JPH07311373A - Antiferroelectric liquid crystal element and its driving method - Google Patents

Antiferroelectric liquid crystal element and its driving method

Info

Publication number
JPH07311373A
JPH07311373A JP6101400A JP10140094A JPH07311373A JP H07311373 A JPH07311373 A JP H07311373A JP 6101400 A JP6101400 A JP 6101400A JP 10140094 A JP10140094 A JP 10140094A JP H07311373 A JPH07311373 A JP H07311373A
Authority
JP
Japan
Prior art keywords
liquid crystal
stable state
antiferroelectric liquid
period
antiferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6101400A
Other languages
Japanese (ja)
Inventor
Masaya Kondo
近藤  真哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP6101400A priority Critical patent/JPH07311373A/en
Publication of JPH07311373A publication Critical patent/JPH07311373A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • G02F1/1412Antiferroelectric liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To display in good condition at a high contrast and to speed up writing of a screen even if an antiferroelectric liquid crystal material having-a small cone angle is used by using a specific cell constitution and driving method. CONSTITUTION:An antiferroelectric liquid crystal cell 12 formed by sandwiching antiferroelectric liquid crystals between a pair of substrates having at least one piece of scanning electrode and signal electrode respectively on their opposite surfaces is disposed between two sheets of such polarizing plates 11A and 11B of which the axes 13A, 13B of polarization intersect orthogonally with each other. The element is so constituted that the axes 13A, 13B of either of the polarizing plates 11A, 11B and the average major axis directions of the liquid crystal molecules of the second stable state where the molecule arrangement is stabilized by driving of the antiferroelectric liquid crystal molecules by positive voltage or the third stable state where the molecule arrangement is stabilized by driving of the antiferroelectric liquid crystal molecules by negative voltage attain nearly the same direction. As a result, the quantity of the transmitted light at the time of displaying black is made nearly equal and the quantity of the transmitted light at the time of displaying white is made larger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反強誘電性液晶を液晶
層とする、マトリックス状の画素を有する液晶表示パネ
ルや液晶光シャッターアレイ等に用いる反強誘電性液晶
素子とその駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antiferroelectric liquid crystal element used in a liquid crystal display panel having a matrix of pixels having an antiferroelectric liquid crystal as a liquid crystal layer, a liquid crystal optical shutter array, and the like, and a driving method thereof. It is a thing.

【0002】[0002]

【従来の技術】反強誘電性液晶を用いた液晶パネルは、
日本電装(株)及び昭和シェル石油(株)らの特開平2
−173724号公報で広視野角を有すること、高速応
答が可能なこと、マルチプレックス特性が良好なこと等
が報告されて以来、精力的に研究がなされている。
2. Description of the Related Art A liquid crystal panel using an antiferroelectric liquid crystal is
JP-A-2 of Nippon Denso Co., Ltd. and Showa Shell Sekiyu Co., Ltd.
Since the publication of 173724 discloses that it has a wide viewing angle, that it can respond at high speed, and that it has good multiplex characteristics, it has been actively researched.

【0003】図2は反強誘電性液晶をディスプレイとし
て用いる場合の従来の反強誘電性液晶素子の構成図であ
る。クロスニコルに合わせた2枚の偏光板11A,11
Bの間に、そのどちらかの偏光板の偏光軸と、電圧無印
加時における液晶分子の平均的長軸方向が、平行になる
ように液晶セル12を置いている。
FIG. 2 is a block diagram of a conventional antiferroelectric liquid crystal element when the antiferroelectric liquid crystal is used as a display. Two polarizing plates 11A and 11 matched to crossed Nicols
Between B, the liquid crystal cell 12 is placed such that the polarization axis of either one of the polarizing plates and the average major axis direction of the liquid crystal molecules when no voltage is applied are parallel to each other.

【0004】図3は反強誘電性液晶素子を、上記図2に
示したような構成にした場合に、液晶セルに電圧を印加
した場合の印加電圧の値と、その時に液晶ディスプレイ
を通る光の透過率を示したものである。印加電圧0Vの
状態(第1の安定状態)から、印加する電圧値を増加し
ていくと、それにつれ、透過率が上昇し、ある電圧以上
で、透過率が飽和し、一定となる。この状態が第2の安
定状態である。次に電圧値を減少させていくと、ある電
圧値以下で透過率が減少し始め、第1の安定状態を経由
して電圧値が負になると、再び透過率が上昇し始める。
そして、電圧値がある値以下(絶対値がある値以上)で
再び透過率が一定となる。この状態が第3の安定状態で
ある。その後、印加電圧の絶対値を減少させていくと、
正電圧側と同様に第1の安定状態に至る。すなわち、反
強誘電性液晶は図3に示すように、図2に示したパネル
構成の場合には、透過率を少なくする第1の安定状態
と、ある値以上の正極性の電圧を印加した場合に透過率
を大きくする第2の安定状態と、さらに、ある値以上の
負極性の電圧を印加した場合に透過率を大きくする第3
の安定状態の3つの安定状態を持つ。
FIG. 3 shows the value of the applied voltage when a voltage is applied to the liquid crystal cell and the light passing through the liquid crystal display at the time when the antiferroelectric liquid crystal device is constructed as shown in FIG. It shows the transmittance of. When the applied voltage value is increased from the state where the applied voltage is 0 V (first stable state), the transmittance increases with it, and the transmittance saturates and becomes constant at a certain voltage or higher. This state is the second stable state. Next, when the voltage value is decreased, the transmittance starts to decrease below a certain voltage value, and when the voltage value becomes negative via the first stable state, the transmittance starts to increase again.
Then, when the voltage value is below a certain value (absolute value is above a certain value), the transmittance becomes constant again. This state is the third stable state. After that, if you decrease the absolute value of the applied voltage,
As with the positive voltage side, the first stable state is reached. That is, as shown in FIG. 3, in the case of the panel structure shown in FIG. 2, the antiferroelectric liquid crystal has a first stable state in which the transmittance is reduced and a positive voltage of a certain value or more is applied. A second stable state in which the transmittance is increased in some cases, and a third state in which the transmittance is increased when a negative voltage of a certain value or more is applied.
It has three stable states:

【0005】反強誘電性液晶は分子が多層構造をとるこ
とが知られており、前述した第2あるいは第3の安定状
態においては、印加された電圧およびその極性が液晶分
子のダイポールに作用し、すべての層の液晶分子が同じ
方向に配列する分子配置をとっているものである。この
双方の安定状態においては、液晶分子は配向膜のラビン
グ軸に対して、互いに逆の角度に傾いている。また、前
述した第1の安定状態においては、液晶分子が層内では
同じ方向に配列し、その層が1層毎に交互に第2と第3
の安定状態の時の分子配置をとっているものである。各
安定状態以外の状態は、それぞれの安定状態間の遷移状
態である。
It is known that the molecules of the antiferroelectric liquid crystal have a multi-layered structure, and in the above-mentioned second or third stable state, the applied voltage and its polarity act on the dipole of the liquid crystal molecule. The liquid crystal molecules in all layers are arranged in the same direction. In both of these stable states, the liquid crystal molecules are tilted at mutually opposite angles with respect to the rubbing axis of the alignment film. Further, in the above-mentioned first stable state, the liquid crystal molecules are arranged in the same direction within the layer, and the layer is alternately arranged in the second and third layers.
It has a molecular configuration in the stable state of. The states other than the stable states are transition states between the stable states.

【0006】従来の反強誘電性液晶素子は、上記3つの
安定状態を利用しており、電圧無印加時には液晶分子は
第1の安定状態にあり、光が透過せず、黒表示となり、
液晶セルに電圧を印加した場合には印加電圧の極性によ
って第2または第3の安定状態になり、液晶分子がこの
偏光軸に対してある角度を持って傾くために光の透過が
起き、白表示となる。
The conventional antiferroelectric liquid crystal element utilizes the above-mentioned three stable states. When no voltage is applied, the liquid crystal molecules are in the first stable state, light is not transmitted, and black display occurs,
When a voltage is applied to the liquid crystal cell, it becomes a second or third stable state depending on the polarity of the applied voltage, and the liquid crystal molecules are inclined at an angle with respect to this polarization axis, so that light transmission occurs. Will be displayed.

【0007】図4は、前記図2に示したパネル構成をし
た反強誘電性液晶素子の従来の駆動方法の駆動電圧波形
と透過光量の例を示した図である。1画面を書き込むた
めに2つ走査期間から構成され、それぞれの走査期間
(第1走査期間及び第2走査期間)は0Vに対して、極
性が互いに対称であり、前記のように、3つの安定状態
を用いて表示を行っている。選択期間の前半で第1の安
定状態にリセットし、選択期間の後半のセレクトパルス
で前記リセット状態を保持する(黒表示)か、または第
2もしくは第3の安定状態にスイッチングする(白表
示)かを選択している。
FIG. 4 is a diagram showing an example of the drive voltage waveform and the amount of transmitted light in the conventional driving method of the antiferroelectric liquid crystal device having the panel structure shown in FIG. It is composed of two scanning periods for writing one screen, and the respective scanning periods (first scanning period and second scanning period) have polarities symmetrical to each other with respect to 0 V. The status is used for display. The first stable state is reset in the first half of the selection period, and the reset state is held by the select pulse in the latter half of the selection period (black display) or switched to the second or third stable state (white display). Is selected.

【0008】[0008]

【発明が解決しようとする課題】しかしながらこのよう
なセル構成で表示を行った場合には、セルを透過してく
る光量は、第2の安定状態と第3の安定状態における液
晶分子の平均的長軸方向のなす角度(コーン角)に依存
し、図2に示すようにこの角度が90度の場合が最も光
量が高くなる。しかし一般的な反強誘電性液晶材料はこ
のコーン角が60度以下のものが多いために白表示を行
った場合のセルの透過光量を大きくすることが困難であ
り、そのために高いコントラストの表示を行うことが難
しかった。また、第2もしくは第3の安定状態から第1
の安定状態へスイッチングする速度は、第1の安定状態
から第2もしくは第3の安定状態へスイッチングする応
答速度に比べて遅いために、前記リセットパルスのパル
ス幅を長くする必要があり、その結果として表示画面の
書き込み速度が遅くなってしまった。
However, in the case of displaying with such a cell structure, the amount of light transmitted through the cell is an average of liquid crystal molecules in the second stable state and the third stable state. It depends on the angle (cone angle) formed by the major axis direction, and the light amount becomes the highest when this angle is 90 degrees as shown in FIG. However, since most typical antiferroelectric liquid crystal materials have a cone angle of 60 degrees or less, it is difficult to increase the amount of light transmitted through the cell when white display is performed. Was difficult to do. Also, from the second or third stable state to the first
Since the speed of switching to the stable state is slower than the response speed of switching from the first stable state to the second or third stable state, it is necessary to increase the pulse width of the reset pulse. As a result, the writing speed of the display screen has become slow.

【0009】そこで本発明では画面の書き込みを高速に
行い、かつ現在入手し易いコーン角の小さな反強誘電性
液晶材料を用いた場合でも、白表示の透過光量を高く
し、すなわちコントラストの高い表示を行うためのセル
構成の反強誘電性液晶素子およびその駆動方法を提供す
ることを目的としている。
Therefore, according to the present invention, the amount of transmitted light for white display is increased, that is, display with high contrast is performed even when the screen is written at high speed and an antiferroelectric liquid crystal material having a small cone angle which is currently available is used. It is an object of the present invention to provide an antiferroelectric liquid crystal device having a cell structure for performing the above and a driving method thereof.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の反強誘電性液晶素子では、対向面にそれぞ
れ、少なくとも1本の走査電極と信号電極を有する1対
の基板間に反強誘電性液晶を挟持する反強誘電性液晶セ
ルを、互いの偏光軸が直交するような2枚の偏光板の間
に、前記偏光板のいずれかの偏光軸と、前記反強誘電性
液晶分子が正の電圧によって駆動されることにより分子
配置が安定するところの第2の安定状態または前記反強
誘電性液晶分子が負の電圧によって駆動されることによ
り分子配置が安定するところの第3の安定状態における
液晶分子の平均的長軸方向とが、ほぼ同一方向になるよ
うに挟んだ構成にする。
In order to achieve the above object, in an antiferroelectric liquid crystal device of the present invention, an antiferroelectric liquid crystal element is provided between a pair of substrates each having at least one scanning electrode and signal electrode on opposite surfaces. An antiferroelectric liquid crystal cell sandwiching a ferroelectric liquid crystal is provided between two polarizing plates whose polarization axes are orthogonal to each other, and one of the polarizing axes of the polarizing plate and the antiferroelectric liquid crystal molecule are A second stable state where the molecular arrangement is stabilized by being driven by a positive voltage or a third stable state where the molecular arrangement is stabilized by being driven by a negative voltage. The liquid crystal molecules are sandwiched so that the average long axis direction of the liquid crystal molecules in the state is almost the same direction.

【0011】また、前記反強誘電性液晶素子において、
前述した反強誘電性液晶の第1の安定状態を用いず、第
2の安定状態と第3の安定状態を用いて表示を行うこと
を特徴とする駆動方法を用いる。
In the antiferroelectric liquid crystal element,
The driving method is characterized in that display is performed using the second stable state and the third stable state without using the first stable state of the antiferroelectric liquid crystal described above.

【0012】また、前記反強誘電性液晶素子を表示する
ための駆動電圧波形は、少なくとも1つ以上の走査期間
を持ち、前記走査期間には少なくとも選択期間と非選択
期間が存在し、前記選択期間は液晶分子を第2もしくは
第3の安定状態にスイッチングするように選択する期間
であり、前記非選択期間は前記選択期間で選択した状態
を保持するための期間であることを特徴とする駆動方法
を用いる。
The drive voltage waveform for displaying the antiferroelectric liquid crystal element has at least one scanning period, and the scanning period has at least a selection period and a non-selection period. The period is a period in which liquid crystal molecules are selected to switch to the second or third stable state, and the non-selection period is a period for holding the state selected in the selection period. Use the method.

【0013】また、前記した本発明の反強誘電性液晶素
子において、偏光板のいずれかの偏光軸と、第2の安定
状態における液晶分子の平均的長軸方向とが、ほぼ同一
方向になるように挟んだ構成にした場合には、前記選択
期間は、少なくとも前記液晶分子を第2の安定状態にリ
セットするリセット期間と、前記第3の安定状態にスイ
ッチングするか、第2の安定状態を保持するかを選択す
るセレクト期間から構成されていることを特徴とする駆
動方法を用いる。
In the above-described antiferroelectric liquid crystal device of the present invention, one of the polarization axes of the polarizing plate and the average long axis direction of the liquid crystal molecules in the second stable state are substantially in the same direction. In such a sandwiched configuration, during the selection period, at least the reset period in which the liquid crystal molecules are reset to the second stable state and the switching to the third stable state or the second stable state is performed. A driving method is used, which is characterized by being configured from a select period for selecting whether to hold.

【0014】また、逆に、前記した本発明の反強誘電性
液晶素子において、偏光板のいずれかの偏光軸と、第3
の安定状態における液晶分子の平均的長軸方向とが、ほ
ぼ同一方向になるように挟んだ構成にした場合には、前
記選択期間は、少なくとも前記液晶分子の第3の安定状
態にリセットするリセット期間と、前記第2の安定状態
にスイッチングするか、第3の安定状態を保持するかを
選択するセレクト期間から構成されていることを特徴と
する駆動方法を用いる。
On the contrary, in the above-described antiferroelectric liquid crystal device of the present invention, one of the polarization axes of the polarizing plate and the third
In the case where the liquid crystal molecules are sandwiched so that the average long-axis direction of the liquid crystal molecules in the stable state is substantially the same direction, the reset period resets at least the third stable state of the liquid crystal molecules during the selection period. The driving method is characterized by comprising a period and a select period for selecting whether to switch to the second stable state or hold the third stable state.

【0015】また、さらに、これらの駆動方法におい
て、非選択期間における走査側電極の電圧値が0Vであ
ることを特徴とする駆動方法を用いる。
Further, in these driving methods, the driving method characterized in that the voltage value of the scanning side electrode in the non-selected period is 0V is used.

【0016】本発明においては、前述した反強誘電性液
晶分子の持つ、3つの安定状態の内、第2の安定状態と
第3の安定状態を用いて表示等を行い、時間のかかる第
1の安定状態へのスイッチングを利用しないため、画面
の書き込みを高速に行うことができる。
In the present invention, among the three stable states of the above-mentioned antiferroelectric liquid crystal molecules, the second stable state and the third stable state are used for display and the like, and the time-consuming first state is displayed. Since the switching to the stable state of is not used, the screen can be written at high speed.

【0017】また、本発明の反強誘電性液晶素子とその
駆動方法を用いることにより、現在入手し易いコーン角
の小さな反強誘電性液晶材料を用いた場合でも、白表示
の透過光量を高くし、すなわちコントラストの高い表示
を行うことができる。
Further, by using the antiferroelectric liquid crystal element of the present invention and the method of driving the same, the amount of transmitted light for white display can be increased even when an antiferroelectric liquid crystal material having a small cone angle which is currently available is used. That is, it is possible to perform display with high contrast.

【0018】本発明の反強誘電性液晶素子において、第
1の安定状態の時の液晶セル中の反強誘電性液晶分子の
平均的長軸方向は、配向膜のラビング方向とほぼ同じで
ある。よって、このラビング方向と使用する反強誘電性
液晶のコーン角をもとにして、偏光板の偏光軸の方向と
第2あるいは第3の安定状態における液晶分子の平均的
長軸方向が同一な反強誘電性液晶素子を製造することが
できる。
In the antiferroelectric liquid crystal device of the present invention, the average major axis direction of the antiferroelectric liquid crystal molecules in the liquid crystal cell in the first stable state is almost the same as the rubbing direction of the alignment film. . Therefore, based on this rubbing direction and the cone angle of the antiferroelectric liquid crystal used, the direction of the polarization axis of the polarizing plate and the average long axis direction of the liquid crystal molecules in the second or third stable state are the same. An antiferroelectric liquid crystal device can be manufactured.

【0019】本発明の反強誘電性液晶素子は、前述した
ようにそれぞれ複数の走査電極と信号電極を有するマト
リックス液晶表示パネルに用いることができるが、液晶
プリンタ等の光シャッターアレイに用いることもでき
る。
The antiferroelectric liquid crystal element of the present invention can be used in a matrix liquid crystal display panel having a plurality of scanning electrodes and signal electrodes as described above, but it can also be used in an optical shutter array of a liquid crystal printer or the like. it can.

【0020】[0020]

【作用】本発明についてさらに説明を加える。図1は本
発明の反強誘電性液晶素子の構成図である。前述したよ
うに反強誘電性液晶は図3にも示されているように3つ
の安定状態を持っている。この3つの安定状態のうち第
3の安定状態の時の液晶分子の平均的長軸方向を図1に
示すように偏光板の偏光軸のいずれかと平行になるよう
にした場合には、液晶分子が第3の安定状態にある時、
この液晶分子の長軸方向と偏光軸とが平行になり、液晶
セルを通過する透過光の振動方向は変化しないために光
は透過せず、黒表示を行うことができる。逆に液晶分子
が第2の安定状態にある時、すなわちこの偏光軸に対し
て液晶分子がコーン角だけ傾いた時には復屈折が起こり
光が透過する。
The function of the present invention will be further described. FIG. 1 is a block diagram of an antiferroelectric liquid crystal device of the present invention. As described above, the antiferroelectric liquid crystal has three stable states as shown in FIG. When the average long axis direction of the liquid crystal molecules in the third stable state among the three stable states is made parallel to any of the polarization axes of the polarizing plate as shown in FIG. Is in the third stable state,
Since the long axis direction of the liquid crystal molecules and the polarization axis are parallel to each other and the vibration direction of the transmitted light passing through the liquid crystal cell does not change, no light is transmitted and black display can be performed. On the contrary, when the liquid crystal molecules are in the second stable state, that is, when the liquid crystal molecules are inclined by the cone angle with respect to this polarization axis, birefringence occurs and light is transmitted.

【0021】また第2の安定状態の時の液晶分子の平均
的長軸方向を偏光板の偏光軸のいずれかと平行になるよ
うにした場合には、液晶分子が第2の安定状態にある
時、この液晶分子の長軸方向と偏光軸とが平行になり、
液晶セルを通過する透過光の振動方向は変化しないため
に光は透過せず、黒表示を行うことができる。逆に液晶
分子が第3の安定状態にある時、すなわちこの偏光軸に
対して液晶分子がコーン角だけ傾いた時には復屈折が起
こり光が透過する。
When the average major axis direction of the liquid crystal molecules in the second stable state is set to be parallel to one of the polarization axes of the polarizing plate, when the liquid crystal molecules are in the second stable state. , The long axis direction of this liquid crystal molecule is parallel to the polarization axis,
Since the vibration direction of the transmitted light passing through the liquid crystal cell does not change, the light does not pass therethrough and black display can be performed. On the contrary, when the liquid crystal molecules are in the third stable state, that is, when the liquid crystal molecules are inclined by the cone angle with respect to this polarization axis, birefringence occurs and light is transmitted.

【0022】反強誘電性液晶セルを、互いの偏光軸が直
交するような2枚の偏光板の間に挟んだ構成をした反強
誘電性液晶素子において、安定状態における液晶分子の
平均的長軸方向が、いずれかの偏光軸と平行である時、
透過光量は最小となり、逆に安定状態における液晶分子
の平均的長軸方向が、偏光軸と45度である時、透過光
量は最大となる。
In an antiferroelectric liquid crystal device having a structure in which an antiferroelectric liquid crystal cell is sandwiched between two polarizing plates whose polarization axes are orthogonal to each other, an average major axis direction of liquid crystal molecules in a stable state Is parallel to either polarization axis,
The amount of transmitted light is minimum, and conversely, when the average major axis direction of the liquid crystal molecules in the stable state is 45 degrees with the polarization axis, the amount of transmitted light is maximum.

【0023】コーン角(第2の安定状態と第3の安定状
態における液晶分子の平均的長軸方向のなす角度)が6
0度未満の反強誘電性液晶において、本発明と、従来技
術(偏光板のいずれかの偏光軸と、第1の安定状態にお
ける液晶分子の平均的長軸方向を一致させた反強誘電性
液晶素子)の反強誘電性液晶素子を比較すると、透過光
量が最大となる安定状態における液晶分子の平均的長軸
方向は、本発明の方が偏光軸と45度をなす方向に近
く、透過光量が大きい。
The cone angle (the angle formed by the average long axis directions of the liquid crystal molecules in the second stable state and the third stable state) is 6
In the antiferroelectric liquid crystal of less than 0 degree, the present invention and the prior art (the antiferroelectricity in which one of the polarization axes of the polarizing plate is aligned with the average long axis direction of the liquid crystal molecules in the first stable state). Comparing the antiferroelectric liquid crystal element (liquid crystal element), the average major axis direction of the liquid crystal molecules in the stable state where the amount of transmitted light is maximum is closer to the direction in which the present invention is closer to 45 degrees with the polarization axis, The amount of light is large.

【0024】本発明の反強誘電性液晶素子においては、
偏光板のいずれかの偏光軸と、第2もしくは第3の安定
状態における液晶分子の平均的長軸方向とが、ほぼ同一
方向になるように挟んだ構成をしているため、前述した
コーン角が60度以下の反強誘電性液晶を用いた時、液
晶分子が前述した3つの安定状態の内、第2もしくは第
3の一方の安定状態にある時、透過光量が最小となり、
もう一方の安定状態にある時、透過光量が最大となる。
In the antiferroelectric liquid crystal device of the present invention,
Since the polarization axis of any one of the polarizing plates and the average long axis direction of the liquid crystal molecules in the second or third stable state are sandwiched so as to be substantially in the same direction, the cone angle described above is used. When an antiferroelectric liquid crystal with a temperature of 60 degrees or less is used, the amount of transmitted light becomes minimum when the liquid crystal molecule is in the second or third stable state among the three stable states described above.
When in the other stable state, the amount of transmitted light is maximum.

【0025】これらのことから、本発明の反強誘電性液
晶素子を用い、第2の安定状態と第3の安定状態におけ
る液晶分子の平均的長軸方向のなす角度(コーン角)が
45度の場合には、黒表示と白表示の透過光量の差を最
大にすることができる。
From the above, using the antiferroelectric liquid crystal device of the present invention, the angle (cone angle) formed by the average long axis directions of the liquid crystal molecules in the second stable state and the third stable state is 45 degrees. In this case, the difference in transmitted light amount between black display and white display can be maximized.

【0026】現在一般的に入手できる反強誘電性液晶材
料はこの第2の安定状態と第3の安定状態とのなす角度
は60度以上のものはほとんど無く、逆に45度付近の
材料は容易に入手する事ができる。
Most of the currently available antiferroelectric liquid crystal materials have almost no angle of 60 degrees or more between the second stable state and the third stable state. It can be easily obtained.

【0027】以上のことから、本発明の反強誘電性液晶
素子は、従来の反強誘電性液晶素子と比べて、黒表示の
時の透過光量が同等で、白表示の時の透過光量を大きく
することができ、コントラストの高い表示を行うことが
できる。
From the above, the anti-ferroelectric liquid crystal element of the present invention has the same amount of transmitted light in black display and the transmitted light amount in white display as compared with the conventional anti-ferroelectric liquid crystal element. It is possible to increase the size and display with high contrast can be performed.

【0028】また、このようなセル構造での駆動におい
ても非選択期間で選択した透過光量を保持する必要があ
る。反強誘電性液晶に於いては第2または第3の安定状
態に液晶分子が位置するときに印加電圧を0Vにすると
液晶分子は第1の安定状態に戻ろうとする、しかしこの
応答速度は非常に遅く液晶材料によっては10msから
100msの材料もある。また、図2で示した従来の技
術においては第2または第3の安定状態で白を、第1の
安定状態で黒を表示するため、白表示を保持するための
印加電圧を0Vにすると白から黒へと戻ろうとするので
あるが、図1にも示されているように、本発明において
は、白から黒ではなく、中間調に戻ろうとするため、見
かけの応答速度はさらに遅くなる。この第2または第3
の安定状態から第1の安定状態へ戻ろうとする応答速度
が遅いと、駆動波形における非選択期間を長くとること
ができ、走査線の数を多くする事ができる。言い替えれ
ば、本発明においては、走査線の数が多い表示において
も、非選択期間における印加電圧を0Vにする事が可能
になる、すなわち、液晶自身の特性によって透過光量を
保持する事ができ、非選択期間に従来のような保持電圧
を印加する必要がなくなり、このことにより、ちらつき
の少ない表示を行うことができる。
Further, even in driving with such a cell structure, it is necessary to hold the amount of transmitted light selected in the non-selection period. In the antiferroelectric liquid crystal, when the applied voltage is set to 0V when the liquid crystal molecules are located in the second or third stable state, the liquid crystal molecules try to return to the first stable state, but this response speed is very high. Some liquid crystal materials are very slow, and some materials have a length of 10 ms to 100 ms. Further, in the conventional technique shown in FIG. 2, white is displayed in the second or third stable state, and black is displayed in the first stable state. Therefore, if the applied voltage for holding the white display is set to 0V, white is displayed. However, in the present invention, the apparent response speed is further slowed down because the present invention tries to return to halftone rather than white, as shown in FIG. This second or third
If the response speed for returning from the stable state to the first stable state is slow, the non-selection period in the drive waveform can be lengthened and the number of scanning lines can be increased. In other words, in the present invention, even in the case of display with a large number of scanning lines, the applied voltage in the non-selected period can be set to 0 V, that is, the amount of transmitted light can be held by the characteristics of the liquid crystal itself. It is not necessary to apply a holding voltage as in the conventional case during the non-selection period, which enables display with less flicker.

【0029】以上、反強誘電性液晶素子を用いた表示パ
ネルについて中心に述べたが、光シャッターアレイ等の
場合にも、同様の効果が得られる。
The display panel using the antiferroelectric liquid crystal element has been mainly described above, but the same effect can be obtained in the case of an optical shutter array or the like.

【0030】[0030]

【実施例】以下本発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0031】(実施例1)図5は本実施例に用いた液晶
パネルのセル構成図である。本実施例で用いた液晶パネ
ルは約2μの厚さの反強誘電性液晶層56を持つ一対の
ガラス基板53a、53bから構成されている。ガラス
基板の対向面には電極54a、54bが形成されてお
り、その上に高分子配向膜55a、55bが塗布され、
ラビング処理がなされている。さらに1方のガラス基板
の外側に、第3の安定状態の時の液晶分子の長軸方向
と、偏光板の偏光軸とが、平行になるように第1の偏光
板51aが設置されており、他方のガラス基板の外側に
は第1の偏光板51aの偏光軸と偏光軸が90°異なる
ようにして第2の偏光板51bが設置されている。ま
た、本実施例においては、しきい値電圧が30V、コー
ン角が45度の反強誘電性液晶を用いた。
Example 1 FIG. 5 is a cell configuration diagram of the liquid crystal panel used in this example. The liquid crystal panel used in this embodiment is composed of a pair of glass substrates 53a and 53b having an antiferroelectric liquid crystal layer 56 having a thickness of about 2μ. Electrodes 54a and 54b are formed on the opposite surface of the glass substrate, and polymer alignment films 55a and 55b are applied thereon,
The rubbing process is done. Further, the first polarizing plate 51a is provided outside the one glass substrate so that the major axis direction of the liquid crystal molecules in the third stable state and the polarizing axis of the polarizing plate are parallel to each other. A second polarizing plate 51b is provided outside the other glass substrate so that the polarizing axis of the first polarizing plate 51a differs from that of the first polarizing plate 51a by 90 °. Further, in this example, an antiferroelectric liquid crystal having a threshold voltage of 30 V and a cone angle of 45 degrees was used.

【0032】図6は本発明の第1の実施例の駆動電圧波
形とそれに応じた透過光量の変化を表した図である。駆
動電圧波形は走査電極波形と信号電極波形の組み合わせ
からなり、両者の差である合成電圧波形が画素に印加さ
れる。本実施例で用いた駆動波形は選択期間が4位相の
パルスからなり、パルス幅は50μsに設定した。非選
択期間の時間は約10msである。選択期間はリセット
期間とセレクト期間の2つの期間から構成されており、
前半の3パルスがリセット期間で、後半の1パルスがセ
レクト期間である。選択期間のリセット期間で液晶分子
を一旦第3の安定状態にし、セレクト期間の電圧値によ
ってその状態を保持する(黒表示)か、もしくは第2の
安定状態へスイッチングする(白表示)かを選択する。
FIG. 6 is a diagram showing the drive voltage waveform of the first embodiment of the present invention and the change in the amount of transmitted light in accordance therewith. The drive voltage waveform is composed of a combination of the scan electrode waveform and the signal electrode waveform, and a composite voltage waveform that is the difference between the two is applied to the pixel. The drive waveform used in this example is a pulse having a four-phase selection period, and the pulse width is set to 50 μs. The time of the non-selection period is about 10 ms. The selection period consists of two periods, a reset period and a selection period,
The first three pulses are the reset period and the second half pulse is the select period. In the reset period of the selection period, the liquid crystal molecules are temporarily brought into the third stable state, and depending on the voltage value of the select period, the state is held (black display) or switched to the second stable state (white display). To do.

【0033】走査電極波形は、選択期間に印加される第
1位相の電圧値と第4位相の電圧値を25V、第2位相
と第3位相の電圧値を−25Vにそれぞれ設定し、非選
択期間に印加される電圧値は0Vとした。信号電極波形
は白表示(ON状態)を行う場合には第1位層と第3位
相を5V、第2位相と第4位相を−5Vに設定したパル
スを印加し、また黒表示(OFF状態)を行う場合には
第1位相と第3位相を−5V、第2位相と第4位相を5
Vに設定したパルスを印加した。また非選択期間に印加
される信号電極波形は液晶ディスプレイの他の画素の表
示状態によって任意の信号電極波形が印加される。この
走査電極波形と信号電極波形により、液晶パネル中の液
晶には両者の差である合成電圧波形が印加され、その時
の透過光量の変化を測定した結果を、図6中に透過光量
として示した。
The scan electrode waveforms are set such that the voltage value of the first phase and the voltage value of the fourth phase, which are applied during the selection period, are set to 25V, and the voltage values of the second phase and the third phase are set to -25V, respectively. The voltage value applied during the period was 0V. In the case of white display (ON state), the signal electrode waveform is applied with a pulse in which the first layer and the third phase are set to 5V, the second phase and the fourth phase are set to -5V, and the black display (OFF state) is applied. ) Is performed, the first phase and the third phase are set to -5V, and the second phase and the fourth phase are set to 5V.
A pulse set to V was applied. As the signal electrode waveform applied during the non-selection period, an arbitrary signal electrode waveform is applied depending on the display state of other pixels of the liquid crystal display. Due to the scanning electrode waveform and the signal electrode waveform, a composite voltage waveform, which is the difference between the two, is applied to the liquid crystal in the liquid crystal panel, and the change in the transmitted light amount at that time is measured, and the result is shown as the transmitted light amount in FIG. .

【0034】本実施例においては、白表示(ON状態)
を行う場合には、合成電圧波形が第3位相で−30Vと
なり、一旦第3の安定状態にリセットし、第4位相目
(セレクト期間)で+30Vに設定され、第2の安定状
態にスイッチングして、白表示となっている。逆に黒表
示(OFF状態)を行う場合には、合成電圧波形は第1
位相で+30Vとなり、第2の安定状態となるが、第2
位相で−30Vとなり、第3の安定状態にリセットされ
る。そして、第4位相目(セレクト期間)は+20Vに
設定されており、第3の安定状態が保持され、黒表示と
なっている。
In this embodiment, white display (ON state)
When performing, the combined voltage waveform becomes −30V in the third phase, is temporarily reset to the third stable state, is set to + 30V in the fourth phase (select period), and is switched to the second stable state. Is displayed in white. Conversely, when black display (OFF state) is performed, the combined voltage waveform is the first
It becomes + 30V in phase and enters the second stable state.
It becomes −30V in phase and is reset to the third stable state. Then, the fourth phase (selection period) is set to +20 V, the third stable state is held, and black display is performed.

【0035】また、表示コントラストとして、黒表示
(第3の安定状態)の時の透過光量に対する白表示(第
2の安定状態)の時の透過光量の比を求めた結果、34
であった。
As the display contrast, the ratio of the amount of transmitted light in the white display (second stable state) to the amount of transmitted light in the black display (third stable state) was calculated.
Met.

【0036】コーン角が35度および55度の反強誘電
性液晶を用いて、同様に表示コントラストの測定を行っ
たところ、表示コントラストは、それぞれ30、32で
あった。
When the display contrast was similarly measured using antiferroelectric liquid crystals having cone angles of 35 degrees and 55 degrees, the display contrasts were 30 and 32, respectively.

【0037】(比較例1)1対の偏光板を、その一方の
偏光軸が、第1の安定状態の時の液晶分子の長軸方向と
平行になるように設定してあることだけが、実施例1で
用いた液晶パネルと異なる従来の液晶パネルを用い、図
4で示した従来の駆動方法を用いて、駆動を行った。実
施例1で用いたものと同じ反強誘電性液晶を用い、黒表
示(第1の安定状態)の時の透過光量に対する白表示
(第2あるいは第3の安定状態)の時の透過光量の比を
求め、表示コントラストの測定を行った。得られた表示
コントラストは13であった。
(Comparative Example 1) A pair of polarizing plates is set such that one polarization axis thereof is parallel to the major axis direction of liquid crystal molecules in the first stable state. Driving was performed using a conventional liquid crystal panel different from the liquid crystal panel used in Example 1 and using the conventional driving method shown in FIG. Using the same antiferroelectric liquid crystal as that used in Example 1, the amount of transmitted light during white display (second or third stable state) versus the amount of transmitted light during black display (first stable state) The ratio was obtained and the display contrast was measured. The display contrast obtained was 13.

【0038】コーン角が35度および55度の反強誘電
性液晶を用いて、同様に表示コントラストの測定を行っ
たところ、表示コントラストは、それぞれ11、22で
あった。
When the display contrast was similarly measured using antiferroelectric liquid crystals having cone angles of 35 degrees and 55 degrees, the display contrasts were 11 and 22, respectively.

【0039】(実施例2)図7は本発明の第2の実施例
の駆動電圧波形とそれに応じた透過光量の変化を表した
図である。本実施例において、液晶パネルは実施例1と
同じものを用いた。また、本実施例において、液晶は実
施例1と同じものを用いた。駆動電圧波形は走査電極波
形と信号電極波形の組み合わせからなり、両者の差であ
る合成電圧波形が画素に印加される。本実施例に用いた
駆動波形は2つの走査期間から構成され、それぞれの走
査期間は選択期間と非選択期間から構成されている。本
発明に用いた駆動波形は選択期間が2位相のパルスから
なり、パルス幅は50μsに設定した。非選択期間の時
間は約10msである。本実施例の駆動電圧波形を用い
た駆動方法においては、白表示(ON状態)を行う場合
には第2走査期間の選択期間で、黒表示(OFF状態)
を行う場合には第1走査期間の選択期間で設定を行って
いる。すなわち、白表示(ON状態)を行う場合には、
第1走査期間の選択期間では印加される電圧値が第2あ
るいは第3の安定状態から他の状態へ移行するための電
圧値より小さいために他の安定状態へはスイッチングせ
ず、前の状態(図7ではON状態)を保持し、その後の
非選択期間でもこの状態を保持する。そして、第2走査
期間の選択期間の後半のパルスで第2の安定状態へスイ
ッチングするための十分な電圧値の正のパルスを印加す
る事により白表示(ON状態)を選択し、その後の非選
択期間ではこの状態を維持している。また、黒表示(O
FF状態)を行う場合には、第1走査期間の選択期間の
後半のパルスで、第3の安定状態へスイッチングするた
めに十分な電圧値の負のパルスを印加する事により、黒
表示(OFF状態)を選択し、その後の非選択期間では
この状態を保持している。そして、第2走査期間の選択
期間では、印加される電圧値が第3の安定状態から他の
安定状態へ移行するために必要な電圧値より小さいため
にこの状態を保持しその後の非選択期間でもこの状態を
保持している。
(Embodiment 2) FIG. 7 is a diagram showing a drive voltage waveform according to a second embodiment of the present invention and a change in the amount of transmitted light according to the drive voltage waveform. In this example, the same liquid crystal panel as in Example 1 was used. Further, in this example, the same liquid crystal as in Example 1 was used. The drive voltage waveform is composed of a combination of the scan electrode waveform and the signal electrode waveform, and a composite voltage waveform that is the difference between the two is applied to the pixel. The drive waveform used in this embodiment is composed of two scanning periods, and each scanning period is composed of a selection period and a non-selection period. The drive waveform used in the present invention is a pulse having a selection period of two phases, and the pulse width is set to 50 μs. The time of the non-selection period is about 10 ms. In the driving method using the driving voltage waveform of the present embodiment, when white display (ON state) is performed, black display (OFF state) is performed during the selection period of the second scanning period.
When performing, the setting is performed in the selection period of the first scanning period. That is, when performing white display (ON state),
In the selection period of the first scanning period, the applied voltage value is smaller than the voltage value for transitioning from the second or third stable state to another state, so that switching to another stable state is not performed and the previous state (ON state in FIG. 7) is held, and this state is also held during the subsequent non-selection period. Then, the white display (ON state) is selected by applying a positive pulse having a sufficient voltage value for switching to the second stable state in the latter half pulse of the selection period of the second scanning period, and the subsequent non-display is selected. This state is maintained during the selection period. Also, black display (O
In the FF state), by applying a negative pulse having a voltage value sufficient for switching to the third stable state in the latter half pulse of the selection period of the first scanning period, black display (OFF (State) is selected, and this state is maintained during the subsequent non-selection period. Then, in the selection period of the second scanning period, the applied voltage value is smaller than the voltage value required to shift from the third stable state to another stable state, and this state is held, and the subsequent non-selection period is performed. But it keeps this state.

【0040】本実施例の駆動方法に用いた走査電極波形
は、第1走査期間の選択期間に印加される第1位相の電
圧値を25V、第2位相の電圧値を−25Vに設定し、
非選択期間に印加される電圧値は0Vとし、第2走査期
間の選択期間に印加される第1位相の電圧値は−25
V、第2位相の電圧値は25Vに設定し、非選択期間に
印加される電圧値は0Vに設定した。信号電極波形は白
表示(ON状態)を行う場合には第1位層を10V、第
2位相を−10Vに設定した。また黒表示(OFF状
態)を行う場合には第1位相を−10V、第2位相を1
0Vに設定した。また非選択期間に印加される信号電極
波形は液晶ディスプレイの他の画素の表示状態によって
任意の信号電圧波形が印加される。この走査電極波形と
信号電極波形により、液晶パネル中の液晶には両者の差
である合成電圧波形が印加され、その時の透過光量の変
化を測定した結果を、図7中に透過光量として示した。
The scan electrode waveform used in the driving method of this embodiment is set such that the voltage value of the first phase applied in the selection period of the first scan period is 25V and the voltage value of the second phase is -25V.
The voltage value applied in the non-selection period is 0 V, and the voltage value in the first phase applied in the selection period in the second scanning period is -25.
The voltage value of V and the second phase was set to 25V, and the voltage value applied during the non-selection period was set to 0V. The signal electrode waveform was set to 10 V for the first layer and -10 V for the second phase when white display (ON state) was performed. When displaying black (OFF state), the first phase is -10 V and the second phase is 1
It was set to 0V. Further, as the signal electrode waveform applied during the non-selection period, an arbitrary signal voltage waveform is applied depending on the display state of other pixels of the liquid crystal display. A composite voltage waveform, which is the difference between the two, is applied to the liquid crystal in the liquid crystal panel by the scanning electrode waveform and the signal electrode waveform, and the change in the transmitted light amount at that time is measured. The result is shown in FIG. 7 as the transmitted light amount. .

【0041】また、表示コントラストとして、黒表示
(第3の安定状態)の時の透過光量に対する白表示(第
2の安定状態)の時の透過光量の比を求めた結果、コー
ン角が35度、45度および55度の反強誘電性液晶を
用いた時、それぞれ27、31、29であった。
As the display contrast, the ratio of the transmitted light amount in the white display (second stable state) to the transmitted light amount in the black display (third stable state) was obtained, and as a result, the cone angle was 35 degrees. When using 45 ° and 55 ° antiferroelectric liquid crystals, the values were 27, 31, and 29, respectively.

【0042】以上に示した実施例1,2と比較例1にお
ける、各コーン角の反強誘電性液晶を用いた時の表示コ
ントラストの測定結果を表1にまとめて示した。この結
果、各コーン角を持ったいずれの反強誘電性液晶におい
ても、両実施例による表示コントラストが、比較例のも
のよりかなり大きい値を示し、良好であることがわか
る。すなわち、本発明の反強誘電性液晶素子および駆動
方法により、コントラストの高い表示を行うことができ
た。また、前述した反強誘電性液晶の第1の安定状態を
用いず、第2の安定状態と第3の安定状態を用いて表示
を行っているため、画面の書き込みを高速に行うことが
できた。
Table 1 shows the measurement results of the display contrast when using the antiferroelectric liquid crystal of each cone angle in Examples 1 and 2 and Comparative Example 1 shown above. As a result, it can be seen that the display contrasts of both examples are considerably larger than those of the comparative example in any antiferroelectric liquid crystal having each cone angle, which is good. That is, with the antiferroelectric liquid crystal element and driving method of the present invention, display with high contrast could be performed. Moreover, since the display is performed using the second stable state and the third stable state instead of using the first stable state of the antiferroelectric liquid crystal described above, it is possible to write the screen at high speed. It was

【0043】[0043]

【表1】 [Table 1]

【0044】本実施例1および2においては、1方のガ
ラス基板の外側に、第3の安定状態の時の液晶分子の長
軸方向と、偏光板の偏光軸とが、平行になるように一方
の偏光板を配置した液晶パネルを用いたが、どちらかの
偏光板の偏光軸が、第2の安定状態の時の液晶分子の長
軸方向と平行になるように配置した液晶パネルを用いて
も、同様の結果が得られる。
In Examples 1 and 2, the major axis direction of the liquid crystal molecules in the third stable state and the polarization axis of the polarizing plate are parallel to each other on the outside of one glass substrate. A liquid crystal panel in which one polarizing plate is arranged is used, but a liquid crystal panel in which the polarizing axis of either polarizing plate is arranged to be parallel to the major axis direction of liquid crystal molecules in the second stable state is used. However, the same result can be obtained.

【0045】[0045]

【発明の効果】以上の実施例で述べたように、本発明の
セル構成と駆動方法を用いることにより、コーン角度の
小さな反強誘電性液晶材料を用いた場合でも、高いコン
トラストで良好な表示を行うことができる。また、画面
の書き込みを高速に行うことができる。
As described in the above embodiments, by using the cell structure and the driving method of the present invention, even when an antiferroelectric liquid crystal material having a small cone angle is used, a high contrast and a good display are obtained. It can be performed. In addition, the screen can be written at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反強誘電性液晶素子のパネル構成を示
す図である。
FIG. 1 is a diagram showing a panel structure of an antiferroelectric liquid crystal element of the present invention.

【図2】従来の反強誘電性液晶素子のパネル構成を示す
図である。
FIG. 2 is a diagram showing a panel structure of a conventional antiferroelectric liquid crystal element.

【図3】従来の反強誘電性液晶素子に電圧を印加した場
合の透過率変化を表した図である。
FIG. 3 is a diagram showing a change in transmittance when a voltage is applied to a conventional antiferroelectric liquid crystal element.

【図4】従来の反強誘電性液晶素子の駆動方法を示す図
である。
FIG. 4 is a diagram showing a conventional method for driving an antiferroelectric liquid crystal element.

【図5】本発明の実施例で用いた反強誘電性液晶セルの
構成図である。
FIG. 5 is a configuration diagram of an antiferroelectric liquid crystal cell used in an example of the present invention.

【図6】本発明の実施例1で用いた反強誘電性液晶素子
の駆動方法を示す図である。
FIG. 6 is a diagram showing a method for driving the antiferroelectric liquid crystal element used in Example 1 of the present invention.

【図7】本発明の実施例2で用いた反強誘電性液晶素子
の駆動方法を示す図である。
FIG. 7 is a diagram showing a method for driving an antiferroelectric liquid crystal element used in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

11A 偏光板A 11B 偏光板B 12 液晶セル 13A 偏光軸A 13B 偏光軸B 14 第1の安定状態の時の液晶分子の平均
的長軸方向を示す矢印 15 第2の安定状態の時の液晶分子の平均
的長軸方向を示す矢印 16 第3の安定状態の時の液晶分子の平均
的長軸方向を示す矢印 51a,51b 偏光板 52a,52b シール材 53a,53b ガラス基板 54a,54b 電極 55a,55b 高分子配向膜 56 反強誘電性液晶層
11A Polarizing plate A 11B Polarizing plate B 12 Liquid crystal cell 13A Polarization axis A 13B Polarization axis B 14 Arrow indicating the average major axis direction of liquid crystal molecules in the first stable state 15 Liquid crystal molecule in the second stable state 16 indicating the average long axis direction of the arrow 16 indicating the average long axis direction of the liquid crystal molecules in the third stable state 51a, 51b polarizing plates 52a, 52b sealing materials 53a, 53b glass substrates 54a, 54b electrodes 55a, 55b Polymer alignment film 56 Antiferroelectric liquid crystal layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 対向面にそれぞれ、少なくとも1本の走
査電極と信号電極を有する1対の基板間に反強誘電性液
晶を挟持する反強誘電性液晶セルを、互いの偏光軸が直
交するような2枚の偏光板の間に挟んだ構成をした反強
誘電性液晶素子において、前記偏光板のいずれかの偏光
軸と、前記反強誘電性液晶が正の電圧によって駆動され
ることにより前記反強誘電性液晶の分子配置が安定する
ところの第2の安定状態または前記反強誘電性液晶が負
の電圧によって駆動されることにより前記反強誘電性液
晶の分子配置が安定するところの第3の安定状態におけ
る反強誘電性液晶分子の平均的長軸方向とが、ほぼ同一
方向であることを特徴とする反強誘電性液晶素子。
1. An antiferroelectric liquid crystal cell in which an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having at least one scanning electrode and signal electrode on opposite surfaces, and their polarization axes are orthogonal to each other. In an anti-ferroelectric liquid crystal device having a configuration sandwiched between two such polarizing plates, the anti-ferroelectric liquid crystal element is driven by a positive voltage on either polarization axis of the polarizing plate and the anti-ferroelectric liquid crystal. The second stable state where the molecular arrangement of the ferroelectric liquid crystal is stable, or the third stable state where the molecular arrangement of the anti-ferroelectric liquid crystal is stabilized by driving the anti-ferroelectric liquid crystal by a negative voltage. 2. An antiferroelectric liquid crystal device, characterized in that the average long axis direction of the antiferroelectric liquid crystal molecules in the stable state is substantially the same direction.
【請求項2】 前記第2の安定状態および前記第3の安
定状態を用いることによって表示を行うことを特徴とす
る請求項1記載の反強誘電性液晶素子の駆動方法。
2. The method for driving an antiferroelectric liquid crystal element according to claim 1, wherein display is performed by using the second stable state and the third stable state.
【請求項3】 請求項1記載の反強誘電性液晶素子の駆
動電圧波形は、少なくとも1つの走査期間を有し、前記
走査期間には少なくとも選択期間と非選択期間が存在
し、選択期間は前記反強誘電性液晶が前記第2の安定状
態にスイッチングするか前記第3の安定状態にスイッチ
ングするかを選択する期間であり、非選択期間は前記選
択期間で選択した状態を保持するための期間であること
を特徴とする請求項1記載の反強誘電性液晶素子の駆動
方法。
3. The drive voltage waveform of the anti-ferroelectric liquid crystal element according to claim 1 has at least one scanning period, and at least the selection period and the non-selection period exist in the scanning period, and the selection period is The antiferroelectric liquid crystal is a period for selecting whether to switch to the second stable state or the third stable state, and the non-selection period is for maintaining the state selected in the selection period. The method for driving an antiferroelectric liquid crystal element according to claim 1, wherein the period is a period.
【請求項4】 前記選択期間は少なくとも前記第2また
は第3の安定状態にリセットするためのリセット期間
と、前記第3または第2の安定状態を選択するセレクト
期間から構成されることを特徴とした請求項3記載の駆
動方法。
4. The selection period comprises at least a reset period for resetting to the second or third stable state and a select period for selecting the third or second stable state. The driving method according to claim 3, wherein
【請求項5】 非選択期間における走査側電極の電圧値
が0Vであることを特徴とする請求項3または請求項4
記載の駆動方法。
5. The voltage value of the scanning-side electrode in the non-selected period is 0 V, according to claim 3 or 4.
The driving method described.
JP6101400A 1994-05-16 1994-05-16 Antiferroelectric liquid crystal element and its driving method Pending JPH07311373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101400A JPH07311373A (en) 1994-05-16 1994-05-16 Antiferroelectric liquid crystal element and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101400A JPH07311373A (en) 1994-05-16 1994-05-16 Antiferroelectric liquid crystal element and its driving method

Publications (1)

Publication Number Publication Date
JPH07311373A true JPH07311373A (en) 1995-11-28

Family

ID=14299690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101400A Pending JPH07311373A (en) 1994-05-16 1994-05-16 Antiferroelectric liquid crystal element and its driving method

Country Status (1)

Country Link
JP (1) JPH07311373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037270A1 (en) * 1996-03-29 1997-10-09 Citizen Watch Co., Ltd. Liquid crystal display
EP0816907A3 (en) * 1996-06-24 1998-09-16 Casio Computer Co., Ltd. Liquid crystal display apparatus
KR100383016B1 (en) * 1999-12-27 2003-05-09 가부시끼가이샤 도시바 Liquid crystal display element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037270A1 (en) * 1996-03-29 1997-10-09 Citizen Watch Co., Ltd. Liquid crystal display
US6115091A (en) * 1996-03-29 2000-09-05 Citizen Watch Co., Ltd. Liquid crystal device with adjustable light throughput
EP0816907A3 (en) * 1996-06-24 1998-09-16 Casio Computer Co., Ltd. Liquid crystal display apparatus
US6163360A (en) * 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
KR100383016B1 (en) * 1999-12-27 2003-05-09 가부시끼가이샤 도시바 Liquid crystal display element

Similar Documents

Publication Publication Date Title
JPH0466327B2 (en)
JP3603904B2 (en) Driving method and apparatus for antiferroelectric liquid crystal display element
US5276542A (en) Ferroelectric liquid crystal apparatus having temperature compensation control circuit
JPH10239664A (en) Liquid crystal display
JP3058804B2 (en) Liquid crystal device
JPS63116128A (en) Driving method for optical modulating element
JPH07104245A (en) Method for driving active matrix substrate
JPH07311373A (en) Antiferroelectric liquid crystal element and its driving method
JPH0854605A (en) Driving method for anti-ferroelectric liquid crystal display
JPH028814A (en) Liquid crystal device
JP3258110B2 (en) Driving method of antiferroelectric liquid crystal panel
JPH08328046A (en) Antiferroelectric liquid crystal display element
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPH0695179B2 (en) Driving method of liquid crystal matrix display panel
JPH11231286A (en) Driving method for antiferroelectric liquid crystal display element
JP4477160B2 (en) Gradation method of bistable liquid crystal cell
JP3441143B2 (en) Driving method of antiferroelectric liquid crystal display
JP2000275684A (en) Liquid crystal element and liquid crystal device using the same
JP3182405B2 (en) Ferroelectric liquid crystal display
JPS6256936A (en) Driving method for liquid crystal matrix display panel
JPH07109457B2 (en) Liquid crystal device
JP3219709B2 (en) Liquid crystal element, liquid crystal device, and method of driving liquid crystal element
JP3094013B2 (en) Ferroelectric liquid crystal display
JPH095708A (en) Liquid crystal display device and its driving method
JPH063503B2 (en) Display device