JPH0730997Y2 - Power transmission mechanism - Google Patents

Power transmission mechanism

Info

Publication number
JPH0730997Y2
JPH0730997Y2 JP14582988U JP14582988U JPH0730997Y2 JP H0730997 Y2 JPH0730997 Y2 JP H0730997Y2 JP 14582988 U JP14582988 U JP 14582988U JP 14582988 U JP14582988 U JP 14582988U JP H0730997 Y2 JPH0730997 Y2 JP H0730997Y2
Authority
JP
Japan
Prior art keywords
force
generating means
pressing force
power transmission
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14582988U
Other languages
Japanese (ja)
Other versions
JPH0265722U (en
Inventor
正樹 乾
克之 小林
敏 芦田
正司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyoda Koki KK
Original Assignee
Toyota Motor Corp
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyoda Koki KK filed Critical Toyota Motor Corp
Priority to JP14582988U priority Critical patent/JPH0730997Y2/en
Publication of JPH0265722U publication Critical patent/JPH0265722U/ja
Application granted granted Critical
Publication of JPH0730997Y2 publication Critical patent/JPH0730997Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、同軸的かつ相対回転可能に位置する一対の回
転部材間に配設されて、これら両部材間の動力伝達を行
う動力伝達機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention is a power transmission mechanism that is disposed between a pair of rotating members that are coaxially and relatively rotatable and that transmits power between these two members. Regarding

(従来技術) かかる動力伝達機構は、駆動側回転部材と従動側回転部
材間に配設されて、これら両部材の相対回転時これら両
部材を互に動力伝達可能に連結して、従動側回転部材を
駆動させる連結機構として使用されるものと、駆動側お
よび従動側回転部材間、両駆動側回転部材間または両従
動側回転部材間に配設されてこれら両部材の相対回転時
これら両部材を互に動力伝達可能に連結して、これら両
部材間の回転差を制限させる差動制限機構として使用さ
れるもの等に大別される。前者の連結機構は主としてリ
ヤルタイム式の四輪駆動車における一方の動力伝達系路
に配設され、また後者の差動制限機構は主として車両に
おける各ディファレンシャルに配設される。
(Prior Art) Such a power transmission mechanism is disposed between a driving side rotation member and a driven side rotation member, and when these both members relatively rotate, these two members are connected to each other so that power can be transmitted to the driven side rotation member. A member used as a connecting mechanism for driving members, a driving-side driven member, a driven-side rotating member, both driving-side rotating members, or both driven-side rotating members. Are connected to each other so as to be able to transmit power to each other, and are roughly classified into those used as a differential limiting mechanism for limiting the rotation difference between these two members. The former coupling mechanism is mainly arranged on one power transmission path in a real-time four-wheel drive vehicle, and the latter differential limiting mechanism is mainly arranged on each differential in the vehicle.

しかして、従来の動力伝達機構としては特開昭63-24042
9号公報に示されているように、同軸的かつ相対回転可
能に位置する一対の回転部材間に配設され、これら両回
転部材の相対回転により作動して両回転部材を動力伝達
可能に連結する摩擦係合力を発生させるとともに付与さ
れる押圧力に応じて前記摩擦係合力を増減させる摩擦係
合力発生手段、および両回転部材の相対回転に応じた押
圧力を発生させて前記摩擦係合力発生手段に付与する押
圧力発生手段を備え、同押圧力発生手段を、前記両回転
部材間に液密的に軸方向へ摺動可能かつ一方の回転部材
に一体回転可能に組付けられて前記摩擦係合力発生手段
に対向する作動ピストンと、前記一方の回転部材に一体
回転可能に設けられて前記作動ピストンとの間に軸方向
に所定間隔を有して粘性流体が封入される流体室を形成
するリテーナと、半径方向へ延びる1または複数のベー
ン部を備え前記流体室にて前記他方の回転部材に一体的
に組付けられたロータとにより構成してなる動力伝達機
構がある。
Therefore, as a conventional power transmission mechanism, Japanese Patent Laid-Open No. 63-24042
As disclosed in Japanese Patent Laid-Open No. 9-90, it is arranged between a pair of rotating members that are coaxially and relatively rotatable, and is operated by relative rotation of both rotating members to connect both rotating members so that power can be transmitted. Generating frictional engagement force and increasing / decreasing the frictional engagement force according to the applied pressing force, and generating frictional force by generating pressing force according to relative rotation of both rotary members. Means for applying a pressing force to the means, the pressing force generating means being fluid-tightly slidable between the rotating members in the axial direction and integrally rotatable with one of the rotating members so that the friction A fluid chamber in which a viscous fluid is enclosed is formed between the working piston facing the engaging force generating means and the one rotating member so as to be integrally rotatable with a predetermined space in the axial direction between the working piston and the working piston. Half retainer There is a power transmission mechanism including one or a plurality of vane portions extending in the radial direction and a rotor integrally assembled with the other rotating member in the fluid chamber.

この種形成の動力伝達機構においては、両回転部材間に
相対回転が生じると一方の回転部材に一体回転可能に組
付けた作動ピストンおよびリテーナと、他方の回転部材
に一体的に組付けたロータとの間に相対回転が生じ、流
体室の前記ロータのベーン部にて区画された粘性流体封
入室内の粘性流体が強制的に流動させられ、封入室内で
は流動抵抗に起因して圧力が発生する。すなわち、押圧
力発生手段に差動回転数に応じた圧力が発生する。この
圧力は作動ピストンを軸方向に押圧して摩擦係合力発生
手段を押圧させ、同手段に両回転部材を動力伝達可能に
連結する摩擦係合力を発生させる。かかる摩擦係合力は
差動回転数に比例し、両回転部材間では差動回転数に比
例した動力が一方から他方へ伝達される。従って、当該
動力伝達機構は四輪駆動車の一方の動力伝達系路におけ
る駆動側回転部材と従動側回転部材との連結機構として
機能するとともに、駆動側および従動側回転部材間、両
駆動側回転部材間または両従動側回転部材間の差動制限
機構としても機能する。
In this type of power transmission mechanism, when a relative rotation occurs between both rotary members, an operating piston and a retainer that are integrally rotatable with one rotary member and a rotor that is integrally assembled with the other rotary member. Relative rotation occurs between and, viscous fluid in the viscous fluid sealing chamber partitioned by the vane part of the rotor of the fluid chamber is forced to flow, and pressure is generated in the sealing chamber due to flow resistance. . That is, a pressure corresponding to the differential rotation speed is generated in the pressing force generating means. This pressure pushes the actuating piston in the axial direction to press the frictional engagement force generating means, and the frictional engagement force for connecting both rotating members to the same means so that power can be transmitted. The frictional engagement force is proportional to the differential rotation speed, and the power proportional to the differential rotation speed is transmitted between the two rotary members from one to the other. Therefore, the power transmission mechanism functions as a coupling mechanism between the drive-side rotating member and the driven-side rotating member in one power-transmitting system path of the four-wheel drive vehicle and rotates between the drive-side and driven-side rotating members and both drive-side rotating members. It also functions as a differential limiting mechanism between members or between both driven side rotating members.

(考案が解決しようとする課題) ところで、上記した形式の動力伝達機構を四輪駆動車の
連結機構して採用した場合においては、定常走行時にお
いても両回転部材間に僅かな差動回転数がしばしば発生
して両回転部材間で動力伝達がなされるため、前後輪の
一方側にしばしばひきずり現象が発生し、燃費を悪化さ
せるとともにタイヤの摩耗を早める。また、車両がスタ
ック状態に陥った場合等大きな動力伝達を長時間発生さ
せた場合には、摩擦係合力発生手段に焼付き、その他の
焼損等が発生するおそれがある。従って、本考案の目的
は上記した各課題に対処することにある。
(Problems to be solved by the invention) By the way, when the power transmission mechanism of the above-mentioned type is adopted as the connection mechanism of the four-wheel drive vehicle, a slight differential rotation speed is generated between both rotary members even during steady running. Occurs frequently and power is transmitted between the two rotary members, so that a drag phenomenon often occurs on one side of the front and rear wheels, which deteriorates fuel consumption and accelerates tire wear. Further, when a large power transmission is generated for a long time such as when the vehicle is in a stuck state, there is a risk that seizure or other burnout may occur in the friction engagement force generating means. Therefore, an object of the present invention is to address the above-mentioned problems.

(課題を解決するための手段) 本考案は上記した形式の動力伝達機構において、前記作
動ピストンに対してバネ部材にて所定の押圧力を付与し
て同作動ピストンを前記押圧力発生手段で発生する押圧
力が所定の値に達するまで前記摩擦係合力発生手段から
離間させるとともに、同バネ部材として所定温度に達し
たとき前記作動ピストンに対する押圧力を増大させるバ
ネ部材を採用したことを特徴とする。
(Means for Solving the Problems) In the power transmission mechanism of the type described above, the present invention applies a predetermined pressing force to the operating piston with a spring member to generate the operating piston by the pressing force generating means. The spring member is separated from the frictional engagement force generating means until the pressing force reaches a predetermined value, and the spring member is used as the spring member for increasing the pressing force to the working piston when a predetermined temperature is reached. .

しかして、本考案に採用されるバネ部材としては、所定
温度に達したとき形状が変形してバネ定数が高くなる形
状記憶合金からなるバネ部材等が挙げられる。
As the spring member used in the present invention, there is a spring member made of a shape memory alloy whose shape is deformed when the temperature reaches a predetermined temperature to increase the spring constant.

(考案の作用・効果) かかる構成によれば、前記摩擦係合力発生手段は作動ピ
ストンから離間しているため、両回転部材間の差動回転
数が微小な場合には両回転部材間での動力伝達はなく、
両回転部材間の差動回転数が所定の値以上になると押圧
力発生手段で発生する押圧力が所定の値以上となり、作
動ピストンが摩擦係合力発生手段を押圧して両回転部材
間での動力伝達がなされる。また、摩擦係合力発生手段
が高温になってバネ部材が所定の高温に達すると作動ピ
ストンに対する押圧力が増大し、バネ部材は押圧力発生
手段で発生する押圧力に抗して作動ピストンを押圧し、
作動ピストンを摩擦係合力発生手段から離間させる。
(Operation and Effect of the Invention) According to this configuration, since the frictional engagement force generating means is separated from the working piston, when the differential rotation speed between both rotary members is small, the frictional engagement force generating means between both rotary members is small. There is no power transmission,
When the differential rotation speed between both rotating members becomes a predetermined value or more, the pressing force generated by the pressing force generating means becomes a predetermined value or more, and the working piston presses the frictional engagement force generating means to cause a difference between both rotating members. Power is transmitted. Further, when the frictional engagement force generating means becomes high in temperature and the spring member reaches a predetermined high temperature, the pressing force on the operating piston increases, and the spring member presses the operating piston against the pressing force generated by the pressing force generating means. Then
The working piston is separated from the frictional engagement force generating means.

従って、両回転部材間の差動回転数が小さい車両の定常
走行時には、両回転部材間での動力伝達はなくて前後輪
の一方側にひきずり現象が発生することはなく、燃費の
悪化やタイヤの早期の摩耗が防止される。また、車両が
スタック状態に陥って両回転部材間で大きな動力伝達を
長時間発生させた場合には摩擦係合力発生手段は作動ピ
ストンの押圧力から解放され、同手段の焼付き、その他
の焼損を防止することができる。
Therefore, during steady running of a vehicle with a small differential rotation speed between both rotary members, there is no power transmission between both rotary members, and dragging phenomenon does not occur on one side of the front and rear wheels, which reduces fuel consumption and tires. Premature wear is prevented. Also, when the vehicle falls into a stuck state and a large amount of power is transmitted between the rotating members for a long time, the frictional engagement force generating means is released from the pressing force of the working piston, causing seizure of the means and other burnouts. Can be prevented.

(実施例) 以下本考案の実施例を図面に基づいて説明するに、第1
図には本考案にかかる動力伝達機構の一実施例が示され
ている。当該動力伝達機構10は第3図に示すように、リ
ヤルタイム式の四輪駆動車の後輪側動力伝達系路に配設
される。
(Embodiment) The first embodiment of the present invention will be described below with reference to the drawings.
An embodiment of the power transmission mechanism according to the present invention is shown in the drawings. As shown in FIG. 3, the power transmission mechanism 10 is arranged in the rear-wheel power transmission system of a real-time four-wheel drive vehicle.

当該車両は前輪側が常時駆動するとともに後輪側が必要
時駆動するもので、エンジン21の一側に組付けたトラン
スアクスル22はトランスミッションおよびトランスファ
を備え、エンジン21からの動力をアクスルシャフト23に
出力して前輪24を駆動させるとともに、第1プロペラシ
ャフト25に出力する。第1プロペラシャフト25は動力伝
達機構10を介して第2プロペラシャフト26に連結してい
て、これら両シャフト25、26が動力伝達可能な場合動力
がリヤディファレンシャル27を介してアクスルシャフト
28に出力され、後輪29が駆動する。
In the vehicle, the front wheels are always driven and the rear wheels are driven when necessary.The transaxle 22 mounted on one side of the engine 21 has a transmission and a transfer, and outputs power from the engine 21 to the axle shaft 23. Drive the front wheels 24 and output to the first propeller shaft 25. The first propeller shaft 25 is connected to the second propeller shaft 26 via the power transmission mechanism 10. If both shafts 25, 26 can transmit power, the power is transmitted via the rear differential 27 to the axle shaft.
It is output to 28, and the rear wheel 29 is driven.

しかして、動力伝達機構10はアウタケース11およびイン
ナシャフト12からなる環状の作動室内に押圧力発生手段
10aおよび摩擦係合力発生手段10bを備えている。
Thus, the power transmission mechanism 10 has a pressing force generating means in the annular working chamber composed of the outer case 11 and the inner shaft 12.
10a and a frictional engagement force generating means 10b.

アウタケース11は所定長さの筒部11aの一端に内向フラ
ンジ部11bを備えてなり、筒部11aの他端が開口していて
他端側内周にネジ部11cが形成されている。インナシャ
フト12は所定長さの段付きの筒部12aの中間部外周に外
向フランジ部12bを備えてなり、フランジ部12bの外周に
は軸方向へ延びる外スプライン部12cが形成され、かつ
筒部12aの一端側内周には軸方向へ延びる内スプライン
部12dが形成されている。かかるインナシャフト12にお
いては、その筒部12aの一端がアウタケース11の内向フ
ランジ部11bの内孔内に液密的かつ回転可能に嵌合され
ていて、筒部12aの他端側外周に組付けた後述の押圧力
発生手段10aの構成部材を介してアウタケース11に回転
可能に支持されている。インナシャフト12はその内スプ
ライン部12dにて第2プロペラシャフト26の先端部のス
プライン26aに嵌合して固定され、かつアウタケース11
は第1プロペラシャフト25の後端に固定されている。
The outer case 11 is provided with an inward flange portion 11b at one end of a tubular portion 11a having a predetermined length, the other end of the tubular portion 11a is open, and a threaded portion 11c is formed on the inner circumference of the other end. The inner shaft 12 is provided with an outward flange portion 12b on the outer periphery of the intermediate portion of a stepped tubular portion 12a of a predetermined length, and an outer spline portion 12c extending in the axial direction is formed on the outer periphery of the flange portion 12b. An inner spline portion 12d extending in the axial direction is formed on the inner periphery of one end side of 12a. In the inner shaft 12, one end of the tubular portion 12a is fitted in the inner hole of the inward flange portion 11b of the outer case 11 in a liquid-tight and rotatable manner, and is assembled to the outer periphery of the other end of the tubular portion 12a. It is rotatably supported by the outer case 11 via the constituent members of the attached pressing force generating means 10a described later. The inner shaft 12 is fitted and fixed to the spline 26a at the tip portion of the second propeller shaft 26 at the inner spline portion 12d, and the outer case 11
Is fixed to the rear end of the first propeller shaft 25.

押圧力発生手段10aは作動ピストン13、ロータ14および
リテーナ15からなり、かつ摩擦係合力発生手段10bは湿
式多板クラッチ式のもので、多数のクラッチプレート16
およびクラッチディスク17からなる。各クラッチプレー
ト16はその外周の凸起部をアウタケース11の内周に設け
た溝部11dに嵌合されて、同ケース11に一体回転可能か
つ軸方向へ移動可能に組付けられている。各クラッチデ
ィスク17はその内周の凸起部をインナシャフト12の外ス
プライン部12cに嵌合されて各クラッチプレート16間に
位置し、同シャフト12に一体回転可能かつ軸方向へ移動
可能に組付けられている。これらのクラッチプレート16
およびクラッチディスク17の収容室R1にはクラッチ用オ
イルと気体とが所定量封入されている。
The pressing force generating means 10a is composed of an operating piston 13, a rotor 14 and a retainer 15, and the friction engagement force generating means 10b is of a wet multi-plate clutch type and has a large number of clutch plates 16.
And a clutch disc 17. Each clutch plate 16 has a protrusion on its outer periphery fitted into a groove 11d provided on the inner periphery of the outer case 11, and is assembled to the case 11 so as to be integrally rotatable and movable in the axial direction. Each clutch disc 17 has an inner peripheral raised portion fitted to the outer spline portion 12c of the inner shaft 12 and positioned between the clutch plates 16, and is assembled to the shaft 12 so as to be integrally rotatable and movable in the axial direction. It is attached. These clutch plates 16
A predetermined amount of clutch oil and gas is sealed in the storage chamber R1 of the clutch disc 17.

押圧力発生手段10aを構成する作動ピストン13はアウタ
ケース11の筒部11aの他端側内周に一体回転可能かつ液
密的に軸方向へ摺動可能に、またインナシャフト12に対
してはその外周に回転可能かつ軸方向へ摺動可能にそれ
ぞれ組付けられていて、その一側面13aにて後述の押圧
プレート18aに当接している。ロータ14は第1図および
第2図に示すように、環状ボス部14aの外周の互に180°
離れた部位にて半径方向へ延びる2枚のベーン部14bを
備えてなり、環状ボス部14aにてインナシャフト12の筒
部12a外周に嵌合させてインナシャフト12に一体的に組
付けられている。かかるロータ14は作動ピストン13の他
側に設けた環状凹所13bの深さと略同じ厚みに形成され
ていて、環状凹所13b内に嵌合している。リテーナ15は
その他端側外周にネジ部15aを備え、インナシャフト12
の筒部12aの他端側外周に液密的に軸方向へ摺動可能か
つ回転可能に嵌合され、アウタケース11に対してはその
ネジ部15aをアウタケース11のネジ部11cに進退可能に螺
着され、かつ液密的となっている。かかるリテーナ15に
おいては、軸方向の位置調整がなされてアウタケース11
にカシメ手段にて固定され、その一側面15bにて作動ピ
ストン13の他側の環状外縁面13cに当接し、その一側面1
5bと作動ピストン13の環状凹所13bとによりロータ14が
位置する流体室を形成している。この流体室内にはシリ
コンオイル等高粘性流体が所定量封入されており、また
ロータ14はそのベーン部14bの外周を環状凹所13bの内周
に液密的に接触させ、かつベーン部14bの両側面と環状
凹所13bの他側面13b1およびリテーナ14の一側面15b間に
微小間隙を形成して、流体室内を2つの滞留室R2に区画
している。
The working piston 13 that constitutes the pressing force generating means 10a is integrally rotatable with the inner circumference of the other end side of the tubular portion 11a of the outer case 11 and is slidable in the liquid-tight axial direction. The outer circumference of each of them is mounted so as to be rotatable and slidable in the axial direction, and one side surface 13a thereof abuts a pressing plate 18a described later. As shown in FIGS. 1 and 2, the rotor 14 has an outer circumference of the annular boss portion 14a of 180 ° with respect to each other.
It is provided with two vane portions 14b extending in the radial direction at distant portions, and is fitted integrally with the inner shaft 12 by being fitted to the outer periphery of the cylindrical portion 12a of the inner shaft 12 by the annular boss portion 14a. There is. The rotor 14 is formed to have substantially the same thickness as the depth of the annular recess 13b provided on the other side of the working piston 13, and is fitted in the annular recess 13b. The retainer 15 has a threaded portion 15a on the outer circumference on the other end side, and the inner shaft 12
Is fitted to the outer periphery of the other end of the cylindrical portion 12a in a liquid-tight manner so as to be slidable and rotatable in the axial direction, and the screw portion 15a of the outer case 11 can be moved forward and backward to the screw portion 11c of the outer case 11. It is screwed on and is liquid-tight. In the retainer 15, the position adjustment in the axial direction is performed so that the outer case 11
Is fixed to the annular outer edge surface 13c on the other side of the actuating piston 13 by one side surface 15b, and the one side surface 1b
5b and the annular recess 13b of the working piston 13 form a fluid chamber in which the rotor 14 is located. A predetermined amount of highly viscous fluid such as silicon oil is enclosed in this fluid chamber, and the rotor 14 makes the outer periphery of its vane portion 14b liquid-tightly contact the inner periphery of the annular recess 13b, and A minute gap is formed between both side surfaces and the other side surface 13b1 of the annular recess 13b and one side surface 15b of the retainer 14 to divide the fluid chamber into two retention chambers R2.

しかして、摩擦係合力発生手段10bを構成する図示最右
端のクラッチディスク17と作動ピストン13との間には環
状の押圧プレート18aが介装され、同プレート18aはアウ
タケース11の溝部11dに軸方向へ摺動可能に組付けられ
ている。また、アウタケース11の内周と押圧プレート18
aの外周間には環状のバネ部材18bがスナップリング18c
を介して組付けられている。バネ部材18bは所定温度に
達したとき形状が変形してバネ定数が高くなる形状記憶
合金からなり、スナップリング18cを介して押圧プレー
ト18aを作動ピストン13に当接させて同ピストン13に所
定の押圧力を付与している。これにより、バネ部材18b
は摩擦係合力発生手段10bを作動ピストン13から離間し
て押圧力から解放させている。なお、作動ピストン13と
押圧プレート18aとは連結ピン18dにて連結されて互に一
体回転可能になっている。
Thus, an annular pressing plate 18a is interposed between the clutch disc 17 at the rightmost end in the drawing and the working piston 13 which constitute the frictional engagement force generating means 10b, and the plate 18a is axially provided in the groove 11d of the outer case 11. It is assembled so that it can slide in any direction. Also, the inner periphery of the outer case 11 and the pressing plate 18
An annular spring member 18b is provided between the outer circumference of a and a snap ring 18c.
It is assembled through. The spring member 18b is made of a shape memory alloy whose shape is deformed and its spring constant is increased when a predetermined temperature is reached, and the pressing plate 18a is brought into contact with the working piston 13 via a snap ring 18c so that the piston 13 has a predetermined shape. The pressing force is applied. Thereby, the spring member 18b
Separates the frictional engagement force generating means 10b from the working piston 13 to release it from the pressing force. The working piston 13 and the pressing plate 18a are connected by a connecting pin 18d so that they can rotate integrally with each other.

かかる構成の動力伝達機構10においては、第1、第2両
プロペラシャフト25、26間に相対回転が生じてもこれら
両シャフト25、26間の差動回転数が小さい場合にはこれ
ら両シャフト25、26間のトルク伝達はないが、両シャフ
ト25、26間の差動回転数が所定の値に達するとトルク伝
達がなされる。すなわち、これら両シャフト25、26間に
相対回転が生じると、第1プロペラシャフト25に一体回
転可能に組付けられているアウタケース11、作動ピスト
ン13およびリテーナ15と、第2プロペラシャフト26に一
体回転可能に組付けられているインナシャフト12および
ロータ14との間に相対回転が生じる。従って、押圧力発
生手段10aの流体室内においては、滞留室R2内の粘性流
体が相対回転数に比例した速度にて強制的に流動させら
れ、周方向に順次相対移行する滞留室R2内では流動抵抗
に起因してベーン部14bの下流側端から次のベーン部14b
の上流側端に向って漸次増圧される圧力分布が発生す
る。この圧力分布の増圧部分は差動回転数に比例して増
大するもので、作動ピストン13を軸方向へ押圧する。
In the power transmission mechanism 10 having such a configuration, even if the relative rotation occurs between the first and second propeller shafts 25 and 26, if the differential rotation speed between these shafts 25 and 26 is small, these shafts 25 and 26 will not rotate. , 26 is not transmitted, but torque is transmitted when the differential rotation speed between both shafts 25, 26 reaches a predetermined value. That is, when a relative rotation occurs between the shafts 25 and 26, the outer case 11, the working piston 13 and the retainer 15 that are integrally rotatably assembled to the first propeller shaft 25 and the second propeller shaft 26 are integrated. Relative rotation occurs between the rotatably mounted inner shaft 12 and rotor 14. Therefore, in the fluid chamber of the pressing force generating means 10a, the viscous fluid in the retention chamber R2 is forcibly flown at a speed proportional to the relative rotation speed, and flows in the retention chamber R2 that sequentially shifts in the circumferential direction. Due to the resistance, from the downstream end of the vane portion 14b to the next vane portion 14b.
A pressure distribution is generated in which the pressure is gradually increased toward the upstream end of the. The pressure increasing portion of this pressure distribution increases in proportion to the differential rotation speed, and presses the working piston 13 in the axial direction.

しかして、押圧力発生手段10aで発生する押圧力がバネ
部材18bからの押圧力より大きくなると、作動ピストン1
3は押圧プレート18aを介して摩擦係合力発生手段10bを
押圧して摩擦係合力発生手段10bを構成する各クラッチ
プレート16とクラッチディスク17をクラッチ用オイルを
介して摩擦係合させる。これにより、摩擦係合力発生手
段10bにおいては差動回転数に比例したトルクをアウタ
ケース11からインナシャフト12に伝達し、車両は4輪駆
動状態となる。また、この4輪駆動状態においては前後
輪の差動回転を許容し、タイヤコーナブレーキング現象
の発生も防止される。また、当該動力伝達機構10におい
ては、摩擦係合力発生手段10bが所定の高温に達すると
バネ部材18bが変形して作動ピストン13に対する押圧力
を増大させ、同手段10bを作動ピストン13から離間させ
て押圧力から解放させる。これにより、摩擦係合力発生
手段10bの摩擦係合が解除されて同手段10bのそれ以上の
温度上昇が防止される。なお、バネ部材18bは温度が所
定未満に低下すると元に復帰する。従って、当該動力伝
達機構10においては、車両の定常走行時に前後輪の一方
側に頻繁にひきずり現象が発生して燃費の悪化やタイヤ
の早期摩耗が発生するようなことはなく、また摩擦係合
力発生手段10bの焼付き、その他の焼損を防止すること
ができる。
When the pressing force generated by the pressing force generating means 10a becomes larger than the pressing force from the spring member 18b, the working piston 1
Reference numeral 3 presses the frictional engagement force generating means 10b via the pressing plate 18a to frictionally engage each clutch plate 16 and the clutch disc 17 constituting the frictional engagement force generating means 10b via the clutch oil. As a result, in the frictional engagement force generating means 10b, the torque proportional to the differential rotation speed is transmitted from the outer case 11 to the inner shaft 12, and the vehicle is in the four-wheel drive state. Further, in this four-wheel drive state, differential rotation of the front and rear wheels is allowed, and the occurrence of a tire corner braking phenomenon is prevented. Further, in the power transmission mechanism 10, when the frictional engagement force generating means 10b reaches a predetermined high temperature, the spring member 18b is deformed to increase the pressing force against the working piston 13, and the means 10b is separated from the working piston 13. Release from pressing force. As a result, the frictional engagement of the frictional engagement force generating means 10b is released, and the temperature of the means 10b is prevented from further increasing. The spring member 18b returns to its original state when the temperature drops below a predetermined value. Therefore, in the power transmission mechanism 10, the drag phenomenon does not frequently occur on one side of the front and rear wheels during steady running of the vehicle, which deteriorates fuel efficiency and prematurely wears the tires. It is possible to prevent seizure of the generating means 10b and other burnouts.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例に係る動力伝達機構の断面
図、第2図は第1図の矢印II−II線方向の断面図、第3
図は同機構を採用した車両の概略図である。 符号の説明 10…動力伝達機構、10a…押圧力発生手段、10b…摩擦係
合力発生手段、11…アウタケース、12…インナシャフ
ト、13…作動ピストン、14…ロータ、14b…ベーン部、1
5…リテーナ、16…クラッチプレート、17…クラッチデ
ィスク、18b…バネ部材、25,26…プロペラシャフト。
1 is a sectional view of a power transmission mechanism according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG.
The figure is a schematic diagram of a vehicle that employs the same mechanism. DESCRIPTION OF SYMBOLS 10 ... Power transmission mechanism, 10a ... Pressing force generating means, 10b ... Friction engagement force generating means, 11 ... Outer case, 12 ... Inner shaft, 13 ... Working piston, 14 ... Rotor, 14b ... Vane section, 1
5 ... Retainer, 16 ... Clutch plate, 17 ... Clutch disc, 18b ... Spring member, 25, 26 ... Propeller shaft.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 芦田 敏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)考案者 山本 正司 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Ashida 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd. (72) Inventor Shoji Yamamoto 1-1 1-1 Asahi-cho, Kariya-shi, Aichi Toyota Koki Co., Ltd. Within

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】同軸的かつ相対回転可能に位置する一対の
回転部材間に配設され、これら両回転部材の相対回転に
より作動して両回転部材を動力伝達可能に連結する摩擦
係合力を発生させるとともに付与される押圧力に応じて
前記摩擦係合力を増減させる摩擦係合力発生手段、およ
び両回転部材の相対回転に応じた押圧力を発生させて前
記摩擦係合力発生手段に付与する押圧力発生手段を備
え、同押圧力発生手段を、前記両回転部材間に液密的に
軸方向へ摺動可能かつ一方の回転部材に一体回転可能に
組付けられて前記摩擦係合力発生手段に対向する作動ピ
ストンと、前記一方の回転部材に一体回転可能に設けら
れて前記作動ピストンとの間に軸方向に所定間隔を有し
て粘性流体が封入される流体室を形成するリテーナと、
半径方向へ延びる1または複数のベーン部を備え前記流
体室にて前記他方の回転部材に一体的に組付けられたロ
ータとにより構成してなる動力伝達機構において、前記
作動ピストンに対してバネ部材にて押圧力を付与して同
作動ピストンを前記押圧力発生手段で発生する押圧力が
所定の値に達するまで前記摩擦係合力発生手段から離間
させるとともに、同バネ部材として所定温度に達したと
き前記作動ピストンに対する押圧力を増大させるバネ部
材を採用したことを特徴とする動力伝達機構。
1. A frictional engagement force, which is disposed between a pair of rotating members coaxially and relatively rotatably positioned, is actuated by relative rotation of these rotating members to couple the rotating members so that power can be transmitted. And a frictional force generating means for increasing / decreasing the frictional force according to the applied pressure force, and a pressure force for generating the pressure force according to the relative rotation of the two rotary members and imparting the force to the frictional force generation means. And a pressing means for generating the pressing force, which is liquid-tightly slidable in the axial direction between the rotary members and is integrally rotatable with one of the rotary members so as to face the frictional engagement force generating means. And a retainer that is integrally rotatably provided on the one rotating member and that forms a fluid chamber in which a viscous fluid is sealed at a predetermined interval in the axial direction between the operating piston and
A power transmission mechanism comprising one or a plurality of vane portions extending in the radial direction and a rotor integrally assembled with the other rotating member in the fluid chamber, wherein a spring member is provided for the working piston. When the pressing force is applied to the working piston to separate it from the friction engagement force generating means until the pressing force generated by the pressing force generating means reaches a predetermined value, and when the spring member reaches a predetermined temperature. A power transmission mechanism comprising a spring member for increasing a pressing force applied to the working piston.
JP14582988U 1988-11-08 1988-11-08 Power transmission mechanism Expired - Lifetime JPH0730997Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14582988U JPH0730997Y2 (en) 1988-11-08 1988-11-08 Power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14582988U JPH0730997Y2 (en) 1988-11-08 1988-11-08 Power transmission mechanism

Publications (2)

Publication Number Publication Date
JPH0265722U JPH0265722U (en) 1990-05-17
JPH0730997Y2 true JPH0730997Y2 (en) 1995-07-19

Family

ID=31414761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14582988U Expired - Lifetime JPH0730997Y2 (en) 1988-11-08 1988-11-08 Power transmission mechanism

Country Status (1)

Country Link
JP (1) JPH0730997Y2 (en)

Also Published As

Publication number Publication date
JPH0265722U (en) 1990-05-17

Similar Documents

Publication Publication Date Title
JPH02209629A (en) Power transmission mechanism
JPH0369829A (en) Driving force transmission
JPH0730997Y2 (en) Power transmission mechanism
JPH0730998Y2 (en) Power transmission mechanism
JPH0717858Y2 (en) Power transmission mechanism
JP3175259B2 (en) Driving force transmission device
JP2507116B2 (en) Driving force transmission device
JP2522848B2 (en) Driving force transmission device
JPH0730996Y2 (en) Power transmission mechanism
JP2831089B2 (en) Driving force transmission device
JP2661217B2 (en) Power transmission mechanism
JP2507671Y2 (en) Driving force transmission device
JP2508957Y2 (en) Driving force transmission device
JP2527022B2 (en) Power transmission mechanism
JP2510134Y2 (en) Power transmission device
JP3070206B2 (en) Driving force transmission device
JP2538332B2 (en) Power transmission mechanism
JPH0519677U (en) Driving force transmission device
JPH0425625A (en) Driving force transmission
JPH02199329A (en) Power transmission mechanism
JPH02199330A (en) Power transmission mechanism
JPH0348031A (en) Driving force transmission device
JPH0328530A (en) Driving force transmission device
JPH0574960U (en) Driving force transmission device
JPH0519678U (en) Driving force transmission device