。次に高周波電源1
の端子8の側が正のときは,ダイオード7はオフしてお
り,コンデンサ13の充電電圧と高周波電源1の電圧との
和の電圧がダイオード19を経由してコンデンサ25を図示
の極性で充電する。このコンデンサ25の充電電圧は2eで
ある。次にまた端子2の側が正のときは,高周波電源1
の電圧とコンデンサ25の電圧との和の電圧3eがダイオー
ド27をオンさせてコンデンサ33を充電する。このコンデ
ンサ33の充電電圧は3eである。尚,コンデンサ13の充電
電圧がe より減少しているときはその減少を補う電流が
ダイオード7を介して流れる。次に端子8がまた正の区
間では,コンデンサ33の充電電圧と高周波電源1の電圧
との和がダイオード39を通して流れて,コンデンサ45を
充電する。このコンデンサ45の充電電圧は4eである。次
にまた端子2の側が正のときは,高周波電源1の電圧と
コンデンサ45の電圧との和の電圧5eがダイオード47をオ
ンさせてコンデンサ53を充電する。このコンデンサ53の
充電電圧は5eである。次に端子8がまた正の区間では,
コンデンサ53の充電電圧と高周波電源1の電圧との和が
ダイオード59を通して流れて,コンデンサ65を充電す
る。このコンデンサ65の充電電圧は6eである。
Next, the operation will be described. First, the first-phase high-frequency power supply 1 will be described. When the terminal 2 side of the high frequency power source 1 is positive, the diode 7 is turned on and the capacitor 13 is charged to the peak value e with the polarity shown. Next, high frequency power source 1
When the terminal 8 side of is positive, the diode 7 is off, and the sum of the charging voltage of the capacitor 13 and the high-frequency power source 1 charges the capacitor 25 via the diode 19 with the polarity shown. . The charging voltage of this capacitor 25 is 2e. Next, when the terminal 2 side is positive, the high frequency power source 1
The voltage 3e, which is the sum of the voltage of 2 and the voltage of the capacitor 25, turns on the diode 27 and charges the capacitor 33. The charging voltage of this capacitor 33 is 3e. When the charging voltage of the capacitor 13 is lower than e, a current that compensates for the decrease flows through the diode 7. Next, when the terminal 8 is also positive, the sum of the charging voltage of the capacitor 33 and the voltage of the high frequency power supply 1 flows through the diode 39 to charge the capacitor 45. The charging voltage of this capacitor 45 is 4e. Next, when the terminal 2 side is positive again, the voltage 5e which is the sum of the voltage of the high frequency power supply 1 and the voltage of the capacitor 45 turns on the diode 47 and charges the capacitor 53. The charging voltage of this capacitor 53 is 5e. Next, in the section where terminal 8 is positive again,
The sum of the charging voltage of the capacitor 53 and the voltage of the high frequency power supply 1 flows through the diode 59 and charges the capacitor 65. The charging voltage of this capacitor 65 is 6e.

【0015】次に第2相の高周波電源3については上記
の説明において,ダイオード列を第1のダイオード列か
ら第2のダイオード列によみかえ,押し上げコンデンサ
群をそれぞれ,第2の高周波電源3に対応するコンデン
サによみかえることにより平滑コンデンサ群25,45,65
にも,第1相の高周波電源1の場合と同様に整流充電が
される。第3相の高周波電源5についも同様にして平滑
コンデンサ群25,45,65にも充電される。このようにし
て,平滑コンデンサ群25,45,65には第1相,第2相,
第3相の高周波電源から順次,位相に対応して充電す
る。
Next, regarding the second-phase high-frequency power supply 3, in the above description, the diode array is changed from the first diode array to the second diode array, and the boosting capacitor groups are respectively replaced by the second high-frequency power supply 3. Smoothing capacitor group 25, 45, 65 by changing to the corresponding capacitor
Also, as in the case of the first-phase high frequency power supply 1, rectification charging is performed. The smoothing capacitor groups 25, 45, 65 are also charged in the same manner for the third-phase high-frequency power source 5. In this way, the smoothing capacitor groups 25, 45, 65 have the first phase, the second phase,
Charging is performed sequentially from the third-phase high-frequency power source in accordance with the phase.

【0016】以上述べた実施例において,本発明の趣旨
の範囲で以下のように変形可能である。まず,高周波電
源については,3相に限らず任意のn相に変更できる。
その場合には,それに対応した押し上げコンデンサの枝
状群の数とダイオード列の数とを任意の数に置き換える
ことにより目的を達成できるものである。また,段数に
ついても当然,任意の段数に増減可能である。また第3
にダイオードの極性を逆に変更することより,負極性の
直流高電圧出力を発生することができる。また,第4に
このようにして構成された負極性の直流高電圧発生装置
と,正極性の直流高電圧発生装置とを組み合わせて,両
極性の直流高電圧発生装置を構成することも可能であ
る。第5に出力電圧は平滑コンデンサ枝状群の最終段に
限らず,どの途中の段もからでも段数に応じた出力電圧
を取り出すことができる。第6に基準電位点はゼロボル
トに限らず,必要に応じた電位を基準電位点とすること
ができる。また各コンデンサは既製部品のコンデンサに
限らず,浮遊静電容量を利用したり,高電圧ケーブルの
中心導体と外被導体との間の静電容量を利用して構成で
きる。高周波電源についは,FETを利用した高周波イ
ンバータが一般的ではあるが,他の電子デバイスでも可
能である。また回転機の高周波発電機を利用することも
できる。
The above-described embodiment can be modified as follows within the scope of the present invention. First, the high frequency power supply is not limited to three phases, but can be changed to any n phase.
In that case, the object can be achieved by replacing the number of branch groups of the boosting capacitors and the number of diode rows corresponding thereto with an arbitrary number. Also, the number of stages can naturally be increased or decreased to any number. Also the third
By changing the polarity of the diode in reverse, negative DC high voltage output can be generated. Fourthly, it is also possible to construct a bipolar high voltage generator by combining the negative polarity high DC voltage generator constructed as described above and the positive polarity high DC voltage generator. is there. Fifth, the output voltage is not limited to the final stage of the smoothing capacitor branch group, and an output voltage according to the number of stages can be taken out from any stage in the middle. Sixth, the reference potential point is not limited to zero volt, and a potential according to need can be used as the reference potential point. In addition, each capacitor is not limited to a capacitor that is a ready-made component, but can be configured by using a floating electrostatic capacitance or by using an electrostatic capacitance between the center conductor and the outer conductor of the high-voltage cable. As for the high frequency power source, a high frequency inverter using an FET is generally used, but other electronic devices are also possible. Also, a high frequency generator of a rotating machine can be used.

【0017】[0017]

【発明の効果】本発明は以上述べたような特徴を有し,
高周波電源から直接押し上げコンデンサ枝状群にエネル
ギーが与えられ,その上,多相の高周波電源から駆動さ
れるので,整流器としての電圧変動率,リプルの特性が
向上する。そのため,必要なコンデンサの静電容量を減
らすこともでき,浮遊静電容量を利用する場合に有利で
ある。また倍電圧整流の動作が多重に並列的であるの
で,昇圧特性を高めることができる。
The present invention has the features described above,
Energy is directly applied from the high-frequency power supply to the capacitor branch group, and is driven by the multiphase high-frequency power supply, which improves the voltage fluctuation rate and ripple characteristics of the rectifier. Therefore, the required capacitance of the capacitor can be reduced, which is advantageous when using the floating capacitance. Further, since the voltage doubler rectification operation is multiple and parallel, the boosting characteristic can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる直流高電圧発生装置の一実施例
を示す図である。
FIG. 1 is a diagram showing an embodiment of a DC high voltage generator according to the present invention.

【図2】従来の直流高電圧発生装置の一例を示す。FIG. 2 shows an example of a conventional DC high voltage generator.

【符号の説明】[Explanation of symbols]

1,3,5…高周波電源 2,4,6,8,10,12…端子 7,9,11,19,21,23,27,29,31,39,41,43,4
7,49,51,59,61,63…ダイオード 13,15,17,25,30,35,37,45,53,55,57,65…コ
ンデンサ 14…接地点 99…出力端子
1, 3, 5 ... High frequency power source 2, 4, 6, 8, 10, 12 ... Terminals 7, 9, 11, 19, 21, 23, 27, 29, 31, 39, 41, 43, 4
7, 49, 51, 59, 61, 63 ... Diodes 13, 15, 17, 25, 30, 35, 37, 45, 53, 55, 57, 65 ... Capacitor 14 ... Ground point 99 ... Output terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中性点が基準電位点に接続されたn相の高
周波電源接続用端子と;それぞれ一端が前記基準電位点
に接続され,2m段のダイオードが同一方向に直列接続
されてなるn組のダイオード列と;前記各高周波電源接
続用端子に接続されたm個のコンデンサ手段の一端を共
通接続してなる押し上げコンデンサの枝状群と;それぞ
れ一端が前記基準電位点に接続されたm個のコンデンサ
手段からなる平滑コンデンサ群とを備えてなり:前記各
ダイオード列の偶数段目の接続点を共通接続してそれぞ
れ前記平滑コンデンサ枝状群の端子に接続し,前記各相
のダイオード列の奇数番目の接続点にはそれぞれ前記各
相の押し上げコンデンサ枝状群の端子に接続し,前記平
滑コンデンサ枝状群の端子から直流高電圧出力を得るこ
とを特徴とする直流高電圧発生装置。
1. An n-phase high-frequency power source connecting terminal having a neutral point connected to a reference potential point; one end of each is connected to the reference potential point, and 2 m-stage diodes are connected in series in the same direction. n sets of diode strings; a branch group of push-up capacitors each having one end of m capacitor means connected to each high-frequency power supply connection terminal commonly connected; one end of each of which is connected to the reference potential point a smoothing capacitor group consisting of m capacitor means: connecting even-numbered connection points of each of the diode arrays in common and connecting to terminals of the smoothing capacitor branch group, respectively, diodes of each phase Each of the odd-numbered connection points of the columns is connected to a terminal of the boosting capacitor branch group of each phase, and a DC high voltage output is obtained from the terminals of the smoothing capacitor branch group. High-voltage generator.
JP16318093A 1993-06-07 1993-06-07 High dc voltage generating circuit Withdrawn JPH0731149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16318093A JPH0731149A (en) 1993-06-07 1993-06-07 High dc voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16318093A JPH0731149A (en) 1993-06-07 1993-06-07 High dc voltage generating circuit

Publications (1)

Publication Number Publication Date
JPH0731149A true JPH0731149A (en) 1995-01-31

Family

ID=15768771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16318093A Withdrawn JPH0731149A (en) 1993-06-07 1993-06-07 High dc voltage generating circuit

Country Status (1)

Country Link
JP (1) JPH0731149A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532074B2 (en) 2007-07-09 2009-05-12 Kontel Data System Limited Device and method for biasing a transistor amplifier
JP2009136106A (en) * 2007-11-30 2009-06-18 Toyo Electric Mfg Co Ltd Rectifier circuit for wind power generator
GB2491475A (en) * 2011-05-31 2012-12-05 Christopher James Macdonald-Bradley Stacked voltage doublers fed by multiple sources
JP2016092985A (en) * 2014-11-05 2016-05-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. DC booster circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532074B2 (en) 2007-07-09 2009-05-12 Kontel Data System Limited Device and method for biasing a transistor amplifier
JP2009136106A (en) * 2007-11-30 2009-06-18 Toyo Electric Mfg Co Ltd Rectifier circuit for wind power generator
GB2491475A (en) * 2011-05-31 2012-12-05 Christopher James Macdonald-Bradley Stacked voltage doublers fed by multiple sources
GB2491475B (en) * 2011-05-31 2018-03-28 Christopher James Macdonald Bradley Voltage cascade using multiple alternating current supplies
JP2016092985A (en) * 2014-11-05 2016-05-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. DC booster circuit

Similar Documents

Publication Publication Date Title
US9929654B2 (en) High voltage gain DC/DC power electronic converters
JP4474360B2 (en) X-ray generator
JP6292245B2 (en) Multiphase boost converter control method and multiphase boost converter
US6072707A (en) High voltage modular inverter
US6104624A (en) System connecting device
US7402983B2 (en) Method for use of charge-transfer apparatus
US20090244936A1 (en) Three-phase inverter
JP2005512488A (en) X-ray generator power supply
US8462525B2 (en) Wide range DC power supply with bypassed multiplier circuits
US20140098575A1 (en) High Voltage DC/DC Converter With Cascaded Resonant Tanks
CN108448970B (en) High-voltage direct-current unit converter system of switched reluctance generator
US7446521B2 (en) DC DC voltage boost converter
JPH0731149A (en) High dc voltage generating circuit
JP2008529466A (en) Method and inverter for converting DC voltage to three-phase AC output
KR101697855B1 (en) H-bridge multi-level inverter
US20100141220A1 (en) Series electric double-layer capacitor device
US20210066924A1 (en) Operation voltage control circuit device for solar cells connected in series or other power supplies
US4651268A (en) Multiple step-up rectifier circuit
JP2000341967A (en) Inverter
de Melo Bento et al. Study of High Step-up Non-isolated DC-DC Converters
KR20060004229A (en) Boosting circuit
US4667280A (en) Voltage multiplying rectifier
JP7230633B2 (en) power converter
JPH10117474A (en) Switching capacitor power source
JPS62138061A (en) Power unit for switching regulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905