JPH0731099Y2 - Oil adsorber in refrigeration equipment - Google Patents

Oil adsorber in refrigeration equipment

Info

Publication number
JPH0731099Y2
JPH0731099Y2 JP1989041175U JP4117589U JPH0731099Y2 JP H0731099 Y2 JPH0731099 Y2 JP H0731099Y2 JP 1989041175 U JP1989041175 U JP 1989041175U JP 4117589 U JP4117589 U JP 4117589U JP H0731099 Y2 JPH0731099 Y2 JP H0731099Y2
Authority
JP
Japan
Prior art keywords
oil
adsorber
gas
filter material
pressure gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989041175U
Other languages
Japanese (ja)
Other versions
JPH02134465U (en
Inventor
正誼 柳井
富雄 西谷
悦治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP1989041175U priority Critical patent/JPH0731099Y2/en
Publication of JPH02134465U publication Critical patent/JPH02134465U/ja
Application granted granted Critical
Publication of JPH0731099Y2 publication Critical patent/JPH0731099Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Description

【考案の詳細な説明】 《産業上の利用分野》 本考案は、冷凍装置での油吸着器の構造に関し、特に油
潤滑式の圧縮機を使用している冷凍装置での油吸着器の
改良に関する。
[Detailed Description of the Invention] << Industrial Application Field >> The present invention relates to the structure of an oil adsorber in a refrigeration system, and in particular, an improvement of the oil adsorber in a refrigeration system using an oil-lubricated compressor. Regarding

《従来技術》 冷凍装置では、圧縮機で圧縮された高圧気体を冷却器で
冷却した後、コールドヘッドに供給し、コールドヘッド
で高圧気体を断熱膨張させて、寒冷を得るようにしてい
る。この場合、圧縮機の潤滑油がコールドヘッド内に流
入すると、蓄熱器が油膜に包まれ、伝熱が悪くなること
から、冷却器よりも下流側に油分離器と油吸着器を順に
配置し、油分離器で焼結金属等の多孔質エレメントによ
る油分離と、グラスウールやスチールウール等の繊維状
エレメントによる油分離の二段階の油分離を行って高圧
気体中に混入している油分から99%の油分を分離し、残
りの油分を油吸着器内の活性炭で吸着するようにしてい
た。
<< Prior Art >> In a refrigeration system, high-pressure gas compressed by a compressor is cooled by a cooler and then supplied to a cold head, and the high-pressure gas is adiabatically expanded by the cold head to obtain cold. In this case, when the lubricating oil of the compressor flows into the cold head, the heat accumulator is wrapped in an oil film and heat transfer deteriorates.Therefore, place an oil separator and an oil adsorber in the downstream side of the cooler in order. The oil separator performs two-step oil separation using a porous element such as sintered metal and oil separation using a fibrous element such as glass wool or steel wool. % Oil was separated and the remaining oil was adsorbed by activated carbon in the oil adsorber.

《解決しようとする課題》 ところが、繊維状エレメントはその充填密度を高くする
と油捕捉率は上昇するが、その分流路抵抗が大きくなっ
てコールドヘッドに流入するガス圧が低下することにな
るから、繊維状エレメントの充填密度をある程度以上は
上げることはできなかった。この結果、従来の油吸着器
には粒子径の大きな潤滑油分が混入した高圧気体が流入
することになり、高圧気体が活性炭層を通過する際に気
体中の油粒子が十分にブラウン運動を行うことができな
かった。この結果、活性炭の吸着能を十分に活用するこ
とができず、油分を吸着層で完全に除去することはでき
なかった。
<Problems to be solved> However, when the packing density of the fibrous element is increased, the oil capture rate is increased, but the flow path resistance is correspondingly increased and the gas pressure flowing into the cold head is reduced, The packing density of the fibrous element could not be increased above a certain level. As a result, high-pressure gas mixed with lubricating oil with a large particle size will flow into the conventional oil adsorber, and when the high-pressure gas passes through the activated carbon layer, the oil particles in the gas will undergo sufficient Brownian motion. Could not be done. As a result, the adsorption capacity of activated carbon could not be fully utilized and the oil could not be completely removed by the adsorption layer.

本考案はこのような点に着目してなされたものであっ
て、活性炭の吸着能を十分に活用できる冷凍装置での油
吸着器を提供することを目的とする。
The present invention has been made in view of such a point, and an object thereof is to provide an oil adsorber in a refrigeration system that can fully utilize the adsorption capacity of activated carbon.

《課題を解決するための手段》 上述の目的を達成するために本考案は、冷却装置に使用
されている油吸着器(6)において、その油吸着器
(6)内の空間を上下2つの区画壁(15)(16)で3つ
に区画し、最上部の空間にガス導出路(25)を接続する
とともに、中央の空間に活性炭層(21)を配置し、油吸
着器(6)の底壁(12)から油吸着器(6)内の最下部
の空間へ突出する突出部(12a)を設け、この突出部(1
2a)の上面に高圧気体を油吸着器(6)内へ導入させる
ガス導入口(14)を設け、下側の区画壁(16)のガス導
入口(14)に対面する箇所を下側に凹陥させてフィルタ
ー支持部(18)を設け、上側の区画壁(15)は通気性を
有し、下側の区画壁(16)は上記フィルター支持部(1
8)以外の部分で通気性を有するように構成し、油吸着
器(6)内の下部の空間に筒状の超微細粒子用のフィル
ター材(19)を配置し、フィルター材(19)の上端部を
フィルター支持部(18)に嵌合させるとともに、フィル
ター材(19)の下端部を突出部(12a)に嵌合させて、
フィルター材(19)でガス導入口(14)を取り囲むよう
に構成したことを特徴としている。
<< Means for Solving the Problem >> In order to achieve the above-mentioned object, the present invention provides an oil adsorber (6) used in a cooling device in which the space inside the oil adsorber (6) is divided into upper and lower two spaces. The partition wall (15) (16) is divided into three parts, the uppermost space is connected to the gas lead-out path (25), the activated carbon layer (21) is arranged in the central space, and the oil adsorber (6) is arranged. A protrusion (12a) protruding from the bottom wall (12) of the oil absorber to the lowest space in the oil adsorber (6) is provided.
A gas introduction port (14) for introducing high-pressure gas into the oil adsorber (6) is provided on the upper surface of 2a), and a portion of the lower partition wall (16) facing the gas introduction port (14) faces downward. The filter support part (18) is provided by recessing, the upper partition wall (15) has air permeability, and the lower partition wall (16) is the filter support part (1).
The parts other than 8) are configured to have air permeability, and the cylindrical filter material (19) for ultrafine particles is arranged in the lower space of the oil adsorber (6) to remove the filter material (19). While fitting the upper end part to the filter support part (18), and fitting the lower end part of the filter material (19) to the protrusion part (12a),
It is characterized in that the gas inlet (14) is surrounded by a filter material (19).

《作用》 本考案は、例えば第1図及び第2図に示すように、次の
ように作用する。
<< Operation >> The present invention operates as follows, for example, as shown in FIG. 1 and FIG.

即ち、圧縮・冷却された後に油分離器(5)で潤滑油分
が分離・除去された高圧気体(冷媒ガス)は、ガス導入
口(14)からフィルター材(19)を介して油吸着器
(6)内の最下部の空間に流入する。この高圧気体には
油分離器(5)で分離・除去され残った潤滑油分の粒子
が含まれるが、フィルター材(19)により上記高圧気体
中の潤滑油分の粒子の内、粒子径が大きなもの、例えば
0.1μよりも大きなものが除去される。また、フィルタ
ー材(19)を通すことによって上記高圧気体の流速があ
る程度抑えられる。
That is, the high-pressure gas (refrigerant gas) from which the lubricating oil component has been separated and removed by the oil separator (5) after being compressed and cooled is the oil adsorber from the gas inlet (14) through the filter material (19). It flows into the lowest space in (6). This high-pressure gas contains particles of the lubricating oil component that have been separated and removed by the oil separator (5), but the filter material (19) has a particle size of the lubricating oil component in the high-pressure gas. Big things, for example
Those larger than 0.1μ are removed. Further, the flow velocity of the high-pressure gas can be suppressed to some extent by passing through the filter material (19).

フィルター材(19)を通った高圧気体は、下側の区画壁
(16)を通って油吸着器(6)内の中央の空間に配置し
た活性炭層(21)に流れ込む。この高圧気体中の潤滑油
分の粒子は、その径が0.1μ以下であるとともに流速が
低下しているので、ブラウン運動で活性炭層(21)の活
性炭(20)に確実に捕捉される。この活性炭層(21)を
通った高圧気体が、ガス導出路(25)から導出されてコ
ールドヘッド(2)に供給される。
The high-pressure gas that has passed through the filter material (19) flows through the lower partition wall (16) into the activated carbon layer (21) arranged in the central space of the oil adsorber (6). The particles of the lubricating oil in the high-pressure gas have a diameter of 0.1 μm or less and a low flow rate, and thus are reliably captured by the activated carbon (20) of the activated carbon layer (21) by Brownian motion. The high-pressure gas that has passed through the activated carbon layer (21) is discharged from the gas discharge path (25) and supplied to the cold head (2).

《実施例》 図面は本考案の実施例を示し、第1図は油吸着器の縦断
面図、第2図は冷凍機の概略構成図である。
<< Embodiment >> A drawing shows an embodiment of the present invention. Fig. 1 is a vertical sectional view of an oil adsorber, and Fig. 2 is a schematic configuration diagram of a refrigerator.

この冷凍機は、冷媒としてヘリウムガスを使用している
閉サイクルの極低温冷凍機であって、圧縮機ユニット
(1)とコールドヘッド(2)とで構成してある。圧縮
機ユニット(1)は油潤滑式の密閉型圧縮機(3)、冷
却器(4)、油分離器(5)及び油吸着器(6)とで構
成してあり、油分離器(5)は焼結金属等の多孔質エレ
メント(7)とグラスウールやスチールウール等の繊維
状エレメント(8)とで2段階に油分離をするようにし
てある。この油分離器(5)で分離された潤滑油分は油
返送路(9)で圧縮機(3)に戻されるようになってい
る。
This refrigerator is a closed-cycle cryogenic refrigerator that uses helium gas as a refrigerant, and is composed of a compressor unit (1) and a cold head (2). The compressor unit (1) is composed of an oil-lubricated hermetic compressor (3), a cooler (4), an oil separator (5) and an oil adsorber (6). ) Is configured such that the porous element (7) made of sintered metal or the like and the fibrous element (8) made of glass wool, steel wool or the like separates oil in two stages. The lubricating oil component separated by the oil separator (5) is returned to the compressor (3) through the oil return passage (9).

油吸着器(6)は、第1図に示すように、上面を濾材交
換口(10)に形成した有底筒型容器(11)の底壁(12)
にガス導入路(13)のガス導入口(14)を開口し、容器
内を2枚の通気性のある区画壁(15)(16)で3つの空
間に区画してある。下側区画壁(16)は底壁(12)に下
部サポート(17)を介して支持されており、その中央部
を下側に凹陥させてフィルター支持部(18)を形成し、
このフィルター支持部(18)と底壁(12)との間に焼結
金属、マイクロフアイバー、メンブレン等の多孔体で形
成した筒状の超微細粒子用フィルター材(19)が前記ガ
ス導入口(14)を取り囲む状態で配置してある。上下の
区画壁(15)(16)で挟まれている中央空間には活性炭
(20)が充填されていてこの中央空間を活性炭層(21)
に形成してある。筒型容器(11)の濾材交換口(10)は
フランジ(22)で密閉してあり、上側区画壁(15)とフ
ランジ(22)との間に活性炭層(21)の充填圧力を調整
するスプリング(23)が配置してある。そして、この上
部空間(24)にガス導出路(25)が連通させてある。な
お、上下の区画壁(15)(16)はそれぞれパンチングプ
レートとフェルトとで形成してあり、下側区画壁(16)
のフィルター支持部(18)では通気性を遮蔽して、流入
ガスが活性炭層に直接流れ込むことがないように構成し
てある。
As shown in FIG. 1, the oil adsorber (6) has a bottom wall (12) of a bottomed cylindrical container (11) whose upper surface is formed with a filter medium exchange port (10).
A gas introduction port (14) of the gas introduction path (13) is opened, and the inside of the container is divided into three spaces by two partition walls (15) (16) having air permeability. The lower partition wall (16) is supported by the bottom wall (12) via the lower support (17), and the central portion thereof is recessed downward to form the filter support portion (18).
The tubular filter material for ultrafine particles (19) formed of a porous material such as a sintered metal, a microfiber or a membrane between the filter support portion (18) and the bottom wall (12) is the gas inlet ( It is arranged so that it surrounds 14). Activated carbon (20) is filled in the central space sandwiched between the upper and lower partition walls (15) (16), and this central space is filled with the activated carbon layer (21).
It is formed on. The filter medium exchange port (10) of the cylindrical container (11) is sealed by a flange (22), and the filling pressure of the activated carbon layer (21) is adjusted between the upper partition wall (15) and the flange (22). The spring (23) is arranged. The gas outlet passage (25) communicates with the upper space (24). The upper and lower partition walls (15) (16) are formed by a punching plate and felt, respectively, and the lower partition wall (16)
The filter support part (18) has a structure in which the gas permeability is shielded so that the inflowing gas does not directly flow into the activated carbon layer.

なお、上記実施例では、ガス導入口(14)を筒型容器
(11)の底壁内面よりも高く開口させてあるが、これ
は、ガス導入口(14)から導入された高圧ガス中に含ま
れている油分がガス導入室部分で分離されて底壁の内面
に油膜状に付着することになっても、この分離された油
分が流入ガスで連れ去られないようにするためである。
In the above embodiment, the gas inlet (14) is opened higher than the inner surface of the bottom wall of the cylindrical container (11), but this is in the high pressure gas introduced from the gas inlet (14). This is to prevent the separated oil content from being taken away by the inflow gas even if the contained oil content is separated in the gas introduction chamber portion and adheres to the inner surface of the bottom wall in the form of an oil film.

このように構成した油吸着器(6)では油分離器で分離
しきれなかった油分のうち、超微細粒子用フィルター材
(19)の隙間径よりも大きな粒子はフィルター材(19)
で捕捉されることになるから、フィルター材(19)を通
過したのちの高圧気体に混入している潤滑油の油粒子径
は例えばブラウン運動を行い易い0.1μ以下の超微細粒
子となり、この超微細粒子は活性炭層(21)の活性炭
(20)で確実に捕捉されることになる。
In the oil adsorber (6) configured as described above, among the oil components that cannot be completely separated by the oil separator, particles larger than the gap diameter of the filter material (19) for ultrafine particles are the filter material (19).
Therefore, the oil particle diameter of the lubricating oil mixed in the high-pressure gas after passing through the filter material (19) becomes, for example, ultrafine particles of 0.1 μ or less that facilitates Brownian motion. The fine particles are reliably captured by the activated carbon (20) of the activated carbon layer (21).

《効果》 本考案では、冷凍装置の油分離器とコールドヘッドとの
間に配置した油吸着器内に超微細粒子用のフイルター材
と活性炭層とを配置し、油分離器から流入した高圧気体
をフイルター材、活性炭層の順に通過させるように構成
してあることから、油分離器で分離しきれなかった油分
のうち、超微細粒子用フィルター材の隙間径よりも大き
な粒子はフィルター材で捕捉されることになるから、フ
ィルター材を通過したのちの高圧気体に混入している潤
滑油の油粒子径は例えば0.1μ以下の超微細粒子とな
る。また、フィルター材を通すことによって上記高圧気
体の流速が低下する。そして、この超微細油粒子は活性
炭層でのブラウン運動により活性炭に確実に捕捉される
ことになるから、油吸着器として高い吸着性能を発揮す
ることができる。しかも、油吸着器からコールドヘッド
に供給される高圧気体は潤滑油分のない乾燥したガス体
となり、コールドヘッド内で蓄熱器が油膜で覆われるこ
とがなくなり、高い冷却性能を長期に亘って発揮させる
ことができる。
<Effect> In the present invention, a filter material for ultrafine particles and an activated carbon layer are arranged in an oil adsorber arranged between the oil separator of the refrigeration system and the cold head, and the high-pressure gas flowing from the oil separator is arranged. Since it is configured to pass through the filter material and the activated carbon layer in that order, of the oil that could not be separated by the oil separator, particles larger than the gap diameter of the filter material for ultrafine particles are captured by the filter material. Therefore, after passing through the filter material, the lubricating oil mixed in the high-pressure gas becomes ultrafine particles having an oil particle diameter of, for example, 0.1 μ or less. Further, the flow rate of the high-pressure gas is reduced by passing the filter material. The ultrafine oil particles are surely captured by the activated carbon due to the Brownian motion in the activated carbon layer, so that the oil adsorption device can exhibit high adsorption performance. Moreover, the high-pressure gas supplied from the oil adsorber to the cold head becomes a dry gas body without lubricating oil, and the heat accumulator is not covered with an oil film inside the cold head, and high cooling performance is exhibited for a long time. Can be made.

例えば、フィルター材を平板状に形成して活性炭層の下
側に敷いた場合、油吸着器の内周面とフィルター材の縁
部との間に隙間が生じないようにフィルター材を油吸着
器内にセットして、高圧気体がフィルター材を通らずに
活性炭層へ流れ込むことを防止しなければならないが、
そのフィルター材のセットに手間及び時間がかかる。一
方、本願考案では、フィルター材の下端部を突出部に嵌
合させるとともに上端部をフィルター支持部に嵌合させ
るだけで、フィルター材によってガス導入口を隙間なく
取り囲んで、高圧気体がフィルター材を通らずに活性炭
層へ流れ込むことを防止できるので、フィルター材のセ
ットを簡単、且つ、迅速に行うことができる。
For example, when the filter material is formed into a flat plate and laid on the lower side of the activated carbon layer, the filter material is placed so that no gap is created between the inner peripheral surface of the oil adsorber and the edge of the filter material. It must be set inside to prevent high pressure gas from flowing into the activated carbon layer without passing through the filter material.
It takes time and effort to set the filter material. On the other hand, in the present invention, by simply fitting the lower end portion of the filter material to the protruding portion and the upper end portion to the filter supporting portion, the gas inlet is surrounded by the filter material without any gap, and the high-pressure gas causes the filter material to pass through. Since it can be prevented from flowing into the activated carbon layer without passing through, the filter material can be set easily and quickly.

しかも、ガス導入口は、突出部の上面に設けるため、油
吸着器の底壁よりも高い位置になる。これにより、油吸
着器の底に溜まった潤滑油分がガス導入口に流れ込んで
高圧気体の流入の妨げになることが防止される。
Moreover, since the gas introduction port is provided on the upper surface of the protrusion, it is located at a position higher than the bottom wall of the oil adsorber. As a result, it is possible to prevent the lubricating oil component accumulated at the bottom of the oil adsorber from flowing into the gas inlet and obstructing the inflow of high-pressure gas.

また、油吸着器内へ流入した高圧気体は、フィルター材
を通すことによってほぼ一様な流速で油吸着器内の最下
部の空間に拡散するので、高圧気体が活性炭層のほぼ全
ての活性炭と一様に接触でき、活性炭が有効に利用され
る。
In addition, the high-pressure gas that has flowed into the oil adsorber diffuses into the space at the bottom of the oil adsorber at a substantially uniform flow rate by passing through the filter material, so the high-pressure gas becomes almost all of the activated carbon in the activated carbon layer. The contact can be made evenly and the activated carbon is effectively used.

【図面の簡単な説明】[Brief description of drawings]

図面は本考案の実施例を示し、第1図は油吸着器の縦断
面図、第2図は冷凍機の概略構成図である。 2……コールドヘッド、3……圧縮機、4……冷却器、
5……油分離器、6……油吸着器、19……フィルター
材、12……油吸着器の底壁、12a……突出部、14……ガ
ス導入口、15・16……区画壁、18……フィルター支持
部、21……活性炭層。25……ガス導出路。
The drawings show an embodiment of the present invention. FIG. 1 is a vertical sectional view of an oil adsorber, and FIG. 2 is a schematic configuration diagram of a refrigerator. 2 ... Cold head, 3 ... Compressor, 4 ... Cooler,
5 ... Oil separator, 6 ... Oil adsorber, 19 ... Filter material, 12 ... Oil adsorber bottom wall, 12a ... Projection, 14 ... Gas inlet, 15/16 ... Partition wall , 18 …… Filter support, 21 …… Activated carbon layer. 25 …… Gas outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】冷媒ガスを圧縮する油潤滑式の圧縮機
(3)と、この圧縮機(3)で形成された高圧気体を冷
却する冷却器(4)と、この冷却された高圧気体から潤
滑油分を除去する油分離器(5)とを備えるとともに、
上記油分離器(5)よりも上記高圧気体の流れ方向下流
側に油吸着器(6)と、この油吸着器(6)を通った高
圧気体が供給されるコールドヘッド(2)とを配置した
冷凍装置において、 上記油吸着器(6)内の空間を上下2つの区画壁(15)
(16)で3つに区画し、最上部の空間にガス導出路(2
5)を接続するとともに、中央の空間に活性炭層(21)
を配置し、 上記油吸着器(6)の底壁(12)から上記油吸着器
(6)内の最下部の空間へ突出する突出部(12a)を設
け、この突出部(12a)の上面に上記高圧気体を上記油
吸着器(6)内へ導入させるガス導入口(14)を設け、 上記下側の区画壁(16)の上記ガス導入口(14)に対面
する箇所を下側に凹陥させてフィルター支持部(18)を
設け、 上側の区画壁(15)は通気性を有し、下側の区画壁(1
6)は上記フィルター支持部(18)以外の部分で通気性
を有するように構成し、 上記油吸着器(6)内の最下部の空間に筒状の超微細粒
子用のフィルター材(19)を配置し、 このフィルター材(19)の上端部を上記フィルター支持
部(18)に嵌合させるとともに、上記フィルター材(1
9)の下端部を上記突出部(12a)に嵌合させて、上記フ
ィルター材(19)で上記ガス導入口(14)を取り囲むよ
うに構成したことを特徴とする冷凍装置での油吸着器。
1. An oil-lubricated compressor (3) for compressing a refrigerant gas, a cooler (4) for cooling a high-pressure gas formed by the compressor (3), and a high-pressure gas thus cooled. And an oil separator (5) for removing lubricating oil,
An oil adsorber (6) and a cold head (2) to which the high-pressure gas that has passed through the oil adsorber (6) is supplied are arranged downstream of the oil separator (5) in the flow direction of the high-pressure gas. In the refrigerating device, the space inside the oil adsorber (6) is divided into upper and lower partition walls (15).
It is divided into three by (16), and the gas outlet (2
5) is connected and activated carbon layer (21) in the central space
And a protrusion (12a) protruding from the bottom wall (12) of the oil adsorber (6) to the lowest space in the oil adsorber (6) is provided, and the upper surface of this protrusion (12a) Is provided with a gas introduction port (14) for introducing the high-pressure gas into the oil adsorber (6), and a portion of the lower partition wall (16) facing the gas introduction port (14) is located on the lower side. The filter support portion (18) is provided by being recessed, the upper partition wall (15) has air permeability, and the lower partition wall (1
6) is configured to have air permeability in a portion other than the filter support portion (18), and has a cylindrical filter material (19) for ultrafine particles in the lowermost space in the oil adsorber (6). The filter material (19) and the upper end of the filter material (19) is fitted to the filter support portion (18).
An oil adsorber in a refrigerating apparatus, characterized in that the lower end of (9) is fitted into the protrusion (12a) and the gas inlet (14) is surrounded by the filter material (19). .
JP1989041175U 1989-04-07 1989-04-07 Oil adsorber in refrigeration equipment Expired - Lifetime JPH0731099Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989041175U JPH0731099Y2 (en) 1989-04-07 1989-04-07 Oil adsorber in refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989041175U JPH0731099Y2 (en) 1989-04-07 1989-04-07 Oil adsorber in refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH02134465U JPH02134465U (en) 1990-11-08
JPH0731099Y2 true JPH0731099Y2 (en) 1995-07-19

Family

ID=31551617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989041175U Expired - Lifetime JPH0731099Y2 (en) 1989-04-07 1989-04-07 Oil adsorber in refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0731099Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143836A (en) * 2019-03-06 2020-09-10 住友重機械工業株式会社 Oil separator, filter element and compressor for cryogenic refrigeration machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207430B2 (en) * 2014-03-07 2017-10-04 住友重機械工業株式会社 Oil separator
CN110513964A (en) * 2019-09-11 2019-11-29 张家港富瑞特种装备股份有限公司 A kind of natural gas azeotrope module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623885Y2 (en) * 1987-12-03 1994-06-22 三菱重工業株式会社 Adsorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143836A (en) * 2019-03-06 2020-09-10 住友重機械工業株式会社 Oil separator, filter element and compressor for cryogenic refrigeration machine

Also Published As

Publication number Publication date
JPH02134465U (en) 1990-11-08

Similar Documents

Publication Publication Date Title
US4354362A (en) Integral suction line accumulator/filter-drier
US5145497A (en) In-line filter device for compressed air having mist filter and air collector
US4097248A (en) Method for decontaminating compressed gas
TW201243258A (en) Oil separator
JPH0731099Y2 (en) Oil adsorber in refrigeration equipment
US2608269A (en) Oil separator
JPH08219596A (en) Oil separator
US4402493A (en) Vehicle height adjusting device
JP2008303795A (en) Gasoline vapor recovering adsorbing-desorbing tower
US11408655B2 (en) Oil separator, filter element, and compressor for cryocooler
JP2007292340A (en) Oil separator and compressor for cold storage unit-type refrigerating machine
JP2006029684A (en) Oil separator and cryogenic device
JP2002213360A (en) Oil separator for oil cooled compressor
JP2582800Y2 (en) Liquid tank
US4199331A (en) Dual filter assembly for compressed gas
JP2921098B2 (en) Refrigerant regeneration device
JPH01293115A (en) Separator
JP2009133566A (en) Gas-liquid separator
JP3452334B2 (en) Oil separator
CN2637998Y (en) Liquid storage dryer
JPH07110168A (en) Cryogenic freezer device
JP2561772Y2 (en) Liquid tank
JPH05141815A (en) Oil separator
JPH0536271U (en) Adsorber
JP2002090007A (en) Receiver drier for refrigeration cycle