JPH0717858Y2 - Power transmission mechanism - Google Patents
Power transmission mechanismInfo
- Publication number
- JPH0717858Y2 JPH0717858Y2 JP14620688U JP14620688U JPH0717858Y2 JP H0717858 Y2 JPH0717858 Y2 JP H0717858Y2 JP 14620688 U JP14620688 U JP 14620688U JP 14620688 U JP14620688 U JP 14620688U JP H0717858 Y2 JPH0717858 Y2 JP H0717858Y2
- Authority
- JP
- Japan
- Prior art keywords
- generating means
- power transmission
- transmission mechanism
- members
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Arrangement And Driving Of Transmission Devices (AREA)
Description
【考案の詳細な説明】 (産業上の利用分野) 本考案は、同軸的かつ相対回転可能に位置する一対の回
転部材間に配設されて、これら両部材間の動力伝達を行
う動力伝達機構に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention is a power transmission mechanism that is disposed between a pair of rotating members that are coaxially and relatively rotatable and that transmits power between these two members. Regarding
(従来技術) かかる動力伝達機構は、駆動側回転部材と従動側回転部
材間に配設されて、これら両部材の相対回転時これら両
部材を互に動力伝達可能に連結して、従動側回転部材を
駆動させる連結機構として使用されるものと、駆動側お
よび従動側回転部材間、両駆動側回転部材間または両従
動側回転部材間に配設されてこれら両部材の相対回転時
これら両部材を互に動力伝達可能に連結して、これら両
部材間の回転差を制限させる差動制限機構として使用さ
れるもの等に大別される。前者の連結機構は主としてリ
ヤルタイム式の四輪駆動車における一方の動力伝達系路
に配設され、また後者の差動制限機構は主として車両に
おける各ディファレンシャルに配設される。(Prior Art) Such a power transmission mechanism is disposed between a driving side rotation member and a driven side rotation member, and when these both members relatively rotate, these two members are connected to each other so that power can be transmitted to the driven side rotation member. A member used as a connecting mechanism for driving members, a driving-side driven member, a driven-side rotating member, both driving-side rotating members, or both driven-side rotating members. Are connected to each other so as to be able to transmit power to each other, and are roughly classified into those used as a differential limiting mechanism for limiting the rotation difference between these two members. The former coupling mechanism is mainly arranged on one power transmission path in a real-time four-wheel drive vehicle, and the latter differential limiting mechanism is mainly arranged on each differential in the vehicle.
しかして、従来の動力伝達機構としては特開昭63−2404
29号公報に示されているように、同軸的かつ相対回転可
能に位置する一対の回転部材間に配設され、これら両回
転部材の相対回転により作動して両回転部材を動力伝達
可能に連結する摩擦係合力を発生させるとともに付与さ
れる押圧力に応じて前記摩擦係合力を増減させる摩擦係
合力発生手段、および両回転部材の相対回転に応じた押
圧力を発生させて前記摩擦係合力発生手段に付与する押
圧力発生手段を備え、同押圧力発生手段を、前記両回転
部材間に液密的に軸方向へ摺動可能かつ一方の回転部材
に一体回転可能に組付けられて前記摩擦係合力発生手段
に当接する作動ピストンと、前記一方の回転部材に一体
回転可能に設けられて前記作動ピストンとの間に軸方向
に所定間隔を有して粘性流体が封入される流体室を形成
するリテーナと、半径方向へ延びる1または複数のベー
ン部を備え前記流体室にて前記他方の回転部材に一体的
に組付けられたロータとにより構成してなる動力伝達機
構がある。Thus, as a conventional power transmission mechanism, Japanese Patent Laid-Open No. 63-2404
As disclosed in Japanese Patent Publication No. 29, it is arranged between a pair of rotating members that are coaxially and relatively rotatable with each other, and actuated by relative rotation of these rotating members to connect them so that power can be transmitted. Generating frictional engagement force and increasing / decreasing the frictional engagement force according to the applied pressing force, and generating frictional force by generating pressing force according to relative rotation of both rotary members. Means for applying a pressing force to the means, the pressing force generating means being fluid-tightly slidable between the rotating members in the axial direction and integrally rotatable with one of the rotating members so that the friction A fluid chamber, in which a viscous fluid is enclosed, is formed between the working piston abutting on the engaging force generating means and the one rotating member so as to be integrally rotatable with a predetermined space in the axial direction between the working piston and the working piston. And a retainer There is one or more consisting constituted by a rotor integrally assembled to the rotating member of the other by said fluid chamber comprising a vane section power transmission mechanism radially extending.
この種形式の動力伝達機構においては、両回転部材間に
相対回転が生じると一方の回転部材に一体回転可能に組
付けた差動ピストンおよびリテーナと、他方の回転部材
に一体的に組付けたロータとの間に相対回転が生じ、流
体室の前記ロータのベーン部にて区画された粘性流体封
入室内の粘性流体が強制的に流動させられ、封入室内で
は流動抵抗に起因して圧力が発生する。すなわち、押圧
力発生手段に差動回転数に応じた圧力が発生する。この
圧力は差動ピストンを軸方向に押圧して摩擦係合力発生
手段を押圧させ、同手段に両回転部材を動力伝達可能に
連結する摩擦係合力を発生させる。かかる摩擦係合力は
差動回転数に比例し、両回転部材間では差動回転数に比
例した動力が一方から他方へ伝達される。従って、当該
動力伝達機構は四輪駆動車の一方の動力伝達系路におけ
る駆動側回転部材と従動側回転部材との連結機構として
機能するとともに、駆動側および従動側回転部材間、両
駆動側回転部材間または両従動側回転部材間の差動制限
機構としても機能する。In this type of power transmission mechanism, when a relative rotation occurs between both rotary members, a differential piston and a retainer that are integrally rotatable with one rotary member and a rotary piston are integrally assembled with the other rotary member. Relative rotation occurs with the rotor, the viscous fluid in the viscous fluid enclosure chamber defined by the vane part of the rotor of the fluid chamber is forced to flow, and pressure is generated in the enclosure chamber due to flow resistance. To do. That is, a pressure corresponding to the differential rotation speed is generated in the pressing force generating means. This pressure pushes the differential piston in the axial direction to press the frictional engagement force generating means, and the frictional engagement force for connecting the two rotating members to the power transmission means is generated. The frictional engagement force is proportional to the differential rotation speed, and the power proportional to the differential rotation speed is transmitted between the two rotary members from one to the other. Therefore, the power transmission mechanism functions as a coupling mechanism between the drive-side rotating member and the driven-side rotating member in one power-transmitting system path of the four-wheel drive vehicle and rotates between the drive-side and driven-side rotating members and both drive-side rotating members. It also functions as a differential limiting mechanism between members or between both driven side rotating members.
(考案が解決しようとする課題) ところで、上記した形式の動力伝達機構においては、両
回転部材間の相対回転が正逆いずれの場合においても、
すなわち一方の回転部材が他方の回転部材より回転速度
が速い場合および遅い場合のいずれの場合においてもト
ルク伝達特性が同一である。このため、車両が4輪駆動
走行時タイトコーナブレーキング現象が発生するような
場合には、トルク伝達を低減し得ずタイトコーナブレー
キング現象の発生を十分には防止し得ない場合があり、
また車両の走行性能を任意の性能に設定するのにかなら
ずしも十分でない場合がある。(Problems to be solved by the invention) By the way, in the power transmission mechanism of the above-mentioned type, even when the relative rotation between both rotary members is either forward or reverse,
That is, the torque transmission characteristics are the same regardless of whether the rotational speed of one rotating member is faster or slower than the other rotating member. For this reason, when the vehicle has a tight corner braking phenomenon during four-wheel drive, torque transmission may not be reduced and the tight corner braking phenomenon may not be sufficiently prevented.
Further, it may not always be sufficient to set the traveling performance of the vehicle to an arbitrary performance.
従って、本考案の目的は、かかる形式の動力伝達機構に
おいて両回転部材間の相対回転が正逆の場合にトルク伝
達特性が変るように構成して、上記した各問題を解決す
ることにある。Therefore, an object of the present invention is to solve the above-mentioned problems by configuring the power transmission mechanism of this type so that the torque transmission characteristic is changed when the relative rotation between both rotary members is forward and reverse.
(課題を解決するための手段) 本考案は上記した形式の動力伝達機構において、前記ベ
ーン部の周方向の両側面を互に異なる形状に形成し、両
側面の粘性流体に対する抗力を互に異ならせたことを特
徴とする。(Means for Solving the Problems) In the power transmission mechanism of the above-described type, the present invention forms the vane portions on both sides in the circumferential direction so as to have mutually different shapes, and if the drag forces on the viscous fluid on both sides are different from each other. It is characterized by having been done.
(考案の作用・効果) かかる構成によれば、前記ロータのベーン部における両
側面の粘性流体に対する抗力が互に異なるため、ロータ
の軸方向の両側面と差動ピストンおよびリテーナの一側
面間の微小間隙を通して一方の封入室から他方の封入室
へ流れる粘性流体の流量が正・逆回転で異なり、ロータ
の相対回転が粘性流体の流量が少ない方向への場合には
封入室に発生する圧力は大きく、かつ粘性流体の流量が
多い方向の場合には発生する圧力は小さい。従って、押
圧発生手段にて発生する押圧力は両回転部材間の相対回
転が正逆の場合で異なり、このためトルク伝達特性も異
なる。(Operation and Effect of the Invention) According to such a configuration, since the drag force on the viscous fluid on each side surface of the vane portion of the rotor is different from each other, the two side surfaces in the axial direction of the rotor and one side surface of the differential piston and the retainer are different from each other. When the flow rate of the viscous fluid flowing from one enclosure to the other enclosure through the minute gap differs between forward and reverse rotation, and when the relative rotation of the rotor is in the direction in which the flow rate of the viscous fluid is small, the pressure generated in the enclosure is When the flow rate is large and the flow rate of the viscous fluid is large, the generated pressure is small. Therefore, the pressing force generated by the pressure generating means is different when the relative rotation between both rotary members is forward and reverse, and therefore the torque transmission characteristics are also different.
(実施例) 以下本考案の実施例を図面に基づいて説明するに、第1
図には本考案にかかる動力伝達機構の一実施例が示され
ている。当該動力伝達機構10は第4図に示すように、リ
ヤルタイム式の四輪駆動車の後輪側動力伝達系路に配設
される。(Embodiment) The first embodiment of the present invention will be described below with reference to the drawings.
An embodiment of the power transmission mechanism according to the present invention is shown in the drawings. As shown in FIG. 4, the power transmission mechanism 10 is arranged in the rear-wheel-side power transmission system of a real-time four-wheel drive vehicle.
当該車両は前輪側が常時駆動するとともに後輪側が必要
時駆動するもので、エンジン21の一側に組付けたトラン
スアクスル22はトランスミッションおよびトランスファ
を備え、エンジン21からの動力をアクスルシャフト23に
出力して前輪24を駆動させるとともに、第1プロペラシ
ャフト25に出力する。第1プロペラシャフト25は動力伝
達機構10を介して第2プロペラシャフト26に連結してい
て、これら両シャフト25、26が動力伝達可能な場合動力
がリヤディファレンシャル27を介してアクスルシャフト
28に出力され、後輪29が駆動する。In the vehicle, the front wheels are always driven and the rear wheels are driven when necessary.The transaxle 22 mounted on one side of the engine 21 has a transmission and a transfer, and outputs power from the engine 21 to the axle shaft 23. Drive the front wheels 24 and output to the first propeller shaft 25. The first propeller shaft 25 is connected to the second propeller shaft 26 via the power transmission mechanism 10. If both shafts 25, 26 can transmit power, the power is transmitted via the rear differential 27 to the axle shaft.
It is output to 28, and the rear wheel 29 is driven.
しかして、動力伝達機構10はアウタケース11およびイン
ナシャフト12からなる環状の作動室内に押圧力発生手段
10aおよび摩擦係合力発生手段10bを備えている。Thus, the power transmission mechanism 10 has a pressing force generating means in the annular working chamber composed of the outer case 11 and the inner shaft 12.
10a and a frictional engagement force generating means 10b.
アウタケース11は所定長さの筒部11aの一端に内向フラ
ンジ部11bを備えてなり、筒部11aの他端が開口していて
他端側内周にネジ部11cが形成されている。インナシャ
フト12は所定長さの段付きの筒部12aの中間部外周に外
向フランジ部12bを備えてなり、フランジ部12bの外周に
は軸方向へ延びる外スプライン部12cが形成され、かつ
筒部12aの一端側内周には軸方向へ延びる内スプライン
部12dが形成されている。かかるインナシャフト12にお
いては、その筒部12aの一端がアウタケース11の内向フ
ランジ部11bの内孔内に液密的かつ回転可能に嵌合され
ていて、筒部12aの他端側外周に組付けた後述の押圧力
発生手段10aの構成部材を介してアウタケース11に回転
可能に支持されている。インナシャフト12はその内スプ
ライン12dにて第2プロペラシャフト26の先端部のスプ
ライン26aに嵌合して固定され、かつアウタケース11は
第1プロペラシャフト25の後端に固定されている。The outer case 11 is provided with an inward flange portion 11b at one end of a tubular portion 11a having a predetermined length, the other end of the tubular portion 11a is open, and a threaded portion 11c is formed on the inner circumference of the other end. The inner shaft 12 is provided with an outward flange portion 12b on the outer periphery of the intermediate portion of a stepped tubular portion 12a of a predetermined length, and an outer spline portion 12c extending in the axial direction is formed on the outer periphery of the flange portion 12b. An inner spline portion 12d extending in the axial direction is formed on the inner periphery of one end side of 12a. In the inner shaft 12, one end of the tubular portion 12a is fitted in the inner hole of the inward flange portion 11b of the outer case 11 in a liquid-tight and rotatable manner, and is assembled to the outer periphery of the other end of the tubular portion 12a. It is rotatably supported by the outer case 11 via the constituent members of the attached pressing force generating means 10a described later. The inner shaft 12 is fitted and fixed to the spline 26a at the tip of the second propeller shaft 26 by the inner spline 12d, and the outer case 11 is fixed to the rear end of the first propeller shaft 25.
押圧力発生手段10aは作動ピストン13、ロータ14および
リテーナ15からなり、かつ摩擦係合力発生手段10bは湿
式多板クラッチ式のもので、多数のクラッチプレート16
およびクラッチディスク17からなる。各クラッチプレー
ト16はその外周の凸起部をアウタケース11の内周に設け
た溝部11dに嵌合されて、同ケース11に一体回転可能か
つ軸方向へ移動可能に組付けられている。各クラッチデ
ィスク17はその内周の凸起部をインナシャフト12の外ス
プライン部12cに嵌合されて各クラッチプレート16間に
位置し、同シャフト12に一体回転可能かつ軸方向へ移動
可能に組付けられている。これらのクラッチプレート16
およびクラッチディスク17の収容室R1にはクラッチ用オ
イルと気体とが所定量封入されている。The pressing force generating means 10a is composed of an operating piston 13, a rotor 14 and a retainer 15, and the friction engagement force generating means 10b is of a wet multi-plate clutch type and has a large number of clutch plates 16.
And a clutch disc 17. Each clutch plate 16 has a raised portion on the outer periphery thereof fitted into a groove portion 11d provided on the inner periphery of the outer case 11, and is assembled to the case 11 so as to be integrally rotatable and movable in the axial direction. Each clutch disc 17 has its inner peripheral raised portion fitted to the outer spline portion 12c of the inner shaft 12 so as to be positioned between the clutch plates 16 and assembled to the shaft 12 so as to be integrally rotatable and movable in the axial direction. It is attached. These clutch plates 16
A predetermined amount of clutch oil and gas is sealed in the storage chamber R1 of the clutch disc 17.
押圧力発生手段10aを構成する作動ピストン13はアウタ
ケース11の筒部11aの他端側内周に一体回転可能かつ液
密的に軸方向へ摺動可能に、またインナシャフト12に対
してはその外周に回転可能かつ軸方向へ摺動可能にそれ
ぞれ組付けられていて、その一側面13aにて最他端のク
ラッチプレート16に当接している。ロータ14は第1図お
よび第2図に示すように、環状ボス部14aの外周の互に1
80゜離れた部位にて半径方向へ延びる2枚のベーン部14
bを備えてなり、環状ボス部14aにてインナシャフト12の
筒部12a外周に嵌合させてインナシャフト12に一体的に
組付けられている。かかるロータ14においては、その環
状ボス部14aが差動ピストン13の他側に設けた環状凹所1
3bの深さと略同じ厚みに、かつベーン部14bの横断面が
第3図(a)に示すよう一端側に突出する流線形に形成
されていて、環状凹所13b内に嵌合している。ベーン部1
4bの他端側は周方向に直交する端面14b1に形成されてい
て、同端面14b1と一端側の流線形面14b2とは粘性流体に
対する抗力が互に異なっている。リテーナ15はその他端
側外周にネジ部15aを備え、インナシャフト12の筒部12a
の他端側外周に液密的に軸方向へ摺動可能かつ回転可能
に嵌合され、アウタケース11に対してはそのネジ部15a
をアウタケース11のネジ部11cに進退可能に螺着され、
かつ液密的となっている。かかるリテーナ15において
は、軸方向の位置調整がなされてアウタケース11にカシ
メ手段にて固定され、その一側面15bにて作動ピストン1
3の他側の環状外縁面13cに当接し、その一側面15bと差
動ピストン13の環状凹所13bとによりロータ14が位置す
る流体室を形成している。この流体室内にはシリコンオ
イル等高粘性流体が所定量封入されており、またロータ
14はそのベーン部14bの外周を環状凹所13bの内周に液密
的に接触させ、かつベーン部14bの端面14b1側の両側と
環状凹所13bの多端面13b1およびリテーナ14の一側面15b
間に微小間隙を形成して、流体室内を高粘性流体を封入
する2つの滞留室R2に区画している。The working piston 13 that constitutes the pressing force generating means 10a is integrally rotatable with the inner circumference of the other end side of the tubular portion 11a of the outer case 11 and is slidable in the liquid-tight axial direction. The outer periphery of the clutch plate 16 is rotatably and slidably mounted in the axial direction. As shown in FIG. 1 and FIG.
Two vanes 14 that extend in the radial direction at 80 ° apart
It is provided with b, and is fitted integrally with the inner shaft 12 by being fitted to the outer periphery of the cylindrical portion 12a of the inner shaft 12 by the annular boss portion 14a. In the rotor 14, the annular boss portion 14a has an annular recess 1 provided on the other side of the differential piston 13.
The vane portion 14b is formed in a streamline shape having a thickness substantially equal to the depth of 3b and protruding toward one end side as shown in FIG. 3 (a), and is fitted in the annular recess 13b. . Vane section 1
The other end of the 4b is formed into the end face 14b 1 orthogonal to the circumferential direction, drag is mutually different for the viscous fluid to the streamlined shape surface 14b 2 of the end surface 14b 1 and one end. The retainer 15 has a threaded portion 15a on the outer periphery on the other end side, and the cylindrical portion 12a of the inner shaft 12
Is fitted to the outer periphery of the other end side in a liquid-tight manner so as to be slidable and rotatable in the axial direction.
Is screwed to the screw part 11c of the outer case 11 so as to be able to move forward and backward,
And it is liquid-tight. The retainer 15 is axially adjusted in position and fixed to the outer case 11 by caulking means.
The third outer surface 13c is in contact with the other annular outer edge surface 13c, and one side surface 15b thereof and the annular recess 13b of the differential piston 13 form a fluid chamber in which the rotor 14 is located. A predetermined amount of highly viscous fluid such as silicone oil is enclosed in this fluid chamber.
Reference numeral 14 designates the outer periphery of the vane portion 14b in liquid-tight contact with the inner periphery of the annular recess 13b, and both sides of the end face 14b1 side of the vane portion 14b and the multi-end surface 13b1 of the annular recess 13b and one side surface of the retainer 14. 15b
A minute gap is formed between them to divide the fluid chamber into two retention chambers R2 for enclosing the high-viscosity fluid.
かかる構成の動力伝達機構10においては、第1、第2両
プロペラシャフト25、26間に相対回転が生じていない場
合にはこれら両シャフト25、26間のトルク伝達はない
が、両シャフト25、26間に相対回転が生じるとトルク伝
達がなされる。すなわち、これら両シャフト25、26間に
相対回転が生じると、第1プロペラシャフト25に一体回
転可能に組付けられているアウタケース11、作動ピスト
ン13およびリテーナ15と、第2プロペラシャフト26に一
体回転可能に組付けられているインナシャフト12および
ロータ14との間に相対回転が生じる。従って、押圧力発
生手段10aの流体室内においては、滞留室R2内の粘性流
体が相対回転数に比例した速度にて強制的に流動させら
れ、周方向に順次相対移行する滞留室R2内では流動抵抗
に起因してベーン部14bの下流側端から次のベーン部14b
の上流側端に向って漸次増圧される圧力分布が発生す
る、この圧力分布の増圧部分は差動回転数に比例して増
大するもので、作動ピストン13を軸方向へ押圧して摩擦
係合力発生手段10bを構成する各クラッチプレート16と
クラッチディスク17をクラッチ用オイルを介して摩擦係
合させる。これにより、摩擦係合力発生手段10bにおい
ては差動回転数に比例したトルクをアウタケース11から
インナシャフト12に伝達し、車両は4輪駆動状態とな
る。また、この4輪駆動状態においては前後輪の差動回
転を許容し、タイトコーナブレーキング現象の発生も防
止される。In the power transmission mechanism 10 having such a configuration, when relative rotation does not occur between the first and second propeller shafts 25, 26, torque is not transmitted between the two shafts 25, 26, but both shafts 25, 26 When relative rotation occurs between 26, torque is transmitted. That is, when a relative rotation occurs between the shafts 25 and 26, the outer case 11, the working piston 13 and the retainer 15 that are integrally rotatably assembled to the first propeller shaft 25 and the second propeller shaft 26 are integrated. Relative rotation occurs between the rotatably mounted inner shaft 12 and rotor 14. Therefore, in the fluid chamber of the pressing force generating means 10a, the viscous fluid in the retention chamber R2 is forcibly flown at a speed proportional to the relative rotation speed, and flows in the retention chamber R2 that sequentially shifts in the circumferential direction. Due to the resistance, from the downstream end of the vane portion 14b to the next vane portion 14b.
A pressure distribution in which the pressure is gradually increased toward the upstream side end of the pressure distribution is generated. The pressure increase portion of this pressure distribution increases in proportion to the differential rotation speed. The clutch plates 16 and the clutch disc 17 that form the engaging force generating means 10b are frictionally engaged with each other via the clutch oil. As a result, in the frictional engagement force generating means 10b, the torque proportional to the differential rotation speed is transmitted from the outer case 11 to the inner shaft 12, and the vehicle is in the four-wheel drive state. Further, in this four-wheel drive state, differential rotation of the front and rear wheels is allowed, and the occurrence of the tight corner braking phenomenon is prevented.
ところで、当該動力伝達機構10においては、ロータ14の
ベーン部14bにおける周方向の他側面が端面14b1にかつ
一側面が流線形面14b2に形成されていて、粘性流体に対
する抗力が互に異なっているため、ロータ14の軸方向の
両側面と作動ピストン13の他側面13b1およびリテーナ15
の一側面15b間の微小間隙を通して滞留室R2の一方から
他方へ流れる粘性流体の流量がロータ14の回転方向によ
り異なる。ロータ14はアウタケース11がインナシャフト
12に比較して回転速度が速い場合第3図(a)の矢印A
方向に相対回転し、回転速度が遅い場合矢印B方向に相
対回転する。しかして、矢印A方向への回転時には粘性
流体の流量が少なくて滞留室R2での発生圧力が大きく、
かつ矢印B方向への回転時には粘性流体の流量が多くて
滞留室R2での発生圧力が小さい。従って、アウタケース
11からインナシャフト12へのトルク伝達は大きく、かつ
インナシャフト12からアウタケース11へのトルク伝達は
小さい。Meanwhile, in the power transmission mechanism 10, the circumferential direction of the other side surfaces and one side surface on the end surface 14b 1 of the vane portion 14b of the rotor 14 have been formed in streamlined shape surface 14b 2, each other different resistance to viscous fluid Therefore, both axial side surfaces of the rotor 14 and the other side surface 13b 1 of the working piston 13 and the retainer 15
The flow rate of the viscous fluid flowing from one side of the retention chamber R 2 to the other side through the minute gap between the one side surfaces 15b differs depending on the rotation direction of the rotor 14. The outer case 11 of the rotor 14 is the inner shaft
When the rotation speed is faster than that of 12, arrow A in Fig. 3 (a)
Relative rotation in the direction of arrow B, and when the rotation speed is low, relative rotation in the direction of arrow B. However, when rotating in the direction of arrow A, the flow rate of the viscous fluid is small and the generated pressure in the retention chamber R 2 is large,
At the time of rotation in the direction of arrow B, the flow rate of the viscous fluid is large and the pressure generated in the retention chamber R 2 is small. Therefore, the outer case
The torque transmission from 11 to the inner shaft 12 is large, and the torque transmission from the inner shaft 12 to the outer case 11 is small.
なお、第3図(b)にはロータ14のベーン部の変形例が
示されており、かかるベーン部14cにおいては横断面が
テーパ状の梯形に形成されている。これにより、端面14
c1とテーパ状面14c2とは粘性流体に対する抗力を互に異
にしている。なお、ベーン部の横断面は上記抗力を互に
異にする適宜の形状とすることができる。A modified example of the vane portion of the rotor 14 is shown in FIG. 3 (b), and the vane portion 14c has a trapezoidal cross section. This allows the end face 14
The c 1 and the tapered surface 14 c 2 have different drag forces against the viscous fluid. The cross section of the vane portion may have an appropriate shape that makes the drag forces different from each other.
第1図は本考案の一実施例に係る動力伝達機構の断面
図、第2図は第1図の矢印II−II線方向の断面図、第3
図(a)はロータのベーン部の拡大横断面図、同図
(b)はベーン部の変形例を示す拡大横断面図、第4図
は同機構を採用した車両の概略図である。 符号の説明 10……動力伝達機構、10a……押圧力発生手段、10b……
摩擦係合力発生手段、11……アウタケース、12……イン
ナシャフト、13……作動ピストン、14……ロータ、14
b、14c……ベーン部、15……リテーナ、16……クラッチ
プレート、17……クラッチディスク、25,26……プロペ
ラシャフト。1 is a sectional view of a power transmission mechanism according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG.
FIG. 4A is an enlarged transverse sectional view of a vane portion of a rotor, FIG. 4B is an enlarged transverse sectional view showing a modified example of the vane portion, and FIG. 4 is a schematic view of a vehicle employing the same mechanism. Explanation of symbols 10 …… Power transmission mechanism, 10a …… Pressing force generating means, 10b ……
Friction engaging force generating means, 11 ... Outer case, 12 ... Inner shaft, 13 ... Working piston, 14 ... Rotor, 14
b, 14c …… Vane part, 15 …… Retainer, 16 …… Clutch plate, 17 …… Clutch disc, 25,26 …… Propeller shaft.
───────────────────────────────────────────────────── フロントページの続き (72)考案者 酒井 直行 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 (56)参考文献 特開 平2−209628(JP,A) 特開 昭64−87928(JP,A) 特開 昭63−240429(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoyuki Sakai 1-1-1, Asahi-cho, Kariya city, Aichi Toyota Koki Co., Ltd. (56) Reference JP-A-2-209628 (JP, A) JP-A-64 -87928 (JP, A) JP-A-63-240429 (JP, A)
Claims (1)
回転部材間に配設され、これら両回転部材の相対回転に
より作動して両回転部材を動力伝達可能に連結する摩擦
係合力を発生させるとともに付与される押圧力に応じて
前記摩擦係合力を増減させる摩擦係合力発生手段、およ
び両回転部材の相対回転に応じた押圧力を発生させて前
記摩擦係合力発生手段に付与する押圧力発生手段を備
え、同押圧力発生手段を、前記両回転部材間に液密的に
軸方向へ摺動可能かつ一方の回転部材に一体回転可能に
組付けられて前記摩擦係合力発生手段に当接する作動ピ
ストンと、前記一方の回転部材に一体回転可能に設けら
れて前記作動ピストンとの間に軸方向に所定間隔を有し
て粘性流体が封入される流体室を形成するリテーナと、
半径方向へ延びる1または複数のベーン部を備え前記流
体室にて前記他方の回転部材に一体的に組付けられたロ
ータとにより構成してなる動力伝達機構において、前記
ベーン部の周方向の両側面を互に異なる形状に形成し、
両側面の粘性流体に対する抗力を互に異ならせたことを
特徴とする動力伝達機構。1. A frictional engagement force, which is disposed between a pair of rotating members coaxially and relatively rotatably positioned, is actuated by relative rotation of these rotating members to couple the rotating members so that power can be transmitted. And a frictional force generating means for increasing / decreasing the frictional force according to the applied pressure force, and a pressure force for generating the pressure force according to the relative rotation of the two rotary members and imparting the force to the frictional force generation means. The frictional force generating means includes a generating means, and the pressing force generating means is assembled so as to be liquid-tightly slidable in the axial direction between the rotating members and integrally rotatable with one rotating member. A retainer that forms a fluid chamber in which a viscous fluid is sealed at a predetermined interval in the axial direction between the working piston in contact with the one rotating member and the working piston so as to be rotatable integrally,
A power transmission mechanism comprising one or a plurality of vane portions extending in the radial direction and a rotor integrally assembled with the other rotating member in the fluid chamber, wherein both sides of the vane portion in the circumferential direction are provided. Form the surfaces in mutually different shapes,
A power transmission mechanism characterized in that the drag forces on the viscous fluid on both sides differ from each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14620688U JPH0717858Y2 (en) | 1988-11-09 | 1988-11-09 | Power transmission mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14620688U JPH0717858Y2 (en) | 1988-11-09 | 1988-11-09 | Power transmission mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0267125U JPH0267125U (en) | 1990-05-21 |
JPH0717858Y2 true JPH0717858Y2 (en) | 1995-04-26 |
Family
ID=31415480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14620688U Expired - Lifetime JPH0717858Y2 (en) | 1988-11-09 | 1988-11-09 | Power transmission mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0717858Y2 (en) |
-
1988
- 1988-11-09 JP JP14620688U patent/JPH0717858Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0267125U (en) | 1990-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02209629A (en) | Power transmission mechanism | |
JP2941077B2 (en) | Driving force transmission device for four-wheel drive vehicles | |
JPH0717858Y2 (en) | Power transmission mechanism | |
JPH0730997Y2 (en) | Power transmission mechanism | |
JP2831089B2 (en) | Driving force transmission device | |
JP2507116B2 (en) | Driving force transmission device | |
JP3175259B2 (en) | Driving force transmission device | |
JP2661217B2 (en) | Power transmission mechanism | |
JPH0730998Y2 (en) | Power transmission mechanism | |
JP3070206B2 (en) | Driving force transmission device | |
JP2865455B2 (en) | Driving force transmission device | |
JP3192031B2 (en) | Driving force transmission device | |
JP2522810B2 (en) | Driving force transmission device | |
JP2507671Y2 (en) | Driving force transmission device | |
JP2508957Y2 (en) | Driving force transmission device | |
JP2510134Y2 (en) | Power transmission device | |
JP2522848B2 (en) | Driving force transmission device | |
JPH0730996Y2 (en) | Power transmission mechanism | |
JP2538332B2 (en) | Power transmission mechanism | |
JPH02199329A (en) | Power transmission mechanism | |
JPH0519677U (en) | Driving force transmission device | |
JPH0575529U (en) | Driving force transmission device | |
JPH0533819A (en) | Drive force transmission device | |
JPH0519675U (en) | Driving force transmission device | |
JPH0425625A (en) | Driving force transmission |